dynamics of mechanical systems - harold josephs & ronald l. huston

777

Upload: engr6659

Post on 29-Oct-2014

253 views

Category:

Documents


22 download

TRANSCRIPT

DYNAMICS ofMECHANICAL SYSTEMS 0593_ FM_fmPage 2Tuesday, May 14, 200210:19 AMCRCPRESSBoca Raton London New York Washington, D.C.Harold JosephsRonald L. HustonDYNAMICS ofMECHANICAL SYSTEMS Thisbookcontainsinformationobtainedfromauthenticandhighlyregardedsources.Reprintedmaterialisquotedwithpermission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publishreliable data and information, but the authors and the publisher cannot assume responsibility for the validity of all materialsor for the consequences of their use.Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical,includingphotocopying,microlming,andrecording,orbyanyinformationstorageorretrievalsystem,withoutpriorpermission in writing from the publisher.The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works,or for resale. Specic permission must be obtained in writing from CRC Press LLC for such copying.Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431. TrademarkNotice: Productorcorporatenamesmaybetrademarksorregisteredtrademarks,andareusedonlyforidentication and explanation, without intent to infringe. Visit the CRC Press Web site at www.crcpress.com 2002 by CRC Press LLC No claim to original U.S. Government worksInternational Standard Book Number 0-8493-0593-4Library of Congress Card Number 2002276809Printed in the United States of America1234567890Printed on acid-free paper Library of Congress Cataloging-in-Publication Data Josephs, Harold.Dynamics of mechanical systems / by Harold Josephs and Ronald L. Huston.p.; cm.Includes bibliographical references and index.ISBN 0-8493-0593-4 (alk. paper)1. Mechanical engineering.I. Huston, Ronald L., 1937-II. Title.TJ145 .J67 2002.621dc21 2002276809CIP 0593_ FM_fmPage 4Tuesday, May 14, 200211:11 AM Preface This is a textbook intended for mid- to upper-level undergraduate students in engineeringand physics. The objective of the book is to give readers a working knowledge of dynamics,enabling them to analyze mechanical systems ranging from elementary and fundamentalsystemssuchasplanarmechanismstomoreadvancedsystemssuchasrobots,spacemechanisms, and human body models. The emphasis of the book is upon the fundamentalproceduresunderlyingthesedynamicanalyses.Readersareexpectedtoobtainskillsrangingfromtheabilitytoperforminsightfulhandanalysestotheabilitytodevelopalgorithmsfornumerical/computeranalyses.Inthislatterregard,thebookisalsointendedtoserveasanindependentstudytextandasareferencebookforbeginninggraduate students and for practicing engineers.Mechanical systems are becoming increasingly sophisticated, with applications requir-ing greater precision, improved reliability, and extended life. These enhanced requirementsare spurred by a demand for advanced land, air, and space vehicles; by a correspondingdemandforadvancedmechanisms,manipulators,androboticssystems;andbyaneedtohaveabetterunderstandingofthedynamicsofbiosystems.Thebookisintendedtoenable its readers to make engineering advances in each of these areas. The authors believethat the skills needed to make such advances are best obtained by illustratively studyingfundamental mechanical components such as pendulums, gears, cams, and mechanismswhilereviewingtheprinciplesofvibrations,stability,andbalancing.Thestudyofthesesubjects is facilitated by a knowledge of kinematics and skill in the use of Newtons laws,energymethods,Lagrangesequations,andKanesequations.Thebookisintendedtoprovide a means for mastering all of these concepts.The book is written to be readily accessible to students and readers having a backgroundin elementary physics, mathematics through calculus and differential equations, and ele-mentary mechanics. The book itself is divided into 20 chapters, with the rst two chaptersprovidingintroductoryremarksandareviewofvectoralgebra.Thenextthreechaptersare devoted to kinematics, with the last of these focusing upon planar kinematics. Chapter6 discusses forces and force systems, and Chapter 7 provides a comprehensive review ofinertiaincludinginertiadyadicsandproceduresforobtainingtheprincipalmomentsofinertia and the corresponding principal axes of inertia.Fundamentalprinciplesofdynamics(NewtonslawsanddAlembertsprinciple)arepresented in Chapter 8, and the use of impulsemomentum and workenergy principlesis presented in the next two chapters with application to accident reconstruction. Chapters11 and 12 introduce generalized dynamics and the use of Lagranges equation and Kanesequationswithapplicationtomultiplerodpendulumproblems.Thenextvechaptersare devoted to applications that involve the study of vibration, stability, balancing, cams,and gears, including procedures for studying nonlinear vibrations and engine balancing.Thelastthreechapterspresentanintroductiontomultibodydynamicswithapplicationto robotics and biosystems.Application and illustrative examples are discussed and presented in each chapter, andexercises and problems are provided at the end of each chapter. In addition, each chapterhasitsownlistofreferencesforadditionalstudy. Althoughtheearlierchaptersprovidethe basis for the latter chapters, each chapter is written to be as self-contained as possible,with excerpts from earlier chapters provided as needed. 0593_ FM_fmPage 5Tuesday, May 14, 200210:19 AM 0593_ FM_fmPage 6Tuesday, May 14, 200210:19 AM Acknowledgments The book is an outgrowth of notes the authors have compiled over the past three decadesinteachingvariouscoursesusingthesubjectmaterial.Thesenotes,inturn,arebasedupon information contained in various texts used in these courses and upon the authorsindependent study and research.Theauthorsacknowledgetheinspirationforaclearlydenedproceduralstudyofdynamics by Professor T. R. Kane at the University of Pennsylvania, now nearly 50 yearsago.TheauthorsparticularlyacknowledgetheadministrativesupportandassistanceofCharlotteBetterintypingandpreparingtheentiretextthroughseveralrevisions.TheworkofXiaoboLiuandDougProvineforpreparationofmanyoftheguresisalsoacknowledged. 0593_ FM_fmPage 7Tuesday, May 14, 200210:19 AM 0593_ FM_fmPage 8Tuesday, May 14, 200210:19 AM The Authors Harold Josephs, Ph.D., P.E., has been a professor in the Department of Mechanical Engi-neeringatLawrenceTechnologicalUniversityinSoutheld,MI,since1984,subsequentto working in industry for General Electric and Ford Motor Company. Dr. Josephs is theauthor of numerous publications, holds nine patents, and has presented numerous sem-inars to industry in the eld of safety, bolting, and joining. Dr. Josephs maintains an activeconsultant practice in safety, ergonomics, and accident reconstruction. His research inter-estsareinfasteningandjoining,humanfactors,ergonomics,andsafety.Dr.JosephsreceivedhisB.S.degreefromtheUniversityofPennsylvania,hisM.S.degreefromVill-anovaUniversity,andhisPh.D.fromtheUnionInstitute.HeisalicensedProfessionalEngineer, Certied Safety Professional, Certied Professional Ergonomist, Certied Qual-ityEngineer,FellowoftheMichiganSocietyofEngineers,andaFellowoftheNationalAcademy of Forensic Engineers. RonaldL.Huston,Ph.D.,P.E. ,isdistinguishedresearchprofessorandprofessorofmechanicsintheDepartmentofMechanical,Industrial,andNuclearEngineeringattheUniversity of Cincinnati. He is also a Herman Schneider chair professor. Dr. Huston hasbeen at the University of Cincinnati since 1962. In 1978, he served as a visiting professorat Stanford University, and from 1979 to 1980 he was division director of civil and mechan-ical engineering at the National Science Foundation. From 1990 to 1996, Dr. Huston wasadirectoroftheMonarchResearchFoundation.Heistheauthorofover140journalarticles, 142 conference papers, 4 books, and 65 book reviews and is a technical editor of Applied Mechanics Reviews , and book review editor of the International Journal of IndustrialEngineering .Dr.Hustonisanactiveconsultantinsafety,biomechanics,andaccidentreconstruction. His research interests are in multibody dynamics, human factors, biome-chanics, and ergonomics and safety. Dr. Huston received his B.S. degree (1959), M.S. degree(1961),andPh.D.