dynamics of relativistic heavy ion collisions i

30
Dynamics of relativistic HI collisions V. Toneev Facets of HIC Physics Phase diagram General remarks Interaction scales Market of transport models BBHKY- hierarchy Non-relativistic BE RMF Relativistic BE Nuclear kinetics - conclusions Dynamics of relativistic heavy ion collisions I V. Toneev The Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna August 21, 2006 V. Toneev Dynamics of relativistic HI collisions

Upload: others

Post on 12-Jun-2022

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Dynamics of relativistic heavy ion collisions I

Dynamics ofrelativistic HI

collisions

V. Toneev

Facets of HICPhysics

Phase diagram

General remarks

Interactionscales

Market oftransportmodels

BBHKY-hierarchy

Non-relativisticBE

RMF

Relativistic BE

Nuclear kinetics- conclusions

Dynamics of relativistic heavy ion collisions I

V. Toneev

The Bogoliubov Laboratory of Theoretical Physics,Joint Institute for Nuclear Research, Dubna

August 21, 2006

V. Toneev Dynamics of relativistic HI collisions

Page 2: Dynamics of relativistic heavy ion collisions I

Dynamics ofrelativistic HI

collisions

V. Toneev

Facets of HICPhysics

Phase diagram

General remarks

Interactionscales

Market oftransportmodels

BBHKY-hierarchy

Non-relativisticBE

RMF

Relativistic BE

Nuclear kinetics- conclusions

1 Facets of HIC PhysicsPhase diagramGeneral remarksInteraction scales

2 Market of transport modelsBBHKY-hierarchyNon-relativistic BERMFRelativistic BENuclear kinetics - conclusions

V. Toneev Dynamics of relativistic HI collisions

Page 3: Dynamics of relativistic heavy ion collisions I

Dynamics ofrelativistic HI

collisions

V. Toneev

Facets of HICPhysics

Phase diagram

General remarks

Interactionscales

Market oftransportmodels

BBHKY-hierarchy

Non-relativisticBE

RMF

Relativistic BE

Nuclear kinetics- conclusions

Energy stair

10 MeV

1 GeV

10 GeV

100 GeV

10 TeV

ACCELERATORS NEW PHENOMENA

formation time effects

pion (Delta) production

Fermi energy

Coulomb barrier

strangeness productionantibaryon production

GSI Darmstadt

nuclear sound velocity100 MeV

Dubna, MSUGANIL, GSI...

AGS Brookhaven

SPS CERN

Q−

H m

ixed

bary

on

less

pla

sma

RHIC Brookhaven

ph

ase

reso

nan

cepro

du

ctio

n

semihard collisions1 TeV

FAIR Darmstadt (2015)

Lanzhou

charm

beauty

color glass condensate

jets (suppression)

QG

P

LHC(2009)

Nuclotron Dubna

Synchrophasotron Dubna

V. Toneev Dynamics of relativistic HI collisions

Page 4: Dynamics of relativistic heavy ion collisions I

Dynamics ofrelativistic HI

collisions

V. Toneev

Facets of HICPhysics

Phase diagram

General remarks

Interactionscales

Market oftransportmodels

BBHKY-hierarchy

Non-relativisticBE

RMF

Relativistic BE

Nuclear kinetics- conclusions

Phase diagram

Phases of strongly interacting matter

http://www.gsi.de/

Nuclotron

P.Crochet P.Senger A.Sorin

V. Toneev Dynamics of relativistic HI collisions

Page 5: Dynamics of relativistic heavy ion collisions I

Dynamics ofrelativistic HI

collisions

V. Toneev

Facets of HICPhysics

Phase diagram

General remarks

Interactionscales

Market oftransportmodels

BBHKY-hierarchy

Non-relativisticBE

RMF

Relativistic BE

Nuclear kinetics- conclusions

Phase diagram

Phases of strongly interacting matter

http://www.gsi.de/

Nuclotron

P.Crochet P.Senger A.Sorin

V. Toneev Dynamics of relativistic HI collisions

Page 6: Dynamics of relativistic heavy ion collisions I

Dynamics ofrelativistic HI

collisions

V. Toneev

Facets of HICPhysics

Phase diagram

General remarks

Interactionscales

Market oftransportmodels

BBHKY-hierarchy

Non-relativisticBE

RMF

Relativistic BE

Nuclear kinetics- conclusions

Phase diagram

Universe expansion T (τ)τ0

= T0(τ0)τ

τ0 = 3K×1.5·109 years200 MeV ∼ 10−3 s

1

T

MeV

200

100

B /

early

U

niv

erse

Quark Gluon Plasma

Hadron Gas

(resonance matter)

