e e 2415

20
E E 2415 Lecture 05 - Introduction to Operational Amplifiers

Upload: wells

Post on 22-Feb-2016

65 views

Category:

Documents


0 download

DESCRIPTION

E E 2415. Lecture 05 - Introduction to Operational Amplifiers. Operational Amplifiers. Ideal operational amplifiers are easily analyzed Assumptions for ideal operation are realistic Inexpensive commercial Op-Amps available as integrated circuits - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: E  E 2415

E E 2415

Lecture 05 - Introduction to Operational Amplifiers

Page 2: E  E 2415

Operational Amplifiers

• Ideal operational amplifiers are easily analyzed

• Assumptions for ideal operation are realistic

• Inexpensive commercial Op-Amps available as integrated circuits

• Practical applications for instrumentation, signal processing and control circuits

Page 3: E  E 2415

mA741 Pinout

1234

8765

mA741Offset Null

Inverting Input

Non-inverting Input

Vcc-

Vcc+

Output

Offset Null

NC

Page 4: E  E 2415

Op Amp Terminals

+Vcc

-Vcc

Positive supplyvoltage

OutputInverting

Input

NoninvertingInput

Negative supplyvoltage

Page 5: E  E 2415

Op Amp Terminal Currents

+Vcc

-Vcc

Vcc Vcc

ioin

ip

ic+

ic-

Common Node

Page 6: E  E 2415

Op Amp Terminal Voltages

+Vcc

-Vcc

Vcc Vcc

+vp

-

+

vo

-

+

vn

-

Common Node

Page 7: E  E 2415

Equivalent Circuit

A(Vp-Vn)Ro

Ri +vo-

ip

in

io

Page 8: E  E 2415

Assumptions for Ideal Op Amp

• Open loop Gain, A vp - vn 0 • Then vp - vn 0 Ri • Ri ip 0 and in 0• Gain is linear up to the saturation

voltage• Saturation voltage equals power supply

voltage

Page 9: E  E 2415

Open-Loop Characteristics

+Vcc

-Vcc

vp-vn

vo

A(vp-vn)

+Sat

-Sat

Linear

Page 10: E  E 2415

Inverting Amplifier

and

Vn = 0 and in = 0. Then KCL at node n yields:

+Vcc

-Vcc

RfRg

vg

+vn-

in

0

+vo-

0 00 0g o

g f

v vR R

f

o gg

Rv v

R

Page 11: E  E 2415

Saturated Mode

• Inverting Amplifier with +Vcc = 5 V and Vcc = -5V.

• Rf = 10 k and Rg = 1 k

t

1 V

-1 V

vgvo

t5 V

-5 V

Page 12: E  E 2415

Non-Inverting Amplifier

KCL at node n:

vn = vp = vg

+Vcc

-Vcc

vg

RgRs

Rf0

0n

p+

vo

-

+vp-

+vn

-

0g g o

s f

v v vR R

f so g

s

R Rv v

R

Page 13: E  E 2415

Summing Amplifier (1/2)

+Vcc

-Vcc

va

Ra

vb

Rb

vc

Rc

Rf

+

vo

-

Page 14: E  E 2415

Summing Amplifier (2/2)

0a b c o

a b c f

v v v vR R R R

f f fo a b c

a b c

R R Rv v v v

R R R

Page 15: E  E 2415

Difference Amplifier (1/3)

KCL @ n:

+Vcc

-Vcc

RbRa

Rc

Rdvb

va +vo-

+vp-

n

p

0n pi i

0n a n o

a b

v v v vR R

Page 16: E  E 2415

Difference Amplifier (2/3)

Voltage Divider @ p:

+Vcc

-Vcc

RbRa

Rc

Rdvb

va +vo-

+vp-

n

p

dn p b

c d

Rv v v

R R

Page 17: E  E 2415

Difference Amplifier (3/3)

Substitute:

into:

and simplify:

If: Then:

dn p b

c d

Rv v v

R R

0n a n o

a b

v v v vR R

d a b bo b a

a c d a

R R R Rv v v

R R R R

a c

b d

R RR R

bo b a

a

Rv v v

R

Page 18: E  E 2415

Analyzing an OpAmp Circuit

+Vcc

-VccRf

RyRL

Rx

Rg

vg

Page 19: E  E 2415

Analyzing an OpAmp Circuit

Page 20: E  E 2415

Analyzing an OpAmp Circuit

xp g

x g

Rv vR R

1 1op

f y f

v vR R R

1f x

o gy x g

R Rv vR R R

f y xo g

y x g

R R Rv vR R R

f

op

y

p

Rvv

Rv

0