(1962)fromtheUniversityofPennsylvania,Philadelphia.HeisaLicensedProfessionalEngineerandaFellowoftheAmericanSocietyofMechanicalEngineers. 0593_ FM_fmPage 9Tuesday, May 14, 200210:19 AM 0593_ FM_fmPage 10Tuesday, May 14, 200210:19 AM Contents Chapter 1 Introduction................................................................................................................11.1 Approach to the Subject......................................................................................................11.2 Subject Matter .......................................................................................................................11.3 Fundamental Concepts and Assumptions.......................................................................21.4 Basic Terminology in Mechanical Systems ......................................................................31.5 Vector Review.......................................................................................................................51.6 Reference Frames and Coordinate Systems.....................................................................61.7 Systems of Units...................................................................................................................91.8 Closure .................................................................................................................................11References.......................................................................................................................................11Problems .........................................................................................................................................12 Chapter 2 Review of Vector Algebra ......................................................................................152.1 Introduction.........................................................................................................................152.2 Equality of Vectors, Fixed and Free Vectors..................................................................152.3 Vector Addition ..................................................................................................................162.4 Vector Components............................................................................................................192.5 Angle Between Two Vectors.............................................................................................232.6 Vector Multiplication: Scalar Product .............................................................................232.7 Vector Multiplication: Vector Product ............................................................................282.8 Vector Multiplication: Triple Products............................................................................332.9 Use of the Index Summation Convention .....................................................................372.10 Review of Matrix Procedures...........................................................................................382.11 Reference Frames and Unit Vector Sets..........................................................................412.12 Closure .................................................................................................................................44References.......................................................................................................................................44Problems .........................................................................................................................................45 Chapter 3 Kinematics of a Particle..........................................................................................573.1 Introduction.........................................................................................................................573.2 Vector Differentiation ........................................................................................................573.3 Position, Velocity, and Acceleration................................................................................593.4 Relative Velocity and Relative Acceleration..................................................................613.5 Differentiation of Rotating Unit Vectors ........................................................................633.6 Geometric Interpretation of Acceleration.......................................................................663.7 Motion on a Circle .............................................................................................................663.8 Motion in a Plane...............................................................................................................683.9 Closure .................................................................................................................................71References.......................................................................................................................................71Problems .........................................................................................................................................71 Chapter 4 Kinematics of a Rigid Body...................................................................................774.1 Introduction.........................................................................................................................774.2 Orientation of Rigid Bodies..............................................................................................77 0593_ FM_fmPage 11Tuesday, May 14, 200210:19 AM 4.3 Conguration Graphs........................................................................................................794.4 Simple Angular Velocity and Simple Angular Acceleration ......................................834.5 General Angular Velocity..................................................................................................854.6 Differentiation in Different Reference Frames ..............................................................874.7 Addition Theorem for Angular Velocity........................................................................904.8 Angular Acceleration.........................................................................................................934.9 Relative Velocity and Relative Acceleration of Two Points on a Rigid Body..................................................................................................................974.10 Points Moving on a Rigid