L−G phase

Fluidity CondensateKaon

SuperconductivityColorSuper

Neutron Stars

ρρ0

Color Condensates

G.Ropke M.Buballa

E.Laermann

F.Weber, Prog.Part.Nucl.Phys. 54 (2005) 193

Hydrogen/Heatmosphere

R ~ 10 km

n,p,e, µ

neutron star withpion condensate

quark−hybridstar

hyperon star

g/cm3

1011

g/cm3

106

g/cm3

1014

Fe

−π

K−

s ue r c n d c t

gp

oni

u

p

r ot o

ns

color−superconductingstrange quark matter(u,d,s quarks)

CFL−K +

CFL−K 0

CFL−0π

n,p,e, µquarks

u,d,s

2SCCSLgCFLLOFF

crust

N+e

H

traditional neutron star

strange star

N+e+n

Σ,Λ,

Ξ,∆

n superfluid

nucleon star

CFL

CFL

2SC

G.Bisnovatyi-Kogan,D.Blaschke, H.Grigorian,S.Popov

V. Toneev Dynamics of relativistic HI collisions

Page 7: Dynamics of relativistic heavy ion collisions I

Dynamics ofrelativistic HI

collisions

V. Toneev

Facets of HICPhysics

Phase diagram

General remarks

Interactionscales

Market oftransportmodels

BBHKY-hierarchy

Non-relativisticBE

RMF

Relativistic BE

Nuclear kinetics- conclusions

Phase diagram

Universe expansion T (τ)τ0

= T0(τ0)τ

τ0 = 3K×1.5·109 years200 MeV ∼ 10−3 s

1

T

MeV

200

100

B /

early

U

niv

erse

Quark Gluon Plasma

Hadron Gas

(resonance matter)

L−G phase

Fluidity CondensateKaon

SuperconductivityColorSuper

Neutron Stars

ρρ0

Color Condensates

G.Ropke M.Buballa

E.Laermann

F.Weber, Prog.Part.Nucl.Phys. 54 (2005) 193

Hydrogen/Heatmosphere

R ~ 10 km

n,p,e, µ

neutron star withpion condensate

quark−hybridstar

hyperon star

g/cm3

1011

g/cm3

106

g/cm3

1014

Fe

−π

K−

s ue r c n d c t

gp

oni

u

p

r ot o

ns

color−superconductingstrange quark matter(u,d,s quarks)

CFL−K +

CFL−K 0

CFL−0π

n,p,e, µquarks

u,d,s

2SCCSLgCFLLOFF

crust

N+e

H

traditional neutron star

strange star

N+e+n

Σ,Λ,

Ξ,∆

n superfluid

nucleon star

CFL

CFL

2SC

G.Bisnovatyi-Kogan,D.Blaschke, H.Grigorian,S.Popov

V. Toneev Dynamics of relativistic HI collisions

Page 8: Dynamics of relativistic heavy ion collisions I

Dynamics ofrelativistic HI

collisions

V. Toneev

Facets of HICPhysics

Phase diagram

General remarks

Interactionscales

Market oftransportmodels

BBHKY-hierarchy

Non-relativisticBE

RMF

Relativistic BE

Nuclear kinetics- conclusions

Phase diagram

Universe expansion T (τ)τ0

= T0(τ0)τ

τ0 = 3K×1.5·109 years200 MeV ∼ 10−3 s

1

T

MeV

200

100

B /

early

U

niv

erse

Quark Gluon Plasma

Hadron Gas

(resonance matter)

L−G phase

Fluidity CondensateKaon

SuperconductivityColorSuper

Neutron Stars

ρρ0

Color Condensates

G.Ropke M.Buballa

E.Laermann

F.Weber, Prog.Part.Nucl.Phys. 54 (2005) 193

Hydrogen/Heatmosphere

R ~ 10 km

n,p,e, µ

neutron star withpion condensate

quark−hybridstar

hyperon star

g/cm3

1011

g/cm3

106

g/cm3

1014

Fe

−π

K−

s ue r c n d c t

gp

oni

u

p

r ot o

ns

color−superconductingstrange quark matter(u,d,s quarks)

