dynamics of wastewater treatment systems

49
Dynamics of Wastewater Treatment Systems Gustaf Olsson Lund University, Sweden [email protected]

Upload: others

Post on 26-Jan-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Dynamics of Wastewater Treatment

SystemsGustaf Olsson

Lund University, Sweden

[email protected]

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Models

Models for

• understanding mechanisms• design• control

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Mass Balances

Conservation of mass:

(rate of change of vessel contents) =

(rate of inflows) – (rate of outflows) +(rate generated) – (rate consumed)

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Simple respirometer

The DO (SO) concentration:

Respiration rate r :

oo

o

SK

Srr

+−= max

rdt

dSo =

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Dissolved Oxygen Dynamics

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

DO responses

Air flow rate

Oxygen concentration

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Dissolved oxygen dynamics

Oxygen transfer rate:

DO mass balance:

VSSaKrate OsatOL ⋅−⋅= )( ,

VrVSSaKSqSqdt

VSdOsatOLOoutinOin

O ⋅+−+−= )()(

,,

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Controlled DO response

Change in inlet DO(disturbance)

Change in DOsetpoint

DO conc

InletDO conc

Air flow rate

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Controlling the DO response

Influencing the Kl a

airL uconstaK •≈

)( , OrefOairOair SSKuu −+=

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Organic carbon removal

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Carbon removal activated sludge

Bio reactor

Influent

Sludge outtake

Effluent

Sludge recirculation

Aeration

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Simple nutrient control

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Simple biological kinetics

ProcessComponents

Nutrient N Biomass BKinetics

Aerobicheterotrophicgrowth BY

1− BNN

N XsK

s

+

µ̂1

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Simple bioreactor response

Influent substrate decrease

Substrate

Biomass

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Soluble carbon removal

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Carbon removal kinetics

ProcessComponents

Nutrient BiomassKinetics

Aerobichetero-trophicgrowth

HY

1− HOO

O

SS

SH X

sK

s

sK

s

+

+

µ̂1

Oxygen

H

H

Y

Y 1−

Hetero-trophicdecay

Pf−1 -1 HH Xb

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Carbon removal response

Increase in air flow

Decrease in influent substrate

Biomass

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Carbon removal

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Nitrogen removal

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Pre-denitrification plant

Aerobic reactor

Sludge outtakeSludge recirculation

Influent

Internal recirculation

Effluent

Anoxic reactor

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Nitrogen Removal Process

Nitrification

Denitrification

Ammonium

Nitrate

Free gaseous nitrogen

Dissolved oxygen

Easily degradable organic matter

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

N removal – basic mechanisms

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Nitrogen removal kinetics

ProcessesComponents

CarbonBiomass

heterotrophic

Kinetics

Aerobic hetero-trophic growthAnoxic hetero-trophic growtnAerobic auto-trophic growthHeterotrophicdecayAutotrophic

decay

Oxygen NH4 NO3Biomassautotrophic

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Nitrification (batch)

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Denitrification (batch)

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Phosphorous removal

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Plant design for bio-P removal

Aerobic reactor

Sludge outtakeSludge recirculation

Influent

Anoxic reactor

Internal recirculation

EffluentBio-P

reactor

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

P removal

Processes

• Fermentation• P release

• P uptake• PAO growth

• PHA breakdown• PP breakdown

• PAO breakdown

Components• SF – fermentable COD• SA – volatile fatty acids• Dissolved oxygen• Phosphate• PHA – polyhydroxyl-

alkanoates• PP – polyphosphate• PAO

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

P removal – basic mechanisms

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

P release basic mechanisms

• Fermentation of fermentable COD to VFA. VFA used by the organisms to store carbon as poly-hydroxyl-alkanoates (PHA)

• P release from poly-phosphate into solution while VFA is converted to PHA

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

P uptake basic mechanisms

• P uptake from solution to PP using the PHA and DO

• Growth of PAO biomass, utilizing PHA and DO

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Easy degradable organic matter, VFA Phosphate

Carbon dioxide

Phosphate

PHA storage

Accumulated poly phosphate storage

Anaerobic condition:no dissolved oxygen nor nitrate present

Aerobic or anoxic conditions:nitrate and/or dissolved oxygen presentcondition

Phosphate Accumulating Organism (PAO)

Net P uptake

PO

4-P

, ppm

Accumulated poly phosphate storage

PHA storage

Concnetration in reactor

P removal mechanisms

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

0

5

10

15

20

27-sep 28-sep 29-sep 30-sep 01-okt 02-okt 03-okt 04-okt 05-okt 06-okt

pp

mNO3

NH4

PO4

Typical nutrient variationsNH4

PO4

NO3

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

P release

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

P uptake

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Hydraulicmodels

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Simple tank hydraulics

Volume VArea A

qin qout

outin qqdt

dhA

dt

dV −==

αhbNconstqout ⋅⋅⋅=

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Settling

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Multilayer model

Layer 1

Layer m

Layer n

Overflow

Underflow

Feed Layer m-1

Layer m+1

....

....

....

....

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Multilayer model

( ) ( )nmi

ffAxxqdt

dxAh iiiiiu

iii

,...,1

11

+=

−+−= −−

Underflow

Solids fluxixC

iiii eCxvxf 21

−==

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Settler – Feed Flowrate Increase

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Settler – Underflow Decrease

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Settler Profile – 5 layers

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Settler Profile – 10 layers

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Settler Profile – 20 layers

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Generaldynamic models

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

State model

( )( )ptdtutxgty

ptdtutxfdt

dx

),(),(),()(

),(),(),(

=

=

x(t) = state variablesu(t) = manipulated input variablesd(t) = disturbances input variablesy(t) = output variables

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Input-output models

( )ptdtutyhdt

dy),(),(),(=

)()(...)2()(

)(...)2()()(

21

21

tvtntubttubttub

tntyattyattyaty

n

n

+∆⋅−++∆⋅−+∆−++∆⋅−++∆⋅−+∆−=

Time discrete form:

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Summary

• Mass balances of substrates, organisms and dissolved oxygen

• Processes for C, N and P removal• Settler dynamics is crucial• Many different time scales