Body....................................................................................1034.11 Rolling Bodies...................................................................................................................1064.12 The Rolling Disk and Rolling Wheel ............................................................................1074.13 A Conical Thrust Bearing ...............................................................................................1104.14 Closure ...............................................................................................................................113References.....................................................................................................................................113Problems .......................................................................................................................................114 Chapter 5 Planar Motion of Rigid Bodies Methods of Analysis ................................1255.1 Introduction.......................................................................................................................1255.2 Coordinates, Constraints, Degrees of Freedom..........................................................1255.3 Planar Motion of a Rigid Body......................................................................................1285.3.1 Translation.............................................................................................................1295.3.2 Rotation..................................................................................................................1305.3.3 General Plane Motion..........................................................................................1305.4 Instant Center, Points of Zero Velocity.........................................................................1335.5 Illustrative Example: A Four-Bar Linkage ...................................................................1365.6 Chains of Bodies...............................................................................................................1425.7 Instant Center, Analytical Considerations ...................................................................1475.8 Instant Center of Zero Acceleration..............................................................................150Problems .......................................................................................................................................156 Chapter 6 Forces and Force Systems ....................................................................................1636.1 Introduction.......................................................................................................................1636.2 Forces and Moments........................................................................................................1636.3 Systems of Forces .............................................................................................................1656.4 Zero Force Systems ..........................................................................................................1706.5 Couples ..............................................................................................................................1706.6 Wrenches............................................................................................................................1736.7 Physical Forces: Applied (Active) Forces.....................................................................1776.7.1 Gravitational Forces.............................................................................................1776.7.2 Spring Forces.........................................................................................................1786.7.3 Contact Forces.......................................................................................................1806.7.4 ActionReaction....................................................................................................1816.8 First Moments...................................................................................................................1826.9 Physical Forces: Inertia (Passive) Forces ......................................................................184References.....................................................................................................................................187Problems .......................................................................................................................................187 Chapter 7 Inertia, Second Moment Vectors, Moments and Products of Inertia, Inertia Dyadics.......................................................................................................1997.1 Introduction.......................................................................................................................1997.2 Second-Moment Vectors..................................................................................................199 0593_ FM_fmPage 12Tuesday, May 14, 200210:19 AM 7.3 Moments and Products of Inertia .................................................................................2007.4 Inertia Dyadics..................................................................................................................2037.5 Transformation Rules ......................................................................................................2057.6 Parallel Axis Theorems....................................................................................................2067.7 Principal Axes, Principal Moments of Inertia: Concepts ..........................................2087.8 Principal Axes, Principal Moments of Inertia: Example ...........................................2117.9 Principal Axes, Principal Moments of Inertia: Discussion........................................2157.10 Maximum and Minimum Moments and Products of Inertia...................................2237.11 Inertia Ellipsoid................................................................................................................2287.12 Application: Inertia Torques...........................................................................................228References.....................................................................................................................................230Problems .......................................................................................................................................230 Chapter 8 Principles of Dynamics: Newtons Laws and dAlemberts Principle.........2418.1 Introduction.......................................................................................................................2418.2 Principles of Dynamics ...................................................................................................2428.3 dAlemberts Principle.....................................................................................................2438.4 The Simple Pendulum.....................................................................................................2458.5 A Smooth Particle Moving Inside a Vertical Rotating Tube.....................................2468.6 Inertia Forces on a Rigid Body ......................................................................................2498.7 