CFL−K +

CFL−K 0

CFL−0π

n,p,e, µquarks

u,d,s

2SCCSLgCFLLOFF

crust

N+e

H

traditional neutron star

strange star

N+e+n

Σ,Λ,

Ξ,∆

n superfluid

nucleon star

CFL

CFL

2SC

G.Bisnovatyi-Kogan,D.Blaschke, H.Grigorian,S.Popov

V. Toneev Dynamics of relativistic HI collisions

Page 9: Dynamics of relativistic heavy ion collisions I

Dynamics ofrelativistic HI

collisions

V. Toneev

Facets of HICPhysics

Phase diagram

General remarks

Interactionscales

Market oftransportmodels

BBHKY-hierarchy

Non-relativisticBE

RMF

Relativistic BE

Nuclear kinetics- conclusions

Phase diagram

Universe expansion T (τ)τ0

= T0(τ0)τ

τ0 = 3K×1.5·109 years200 MeV ∼ 10−3 s

1

T

MeV

200

100

B /

early

U

niv

erse

Quark Gluon Plasma

Hadron Gas

(resonance matter)

L−G phase

Fluidity CondensateKaon

SuperconductivityColorSuper

Neutron Stars

ρρ0

Color Condensates

G.Ropke M.Buballa

E.Laermann

F.Weber, Prog.Part.Nucl.Phys. 54 (2005) 193

Hydrogen/Heatmosphere

R ~ 10 km

n,p,e, µ

neutron star withpion condensate

quark−hybridstar

hyperon star

g/cm3

1011

g/cm3

106

g/cm3

1014

Fe

−π

K−

s ue r c n d c t

gp

oni

u

p

r ot o

ns

color−superconductingstrange quark matter(u,d,s quarks)

CFL−K +

CFL−K 0

CFL−0π

n,p,e, µquarks

u,d,s

2SCCSLgCFLLOFF

crust

N+e

H

traditional neutron star

strange star

N+e+n

Σ,Λ,

Ξ,∆

n superfluid

nucleon star

CFL

CFL

2SC

G.Bisnovatyi-Kogan,D.Blaschke, H.Grigorian,S.Popov

V. Toneev Dynamics of relativistic HI collisions

Page 10: Dynamics of relativistic heavy ion collisions I

Dynamics ofrelativistic HI

collisions

V. Toneev

Facets of HICPhysics

Phase diagram

General remarks

Interactionscales

Market oftransportmodels

BBHKY-hierarchy

Non-relativisticBE

RMF

Relativistic BE

Nuclear kinetics- conclusions

General remarks

Cross section

σ ∼∫ ∏

j

d3pj | < f |An|i > |2 δ(Ef − Ei )

f , i → A,R, ρi , . . . An → gi , . . .limiting cases:

• elastic, inelastic scattering p + A → p′ + A′

λ =~p 1 ψ(x) ∼ exp(ıkz) +A(~q) exp(ı~k~r)/r

with the Glauber-Sitenko amplitude

A(~q) =ı

2πλ

∫d2b exp(ı~q~b) Γ(~b)

Γ(~b) =

∫K(r)d~r =

∑i

ηi (~b −~ri )

r b

V. Toneev Dynamics of relativistic HI collisions

Page 11: Dynamics of relativistic heavy ion collisions I

Dynamics ofrelativistic HI

collisions

V. Toneev

Facets of HICPhysics

Phase diagram

General remarks

Interactionscales

Market oftransportmodels

BBHKY-hierarchy

Non-relativisticBE

RMF

Relativistic BE

Nuclear kinetics- conclusions

General remarks

• participant-spectator model (Fermi) phase space

| < f |An|i > |2 ' const

σ ∼∫ ∏

j

d3pj δ(Ef − Ei )b

L.Turko,M.Gorenstein

? Pure state → particle ensemble → statistical consideration

? Adiabatic switching on the interaction ? → time evolution

N-body Liouville equation (time reversible !)

dρN

dt=

∂tρN +

1

ı~[H, ρN ] = 0

to solve it, justified approximations are neededD.Voskresensky

V. Toneev Dynamics of relativistic HI collisions

Page 12: Dynamics of relativistic heavy ion collisions I

Dynamics ofrelativistic HI

collisions

V. Toneev

Facets of HICPhysics

Phase diagram

General remarks

Interactionscales

Market oftransportmodels

BBHKY-hierarchy

Non-relativisticBE

RMF

Relativistic BE

Nuclear kinetics- conclusions

General remarks

• participant-spectator model (Fermi) phase space

| < f |An|i > |2 ' const

σ ∼∫ ∏

j

d3pj δ(Ef − Ei )b

L.Turko,M.Gorenstein

? Pure state → particle ensemble → statistical consideration

? Adiabatic switching on the interaction ? → time evolution

N-body Liouville equation (time reversible !)