Projectile Motion ..............................................................................................................2518.8 A Rotating Circular Disk ................................................................................................2538.9 The Rod Pendulum..........................................................................................................2558.10 Double-Rod Pendulum...................................................................................................2588.11 The Triple-Rod and N -Rod Pendulums .......................................................................2608.12 A Rotating Pinned Rod...................................................................................................2638.13 The Rolling Circular Disk...............................................................................................2678.14 Closure ...............................................................................................................................270References.....................................................................................................................................270Problems .......................................................................................................................................271 Chapter 9 Principles of Impulse and Momentum..............................................................2799.1 Introduction.......................................................................................................................2799.2 Impulse ..............................................................................................................................2799.3 Linear Momentum...........................................................................................................2809.4 Angular Momentum........................................................................................................2829.5 Principle of Linear Impulse and Momentum..............................................................2859.6 Principle of Angular Impulse and Momentum..........................................................2889.7 Conservation of Momentum Principles .......................................................................2949.8 Examples............................................................................................................................2959.9 Additional Examples: Conservation of Momentum..................................................3019.10 Impact: Coefcient of Restitution..................................................................................3039.11 Oblique Impact .................................................................................................................3069.12 Seizure of a Spinning, Diagonally Supported, Square Plate ....................................3099.13 Closure ...............................................................................................................................310Problems .......................................................................................................................................311 Chapter 10 Introduction to Energy Methods ......................................................................32110.1 Introduction.......................................................................................................................32110.2 Work ...................................................................................................................................32110.3 Work Done by a Couple .................................................................................................326 0593_ FM_fmPage 13Tuesday, May 14, 200210:19 AM 10.4 Power .................................................................................................................................32710.5 Kinetic Energy ..................................................................................................................32710.6 WorkEnergy Principles..................................................................................................32910.7 Elementary Example: A Falling Object.........................................................................33210.8 Elementary Example: The Simple Pendulum.............................................................33310.9 Elementary Example A MassSpring System........................................................33610.10Skidding Vehicle Speeds: Accident Reconstruction Analysis...................................33810.11 A Wheel Rolling Over a Step.........................................................................................34110.12The Spinning Diagonally Supported Square Plate.....................................................34210.13Closure ...............................................................................................................................344References (Accident Reconstruction)......................................................................................344Problems .......................................................................................................................................344 Chapter 11 Generalized Dynamics: Kinematics and Kinetics ..........................................35311.1 Introduction.......................................................................................................................35311.2 Coordinates, Constraints, and Degrees of Freedom..................................................35311.3 Holonomic and Nonholonomic Constraints ...............................................................35711.4 Vector Functions, Partial Velocity, and Partial Angular Velocity.............................35911.5 Generalized Forces: Applied (Active) Forces ..............................................................36311.6 Generalized Forces: Gravity and Spring Forces .........................................................36711.7 Example: Spring-Supported Particles in a Rotating Tube.........................................36911.8 Forces That Do Not Contribute to the Generalized Forces ......................................37511.9 Generalized Forces: Inertia (Passive) Forces ...............................................................37711.10 Examples............................................................................................................................37911.11 Potential Energy ...............................................................................................................38911.12 Use of Kinetic Energy to Obtain Generalized Inertia Forces ...................................39411.13 Closure ...............................................................................................................................401References.....................................................................................................................................401Problems .......................................................................................................................................402 Chapter 12 Generalized Dynamics: Kanes Equations and Lagranges Equations .................................................................................41512.1 