dρN

dt=

∂tρN +

1

ı~[H, ρN ] = 0

to solve it, justified approximations are neededD.Voskresensky

V. Toneev Dynamics of relativistic HI collisions

Page 13: Dynamics of relativistic heavy ion collisions I

Dynamics ofrelativistic HI

collisions

V. Toneev

Facets of HICPhysics

Phase diagram

General remarks

Interactionscales

Market oftransportmodels

BBHKY-hierarchy

Non-relativisticBE

RMF

Relativistic BE

Nuclear kinetics- conclusions

General remarks

• participant-spectator model (Fermi) phase space

| < f |An|i > |2 ' const

σ ∼∫ ∏

j

d3pj δ(Ef − Ei )b

L.Turko,M.Gorenstein

? Pure state → particle ensemble → statistical consideration

? Adiabatic switching on the interaction ? → time evolution

N-body Liouville equation (time reversible !)

dρN

dt=

∂tρN +

1

ı~[H, ρN ] = 0

to solve it, justified approximations are needed

D.Voskresensky

V. Toneev Dynamics of relativistic HI collisions

Page 14: Dynamics of relativistic heavy ion collisions I

Dynamics ofrelativistic HI

collisions

V. Toneev

Facets of HICPhysics

Phase diagram

General remarks

Interactionscales

Market oftransportmodels

BBHKY-hierarchy

Non-relativisticBE

RMF

Relativistic BE

Nuclear kinetics- conclusions

General remarks

• participant-spectator model (Fermi) phase space

| < f |An|i > |2 ' const

σ ∼∫ ∏

j

d3pj δ(Ef − Ei )b

L.Turko,M.Gorenstein

? Pure state → particle ensemble → statistical consideration

? Adiabatic switching on the interaction ? → time evolution

N-body Liouville equation (time reversible !)

dρN

dt=

∂tρN +

1

ı~[H, ρN ] = 0

to solve it, justified approximations are neededD.Voskresensky

V. Toneev Dynamics of relativistic HI collisions

Page 15: Dynamics of relativistic heavy ion collisions I

Dynamics ofrelativistic HI

collisions

V. Toneev

Facets of HICPhysics

Phase diagram

General remarks

Interactionscales

Market oftransportmodels

BBHKY-hierarchy

Non-relativisticBE

RMF

Relativistic BE

Nuclear kinetics- conclusions

Nuclear scales

d - repulsion NN force rangeΛ = 1

σρ - (nucleon) mean free path

ρ0 ' 0.16 fm−3 σ ' 40 mb →Λ ∼1.5 fm

Pauli principlecompression . . .

L - ”macroscopic” length, 2-8 fm

d~0.4 fm

~1.2 fm

r

V(r)

units d Λ L d/Λ Kn = Λ/L

air (10−8 cm ) 1 105 108 10−3 10−3

liquid (10−8 cm ) 1 2-10 108 0.1-0.5 10−7

nuclei ( 0.4/1.2 fm) 1 1.5-2 2-8 0.2-0.6 1-0.2

kinetics ⇐ d Λ L ⇒ hydrodynamics

For nuclear case (intermediate energies) : d < Λ < L

V. Toneev Dynamics of relativistic HI collisions

Page 16: Dynamics of relativistic heavy ion collisions I

Dynamics ofrelativistic HI

collisions

V. Toneev

Facets of HICPhysics

Phase diagram

General remarks

Interactionscales

Market oftransportmodels

BBHKY-hierarchy

Non-relativisticBE

RMF

Relativistic BE

Nuclear kinetics- conclusions

Molecular dynamics

• A-body problem in a classical picture[Quantum] Molecular Dynamics

~xi =∂

∂~piH(i = 1, . . .A)

~pi = − ∂

∂~xiH(i = 1, . . .A)

with H =−

∑52

pi+

∑i>k Vik

nuclear stabilityV → V Pauli (p)NN-scattering ?