Introduction.......................................................................................................................41512.2 Kanes Equations..............................................................................................................41512.3 Lagranges Equations ......................................................................................................42312.4 The Triple-Rod Pendulum..............................................................................................42912.5 The N -Rod Pendulum.....................................................................................................43312.6 Closure ...............................................................................................................................435References.....................................................................................................................................436Problems .......................................................................................................................................436 Chapter 13 Introduction to Vibrations .................................................................................43913.1 Introduction.......................................................................................................................43913.2 Solutions of Second-Order Differential Equations .....................................................43913.3 The Undamped Linear Oscillator..................................................................................44413.4 Forced Vibration of an Undamped Oscillator.............................................................44613.5 Damped Linear Oscillator ..............................................................................................44713.6 Forced Vibration of a Damped Linear Oscillator .......................................................44913.7 Systems with Several Degrees of Freedom..................................................................45013.8 Analysis and Discussion of Three-Particle Movement: Modes of Vibration ..........................................................................................................455 0593_ FM_fmPage 14Tuesday, May 14, 200210:19 AM 13.9 Nonlinear Vibrations .......................................................................................................45813.10The Method of Krylov and Bogoliuboff.......................................................................46313.11 Closure ...............................................................................................................................466References.....................................................................................................................................466Problems .......................................................................................................................................467 Chapter 14 Stability .................................................................................................................47914.1 Introduction.......................................................................................................................47914.2 Innitesimal Stability.......................................................................................................47914.3 A Particle Moving in a Vertical Rotating Tube ...........................................................48214.4 A Freely Rotating Body...................................................................................................48514.5 The Rolling/Pivoting Circular Disk .............................................................................48814.6 Pivoting Disk with a Concentrated Mass on the Rim...............................................49314.6.1 Rim Mass in the Uppermost Position ..........................................................................49814.6.2 Rim Mass in the Lowermost Position ..........................................................................50214.7 Discussion: RouthHurwitz Criteria.............................................................................50514.8 Closure ...............................................................................................................................509References.....................................................................................................................................509Problems .......................................................................................................................................510 Chapter 15 Balancing...............................................................................................................51315.1 Introduction.......................................................................................................................51315.2 Static Balancing.................................................................................................................51315.3 Dynamic Balancing: A Rotating Shaft ..........................................................................51415.4 Dynamic Balancing: The General Case ........................................................................51615.5 Application: Balancing of Reciprocating Machines....................................................52015.6 Lanchester Balancing Mechanism.................................................................................52515.7 Balancing of Multicylinder Engines..............................................................................52615.8 Four-Stroke Cycle Engines .............................................................................................52815.9 Balancing of Four-Cylinder Engines.............................................................................52915.10Eight-Cylinder Engines: The Straight-Eight and the V-8..........................................53215.11 Closure ...............................................................................................................................534References.....................................................................................................................................534Problems .......................................................................................................................................534 Chapter 16 Mechanical Components: Cams .......................................................................53916.1 Introduction.......................................................................................................................53916.2 A Survey of Cam Pair Types..........................................................................................54016.3 Nomenclature and Terminology for Typical Rotating Radial Cams with Translating Followers.............................................................................................54116.4 Graphical Constructions: The Follower Rise Function..............................................54316.5 Graphical Constructions: Cam Proles ........................................................................54416.6 Graphical Construction: Effects of CamFollower Design .......................................54516.7 Comments on Graphical Construction of Cam Proles............................................54916.8 