• Fermionic Molecular Dynamics

q = ~p,~x , s . . . wave packet

∑Aµν qν = − ∂

∂qµH

with Aµν =∂2L0

∂qµ ∂qν− ∂2L0

∂qν ∂qµ

CMD limit: Aµν ⇒[0 11 0

]

V. Toneev Dynamics of relativistic HI collisions

Page 17: Dynamics of relativistic heavy ion collisions I

Dynamics ofrelativistic HI

collisions

V. Toneev

Facets of HICPhysics

Phase diagram

General remarks

Interactionscales

Market oftransportmodels

BBHKY-hierarchy

Non-relativisticBE

RMF

Relativistic BE

Nuclear kinetics- conclusions

Molecular dynamics

• A-body problem in a classical picture[Quantum] Molecular Dynamics

~xi =∂

∂~piH(i = 1, . . .A)

~pi = − ∂

∂~xiH(i = 1, . . .A)

with H =−

∑52

pi+

∑i>k Vik

nuclear stabilityV → V Pauli (p)NN-scattering ?

• Fermionic Molecular Dynamics

q = ~p,~x , s . . . wave packet

∑Aµν qν = − ∂

∂qµH

with Aµν =∂2L0

∂qµ ∂qν− ∂2L0

∂qν ∂qµ

CMD limit: Aµν ⇒[0 11 0

]V. Toneev Dynamics of relativistic HI collisions

Page 18: Dynamics of relativistic heavy ion collisions I

Dynamics ofrelativistic HI

collisions

V. Toneev

Facets of HICPhysics

Phase diagram

General remarks

Interactionscales

Market oftransportmodels

BBHKY-hierarchy

Non-relativisticBE

RMF

Relativistic BE

Nuclear kinetics- conclusions

BBGKY-Hierarchy

• Non-relativistic kinetic models

H = T + V =∑

εia†i ai +

∑V (ij , i ′j ′) a†i a

†j ai ′aj′

n-particle density :ρn(x1, x2, . . . xn) = Vn−N

∫dxn+1 . . . dxN ρ(x1 . . . xN)

i~∂ρ1(1)

∂t= [T1, ρ1(1)] + Tr(2)[V12, ρ2(1, 2)]

i~∂ρ2(1, 2)

∂t= [(T1 + T2 + V12), ρ2(1, 2)]

+ Tr(3)[(V13 + V23), ρ3(1, 2, 3)]

. . . . . . . . . . . . . . . . . . . . . . . . . . .

ρ1 ⇒ f W (~p,~x , t) =< n(~p,~x) >t

with n(~p,~x) =∫

d3k(2π~)3 eı~k~x a†

~p−~k/2a~p+~k/2

and 1∆µ

∫f W (~p,~x , t) dµ = f (~p,~x , t) + O( ~

∆µ )

approximations are needed ρ2(1, 2) = ρ1(1) ρ1(2)

V. Toneev Dynamics of relativistic HI collisions

Page 19: Dynamics of relativistic heavy ion collisions I

Dynamics ofrelativistic HI

collisions

V. Toneev

Facets of HICPhysics

Phase diagram

General remarks

Interactionscales

Market oftransportmodels

BBHKY-hierarchy

Non-relativisticBE

RMF

Relativistic BE

Nuclear kinetics- conclusions

Vlasov-Boltzmann terms

Generalized kinetic equation :

∂f (~p,~x,t)∂t = −D(f ) + C (ff )

• Driving Vlasov term (classical limit)(Hartree approximation, no exchange terms)

D(~p,~x , t) =~p

m

∂~xf (~p,~x , t)− ∂

∂~xU(x)

∂~pf (~p,~x , t)

with an effective potential

U(x) =

∫d3x1 d3p1

(2π~)3V (~x − ~x1) f (~p1,~x1, t)

phenomenologically (Skyrme) U(x) = −aρ+ bρ2

V. Toneev Dynamics of relativistic HI collisions

Page 20: Dynamics of relativistic heavy ion collisions I

Dynamics ofrelativistic HI

collisions

V. Toneev

Facets of HICPhysics

Phase diagram

General remarks

Interactionscales

Market oftransportmodels

BBHKY-hierarchy

Non-relativisticBE

RMF

Relativistic BE

Nuclear kinetics- conclusions

Boltzmann terms

• Collision term

~p + ~p2 ⇒ ~p′1 + ~p′2, no correlation and retardation effects

C (~p,~x , t) =

∫d3p2d

3p′1d3p′2

(2π~)6|T2(~p~p2;~p

′1~p′2)− T2(~p~p2;~p

′2~p′1)|2

× δ(Ep + Ep2 − E ′p1− E ′

p2) δ(~p + ~p2 − ~p′1 − ~p′2)

×[fp′

1fp′

2(1− fp)(1− fp2)− fpfp2(1− fp′

1)(1− fp′

2)]

⇑ gain ⇑ lossno exchange, no im-medium effects, ladder approximation for T2

C (~p,~x , t) =

∫d3p2d

3p′2(2π~)3

δ(~p + ~p2 − ~p′1 − ~p′2) v12dσel

×[fp′

1fp′

2(1− fp)(1− fp2)− fpfp2(1− fp′

1)(1− fp′

2)]

∂∂t

+ ~pm

∂∂~x

+ ~pm

∂∂~pf (~p, ~x , t) = C (~p, ~x , t) + δC

BUU ⇒ events generators; f 1 ⇒ Boltzmann equationaccount for fluctuations ⇒ B-Langevin equation random force ⇑

V. Toneev Dynamics of relativistic HI collisions

Page 21: Dynamics of relativistic heavy ion collisions I

Dynamics ofrelativistic HI

collisions

V. Toneev

Facets of HICPhysics

Phase diagram

General remarks

Interactionscales

Market oftransportmodels

BBHKY-hierarchy

Non-relativisticBE

RMF

Relativistic BE

Nuclear kinetics- conclusions

Relativistic kinetic equations

• the Walecka σ − ω model : L = L0 + Lint

L0 = ψ(iγµ∂µ−mN)ψ+ 1

2 (∂µσ ∂µσ−mS σ

2)− 14Fµν Fµν+ 1

2m2V ωµω

µ;

Lint = gS ψψσ − gV ψγµψωµ with Fµν = ∂µων − ∂νωµ.

Equations of motion

(∂µ∂µ + m2

S) σ = gS ψψ

∂Fµν + m2V = gV ψγ

νψ

γµ(i∂µ + gVωµ)− (mN − gSσ)ψ = 0

Klein-Gordon

Proka

DiracIn the mean-field approximation

σ0 = gS

m2S< ψψ >≡ gS

m2Sρs

ω0 = gV

m2V< ψγ0ψ >≡ gV

m2VρB[

pµ∂µ −m∗

N pν ∂∂pν

]f (p, x) = C rel(p, x)

with m∗N pν = gV pµFµν + m∗

N(∂νm∗N) and quasiparticle parameters:

m∗N = mN − gS σ0 - eff. mass, pµ → pµ− gV ωµ - kinetic momentum

RBUU ⇒ events generators

V. Toneev Dynamics of relativistic HI collisions

Page 22: Dynamics of relativistic heavy ion collisions I

Dynamics ofrelativistic HI

collisions

V. Toneev

Facets of HICPhysics

Phase diagram

General remarks

Interactionscales

Market oftransportmodels

BBHKY-hierarchy

Non-relativisticBE

RMF

Relativistic BE

Nuclear kinetics- conclusions

Relativistic kinetic equations

• the Walecka σ − ω model : L = L0 + Lint

L0 = ψ(iγµ∂µ−mN)ψ+ 1

2 (∂µσ ∂µσ−mS σ

2)− 14Fµν Fµν+ 1

2m2V ωµω

µ;

Lint = gS ψψσ − gV ψγµψωµ with Fµν = ∂µων − ∂νωµ.

Equations of motion

(∂µ∂µ + m2

S) σ = gS ψψ

∂Fµν + m2V = gV ψγ

νψ

γµ(i∂µ + gVωµ)− (mN − gSσ)ψ = 0

Klein-Gordon

Proka

DiracIn the mean-field approximation

σ0 = gS

m2S< ψψ >≡ gS

m2Sρs

ω0 = gV

m2V< ψγ0ψ >≡ gV

m2VρB[

pµ∂µ −m∗

N pν ∂∂pν

]f (p, x) = C rel(p, x)

with m∗N pν = gV pµFµν + m∗

N(∂νm∗N) and quasiparticle parameters:

m∗N = mN − gS σ0 - eff. mass, pµ → pµ− gV ωµ - kinetic momentum

RBUU ⇒ events generatorsV. Toneev Dynamics of relativistic HI collisions

Page 23: Dynamics of relativistic heavy ion collisions I

Dynamics ofrelativistic HI

collisions

V. Toneev

Facets of HICPhysics

Phase diagram

General remarks

Interactionscales

Market oftransportmodels

BBHKY-hierarchy

Non-relativisticBE

RMF

Relativistic BE

Nuclear kinetics- conclusions

Steps towards higher energies

• Relativistic Boltzmann equation (ψ, σ, ω ⇒ 0; f 1)