Analytical Construction of Cam Proles .....................................................................55016.9 Dwell and Linear Rise of the Follower ........................................................................55116.10Use of Singularity Functions..........................................................................................55316.11 Parabolic Rise Function...................................................................................................55716.12Sinusoidal Rise Function.................................................................................................56016.13Cycloidal Rise Function ..................................................................................................56316.14Summary: Listing of Follower Rise Functions............................................................566 0593_ FM_fmPage 15Tuesday, May 14, 200210:19 AM 16.15Closure ...............................................................................................................................568References.....................................................................................................................................568Problems .......................................................................................................................................569 Chapter 17 Mechanical Components: Gears .......................................................................57317.1 Introduction.......................................................................................................................57317.2 Preliminary and Fundamental Concepts: Rolling Wheels........................................57317.3 Preliminary and Fundamental Concepts: Conjugate Action....................................57517.4 Preliminary and Fundamental Concepts: Involute Curve Geometry.....................57817.5 Spur Gear Nomenclature................................................................................................58117.6 Kinematics of Meshing Involute Spur Gear Teeth.....................................................58417.7 Kinetics of Meshing Involute Spur Gear Teeth...........................................................58817.8 Sliding and Rubbing between Contacting Involute Spur Gear Teeth ....................58917.9 Involute Rack....................................................................................................................59117.10Gear Drives and Gear Trains .........................................................................................59217.11 Helical, Bevel, Spiral Bevel, and Worm Gears ............................................................59517.12Helical Gears.....................................................................................................................59517.13Bevel Gears........................................................................................................................59617.14Hypoid and Worm Gears ...............................................................................................59717.15Closure ...............................................................................................................................59917.16Glossary of Gearing Terms.............................................................................................599References.....................................................................................................................................601Problems .......................................................................................................................................602 Chapter 18 Introduction to Multibody Dynamics..............................................................60518.1 Introduction.......................................................................................................................60518.2 Connection Conguration: Lower Body Arrays.........................................................60518.3 A Pair of Typical Adjoining Bodies: Transformation Matrices.................................60918.4 Transformation Matrix Derivatives...............................................................................61218.5 Euler Parameters ..............................................................................................................61318.6 Rotation Dyadics ..............................................................................................................61718.7 Transformation Matrices, Angular Velocity Components, and Euler Parameters ......................................................................................................62318.8 Degrees of Freedom, Coordinates, and Generalized Speeds....................................62818.9 Transformations between Absolute and Relative Coordinates ................................63218.10Angular Velocity...............................................................................................................63518.11 Angular Acceleration.......................................................................................................64018.12Joint and Mass Center Positions....................................................................................64318.13Mass Center Velocities.....................................................................................................64518.14Mass Center Accelerations..............................................................................................64718.15Kinetics: Applied (Active) Forces..................................................................................64718.16Kinetics: Inertia (Passive) Forces ...................................................................................64818.17Multibody Dynamics.......................................................................................................65018.18Closure ...............................................................................................................................651References.....................................................................................................................................651Problems .......................................................................................................................................652 Chapter 19 Introduction to Robot Dynamics ......................................................................66119.1 Introduction.......................................................................................................................66119.2 Geometry, Conguration, and Degrees of Freedom..................................................66119.3 Transformation Matrices and Conguration Graphs.................................................663 0593_ FM_fmPage 16Tuesday, May 14, 200210:19 AM 19.4 Angular Velocity of Robot Links...................................................................................66519.5 Partial Angular Velocities ...............................................................................................66719.6 Transformation Matrix Derivatives...............................................................................66819.7 Angular Acceleration of the Robot Links ....................................................................66819.8 Joint and Mass Center Position .....................................................................................66919.9 Mass Center Velocities.....................................................................................................67119.10Mass Center Partial Velocities........................................................................................67319.11 Mass Center Accelerations..............................................................................................67319.12End Effector Kinematics..................................................................................................67419.13Kinetics: Applied (Active) Forces..................................................................................67719.14Kinetics: Passive (Inertia) Forces ...................................................................................68019.15Dynamics: Equations of Motion....................................................................................68119.16Redundant Robots............................................................................................................68219.17Constraint Equations and Constraint Forces...............................................................68419.18Governing Equation Reduction and Solution: Use of Orthogonal Complement Arrays ........................................................................................................68719.19Discussion, Concluding Remarks, and Closure..........................................................689References.....................................................................................................................................691Problems .......................................................................................................................................691 Chapter 20 Application with Biosystems, Human Body Dynamics ...............................70120.1 Introduction.......................................................................................................................70120.2 Human Body Modeling ..................................................................................................70220.3 A Whole-Body Model: Preliminary Considerations ..................................................70320.4 Kinematics: Coordinates .................................................................................................70620.5 Kinematics: Velocities and Acceleration.......................................................................70920.6 Kinetics: Active Forces ....................................................................................................71520.7 Kinetics: Muscle and Joint Forces .................................................................................71620.8 Kinetics: Inertia Forces ....................................................................................................71920.9 Dynamics: Equations of Motion....................................................................................72120.10Constrained Motion.........................................................................................................72220.11 Solutions of the Governing Equations .........................................................................72420.12Discussion: Application and Future Development ....................................................727References.....................................................................................................................................730Problems .......................................................................................................................................731 Appendix I Centroid and Mass Center Location for Commonly Shaped Bodies withUniform Mass Distribution...................................................................735 Appendix II Inertia Properties (Moments and Products of Inertia) for Commonly Shaped Bodies with Uniform Mass Distribution ............743 Index .............................................................................................................................................753 0593_ FM_fmPage 17Tuesday, May 14, 200210:52 AM 0593_ FM_fmPage 18Tuesday, May 14, 200210:19 AM 1 1 Introduction 1.1 Approach to the Subject Thisbookpresentsanintroductiontothedynamicsofmechanicalsystems;itisbasedupontheprinciplesofelementarymechanics. Althoughthebookisintendedtobeself-contained, with minimal prerequisites, readers are assumed to have a working knowledgeof fundamental mechanics principles and a familiarity with vector and matrix methods.The readers are also assumed to have knowledge of elementary physics and calculus. Inthis introductory chapter, we will review some basic assumptions and axioms and otherpreliminary considerations. We will also begin a review of vector methods, which we willcontinue and expand in Chapter 2.Our procedure throughout the book will be to develop a general methodology whichwewillthensimplifyandspecializetotopicsofinterest.Wewillattempttoillustratethe concepts through examples and exercise problems. The reader is encouraged to solveas many problems as possible. Indeed, it is our belief that a basic understanding of theconceptsandanintuitivegraspofthesubjectarebestobtainedthroughsolvingtheexerciseproblems. 1.2 Subject Matter Dynamicsisasubjectinthegeneraleldofmechanics,whichinturnisadisciplineofclassical physics. Mechanics can be divided into two divisions: solid mechanics and uidmechanics.Solidmechanicsmaybefurtherdividedintoexiblemechanicsandrigidmechanics.Flexiblemechanicsincludessuchsubjectsasstrengthofmaterials,elasticity,viscoelasticity,plasticity,andcontinuummechanics.Alternatively,asidefromstatics,dynamicsistheessenceofrigidmechanics.Figure1.2.1containsachartshowingthesesubjects and their relations to one another. Statics is a study of the behavior of rigid body systems when there is no motion. Staticsis concerned primarily with the analysis of forces and force systems and the determinationof equilibrium congurations. In contrast, dynamics is a study of the behavior of movingrigid body systems. As seen in Figure 1.2.1, dynamics may be subdivided into three sub-subjects: kinematics, inertia, and kinetics. 0593_C01_fmPage 1Monday, May 6, 20021:43 PM 2 Dynamics of Mechanical SystemsKinematics isastudyofmotionwithoutregardtothecauseofthemotion.Kine-maticsincludesananalysisoftheposi-t i ons , di s pl acement s , t r aj ect or i es ,velocities,andaccelerationsofthemem-bers of the system. Inertia is a study of themasspropertiesofthebodiesofasystemandofthesystemasawholeinvariouscongurations. Kinetics is a study of forces.Forcesaregenerallydividedintotwoclasses: applied (or active) forces and iner-tia (orpassive)forces.Appliedforcesarisefromcontactbetweenbodiesandfrom gravity; inertia forces occur due to themotionofthesystem. 