(pµ∂µ) fi (x , pi ) =

∑j C rel(x , pi ) +

∑r Rr→i

= −fi (x , pi )∑

j

∫dωj fj(x , pj)Qijσ

ij +∑

kj

∫dωkdωjΦ(pjpk | x , pi , τf )

+∑

r

∫dωk′dωr fr (x , pr ) Γr→i+k′

δ(pr − pi − k ′)

hadron production rate

Φ(pjpk | x , pi , τf ) =∫

dx ′ fk(x′, pi )fj(x

′, pj)Qijσij︸ ︷︷ ︸

collision rate

φ(x ′ | x , pi , τf )︸ ︷︷ ︸transition prob.

with dω = d3p/E , Qij = (pipj)2 − p2

i p2j =| vi − vj | EiEj

transition probability for a finite formation time

φ(x ′ | x , p, τf ) = 1σ

dσdω θ(t − t ′ − τf ) δ(3)(~x − ~x ′ − ~p

E (t − t ′)) F (τf )

? multiple particle production ⇒ coupled set of equations forstable hadrons and resonances hi; new flavors

? finite formation time θ(t − τf ), τf = (E/m)τ 0f with τ 0

f ∼ 1 fm;⇒ memory (retarded) effect (non-Markovian process)

V. Toneev Dynamics of relativistic HI collisions

Page 24: Dynamics of relativistic heavy ion collisions I

Dynamics ofrelativistic HI

collisions

V. Toneev

Facets of HICPhysics

Phase diagram

General remarks

Interactionscales

Market oftransportmodels

BBHKY-hierarchy

Non-relativisticBE

RMF

Relativistic BE

Nuclear kinetics- conclusions

Steps towards higher energies

• Relativistic Boltzmann equation (ψ, σ, ω ⇒ 0; f 1)

(pµ∂µ) fi (x , pi ) =

∑j C rel(x , pi ) +

∑r Rr→i

= −fi (x , pi )∑

j

∫dωj fj(x , pj)Qijσ

ij +∑

kj

∫dωkdωjΦ(pjpk | x , pi , τf )

+∑

r

∫dωk′dωr fr (x , pr ) Γr→i+k′

δ(pr − pi − k ′)

hadron production rate

Φ(pjpk | x , pi , τf ) =∫

dx ′ fk(x′, pi )fj(x

′, pj)Qijσij︸ ︷︷ ︸

collision rate

φ(x ′ | x , pi , τf )︸ ︷︷ ︸transition prob.

with dω = d3p/E , Qij = (pipj)2 − p2

i p2j =| vi − vj | EiEj

transition probability for a finite formation time

φ(x ′ | x , p, τf ) = 1σ

dσdω θ(t − t ′ − τf ) δ(3)(~x − ~x ′ − ~p

E (t − t ′)) F (τf )

? multiple particle production ⇒ coupled set of equations forstable hadrons and resonances hi; new flavors

? finite formation time θ(t − τf ), τf = (E/m)τ 0f with τ 0

f ∼ 1 fm;⇒ memory (retarded) effect (non-Markovian process)

V. Toneev Dynamics of relativistic HI collisions

Page 25: Dynamics of relativistic heavy ion collisions I

Dynamics ofrelativistic HI

collisions

V. Toneev

Facets of HICPhysics

Phase diagram

General remarks

Interactionscales

Market oftransportmodels

BBHKY-hierarchy

Non-relativisticBE

RMF

Relativistic BE

Nuclear kinetics- conclusions

Strings

• new degrees of freedom (QCD) : quark/gluons , strings,formation of color rope

? Hadron as a stringG.S.Bali, K.Schilling, Phys.Rev.D 46 (1992) 2636

Vqq = −αeffr + κr

yo-yo mode

String breakup

Hyo−yo = | p1 | + | p2 | +κ | x1 − x2 |dp1,2

dt= ±κ , dx1,2

dt= ±1

x+ = p+

κ = E+pκ , x− = p−

κ = E−pκ , S = p+p−

κ2 = E2−p2

κ2 = m2

κ2

V. Toneev Dynamics of relativistic HI collisions

Page 26: Dynamics of relativistic heavy ion collisions I

Dynamics ofrelativistic HI

collisions

V. Toneev

Facets of HICPhysics

Phase diagram

General remarks

Interactionscales

Market oftransportmodels

BBHKY-hierarchy

Non-relativisticBE

RMF

Relativistic BE

Nuclear kinetics- conclusions

Strings

• new degrees of freedom (QCD) : quark/gluons , strings,formation of color rope

? Hadron as a stringG.S.Bali, K.Schilling, Phys.Rev.D 46 (1992) 2636

Vqq = −αeffr + κr

yo-yo modeString breakup

Hyo−yo = | p1 | + | p2 | +κ | x1 − x2 |dp1,2

dt= ±κ , dx1,2

dt= ±1

x+ = p+

κ = E+pκ , x− = p−

κ = E−pκ , S = p+p−

κ2 = E2−p2

κ2 = m2

κ2

V. Toneev Dynamics of relativistic HI collisions

Page 27: Dynamics of relativistic heavy ion collisions I

Dynamics ofrelativistic HI

collisions

V. Toneev

Facets of HICPhysics

Phase diagram

General remarks

Interactionscales

Market oftransportmodels

BBHKY-hierarchy

Non-relativisticBE

RMF

Relativistic BE

Nuclear kinetics- conclusions

String interaction

• Particularities of space-time evolution

CLASSICAL STRING THEORY

? string fusion

time ⇒? string rearrangement

DUAL TOPOL. MODEL? planar diagram

? cylindrical diagram

? leading particle effect

? color rope formation

V. Toneev Dynamics of relativistic HI collisions

Page 28: Dynamics of relativistic heavy ion collisions I

Dynamics ofrelativistic HI

collisions

V. Toneev

Facets of HICPhysics

Phase diagram

General remarks

Interactionscales

Market oftransportmodels

BBHKY-hierarchy

Non-relativisticBE

RMF

Relativistic BE

Nuclear kinetics- conclusions

Jets

• jet production

Hard parton-parton collision(true two-body scattering)p⊥ ΛQCD , r⊥ ∼ ~c/p⊥

dp⊥=

C

pn⊥

RHIC physics

HIJING code

• solution ⇒ Monte Carlo Methods:event generators ⇒ UrQMD, QGSM, HSD . . .

• quark-gluon transport (color → dynamical degree of freedom,

in the quasi-classical limit → (p∂x − gpF∂p)W )

? Nambu-Jona-Losinio model V.Yudichev

V. Toneev Dynamics of relativistic HI collisions

Page 29: Dynamics of relativistic heavy ion collisions I

Dynamics ofrelativistic HI

collisions

V. Toneev

Facets of HICPhysics

Phase diagram

General remarks

Interactionscales

Market oftransportmodels

BBHKY-hierarchy

Non-relativisticBE

RMF

Relativistic BE

Nuclear kinetics- conclusions

Jets

• jet production

Hard parton-parton collision(true two-body scattering)p⊥ ΛQCD , r⊥ ∼ ~c/p⊥

dp⊥=

C

pn⊥

RHIC physics

HIJING code

• solution ⇒ Monte Carlo Methods:event generators ⇒ UrQMD, QGSM, HSD . . .

• quark-gluon transport (color → dynamical degree of freedom,

in the quasi-classical limit → (p∂x − gpF∂p)W )

? Nambu-Jona-Losinio model V.Yudichev

V. Toneev Dynamics of relativistic HI collisions

Page 30: Dynamics of relativistic heavy ion collisions I

Dynamics ofrelativistic HI

collisions

V. Toneev

Facets of HICPhysics

Phase diagram

General remarks

Interactionscales

Market oftransportmodels

BBHKY-hierarchy

Non-relativisticBE

RMF

Relativistic BE

Nuclear kinetics- conclusions

Basic kinetic idea

HIC ⇒ subsequent collisionsbetween quasiparticles(Boltzmann-like equations)

Physics : What is a quasiparticle ?

non-relativistic

( ∂∂t + ~v ~5x + d~p

dt~5p)f (~p,~x , t) = C (~p,~x , t)

⇑ d~pdt = −~5x

d~pdt U(~r , t)

relativistic – QHD

(pµ∂µ + m∗pµ∂

µ)f (p, x) = C rel(p, x)m∗pµ = gV pνFµν + m∗(∂µ

x m∗) + field eqs.

Boltzmann : (pµ∂µ)f (p, x) = C rel(p, x)

non-abelian fields (color) – QCDp, x ⇒ p, x ,Qflow term +source term

extreme case: free rescatt. of quarks and gluonspartons

(p-h)N + V (r)free N

hadrons +ψ(Walecka-like)

resonancesstringscolor ropesjets

quarks/gluons

V. Toneev Dynamics of relativistic HI collisions