1.3 Fundamental Concepts and Assumptions The study of dynamics is based upon several fundamental concepts and basic assumptionsthat are intuitive and based upon common experience: time, space, force, and mass. Time is a measure of change or a measure of a process of events; in dynamics, time is assumedtobeacontinuallyincreasing,non-negativequantity. Space isageometricregionwhereeventsoccur;inthestudyofdynamics,spaceisusuallydenedbyreferenceframesorcoordinate systems. Force is intuitively described as a push or a pull. The effect of a forcedependsuponthemagnitude,direction,andpointofapplicationofthepushorpull;aforceisthusideallysuitedforrepresentationbyavector. Mass isameasureofinertiarepresenting a resistance to change in motion; mass is the source of gravitational attractionand thus also the source of weight forces.In our study we will assume the existence of an inertial reference frame , which is simplyareferenceframewhereNewtonslawsarevalid.Morespecically,wewillassumetheEarth to be an inertial reference frame for the range of systems and problems consideredin this book.Newtons laws may be briey stated as follows:1. In the absence of applied forces, a particle at rest remains at rest and a particlein motion remains in motion, moving at a constant speed along a straight line.2. Aparticlesubjectedtoanappliedforcewillaccelerateinthedirectionoftheforce,andtheaccelerationwillbeproportionaltothemagnitudeoftheforceand inversely proportional to the mass of the particle. Analytically, this may beexpressed as (1.3.1)where F istheforce(avector), m istheparticlemass,and a istheresultingacceleration (also a vector).3. Within a mechanical system, interactive forces occur in pairs with equal magni-tudes but opposite directions (the law of action and reaction).F a = m FIGURE1.2.1 Subdivisions of mechanics. 0593_C01_fmPage 2Monday, May 6, 20021:43 PM Introduction 3 1.4 Basic Terminology in Mechanical Systems Particularterminologyisassociatedwithdynamics,andspecicallywithmechanicalsystemdynamics,whichwewilluseinthetext.Wewillattempttodenethetermsaswe need them, but it might also be helpful to mention some of them here: A space isaregionorgeometricentityoccupiedbyparticleswhere,forourpurposes, dynamic events will occur. A referenceframe mayberegardedasacoordinateaxissystemcontainingandlocatingthepointsofaspace.TypicalreferenceframesemployCartesianaxessystems. A particle isasmallbodywhosedimensionsareeithernegligibleorirrelevantin the description of its motion and of its response to forces applied to it. Smallis,ofcourse,arelativeterm.Abodyconsideredasaparticlemaybesmallinsome contexts but not in others (for example, an Earth satellite or an automobile).Particlesaregenerallyidentiedwithpointsinspace,andtheygenerallyhavenite masses. A rigid body is a set of particles whose distances from one another remain xed,orconstant,suchasasandstone.Thenumberofparticlesinabodyisusuallyquitelarge.Areferenceframemayberegarded,forkinematicpurposes,asarigid body whose particles have zero masses. A degreeoffreedom isdenedasawayinwhichaparticle,body,orsystemcanmove. The number of degrees of freedom possessed by a particle, body, or systemisdenedasthenumberofgeometricparameters(forexample,coordinates,distances, or angles) needed to uniquely describe the location, orientation, and/or conguration of the particle, body, or system. A constraint isarestrictiononthemotionofaparticle,body,orsystem.Con-straints can be either geometric (holonomic) or kinematic (nonholonomic). A machine is an arrangement of a system of bodies designed for applying, trans-mitting, and/or changing forces and motion. A mechanism isamachineintendedprimarilyforthetransmissionofmotion.The three general categories of machines are:1. Gearsystems ,whicharetoothedbodiesincontactwhoseobjectivesaretotransmit motion between rotating shafts.2. Camsystems ,whicharebodieswithcurvedprolesincontactwhoseobjec-tivesaretotransmitmotionbetweenarotatingmemberandanonrotatingmember. The term cam is sometimes also used to describe a gear tooth.3. Linkages ,whicharemultibodysystemsintendedtoprovideeitheradesiredmotion of a rigid body or the motion of a point of a body along a curve. A link isaconnectivememberofamachineoramechanism. Alinkmaintainsa constant distance between two points of a mechanism, although links may beone way, such as cables. A driver is an input link that stimulates a motion. A follower is an output link that responds to the input stimulus of the driver. 0593_C01_fmPage 3Monday, May 6, 20021:43 PM 4 Dynamics of Mechanical Systems A joint isaconnectivememberofamechanism,usuallybringingtogethertwoelementsofamechanism.Twoelementsbroughttogetherbyajointaresome-times called kinematic pairs . Figure 1.4.1 shows a number of commonly used joints(or kinematic pairs). A kinematic chain is a series of links that are either joined together or are in contactwithoneanother. Akinematicchainmaycontainoneormoreloops. Aloopisachainwhoseendsareconnected.An openchain (oropentree)containsnoloops, a simple chain contains oneloop, anda complex chain involvesmore thanone loop or one loop with open branches. Joint NameSchematic RepresentationDegrees of Freedom Revolute (pin) 1Prismatic (slider) 1Helix (screw) 1Cylinder (sliding pin) 2Spherical (ball and socket) 3Planar 2Universal (hook) 2Spur gear (rollers) 1Cam 1 FIGURE1.4.1 Commonly used joints and kinematics pairs. 0593_C01_fmPage 4Monday, May 6, 20021:43 PM Introduction 5 1.5 Vector Review Because vectors are used extensively in the text,it is helpful to review a few of their fundamentalconcepts.WewillexpandthisreviewinChapter2. Mathematically, a vector may be dened as anelementofavectorspace(see,forexample,Ref-erences 1.1 to 1.3). For our purposes, we may thinkof a vector simply as a directed line segment.Figure1.5.1showssomeexamplesofvectorsas directed line segments. In this context, vectorsareseentohaveseveralcharacteristics:magni-tude,orientation,andsense.The magnitude ofavector is simply itslength;hence,in a graphicalrepresentationasinFigure1.5.1,themagnitudeis simply the geometrical length. (Observe, for example, that vector 2B has a length andmagnitudetwicethatofvector B .)The orientation ofavectorreferstoitsinclinationinspace; this inclination is usually measured relative to some xed coordinate system. The sense of a vector is designated by the position of the arrowhead in the geometrical repre-sentation. Observe, for example, in Figure 1.5.1 that vectors A and A have opposite sense.Thecombinedcharacteristicsoforientationandsensearesometimescalledthe direction of a vector.Inthisbook,wewillusevectorstorepresentforces,velocities,andaccelerations.Wewillalsousethemtolocatepointsandtoindicatedirections.Theunitsofavectorarethose of its magnitude. In turn, the units of the magnitude depend upon the quantity thevectorrepresents.Forexample,ifavectorrepresentsaforce,itsmagnitudeismeasuredinforceunitssuchasNewtons(N)orpounds(lb).Alternatively,ifavectorrepresentsvelocity, its units might be meters per second (m/sec) or feet per second (ft/sec). Hence,vectors representing different quantities will have graphical representations with differentlength scales. (A review of specic systems of units is presented in Section 1.7.)Becausevectorshavethecharacteristicsofmagnitudeanddirectiontheyaredistinctfrom scalars, which are simply elements of a real or complex number system. For example,the magnitude of a vector is a scalar; the direction of a vector is not a scalar. To distinguishvectorsfromscalars,vectorsareprintedinbold-facetype,suchas V .Also,becausethemagnitudeofavectorisnevernegative(lengthisnevernegative),absolute-valuesignsareusedtodesignate the magnitude, such as V . In the next chapter, we will review algebraic oper-ations of vectors, such as the addition and multipli-cation of vectors. In preparation for this, it is helpfulto review the concept of multiplication of vectors byscalars.Specically,ifavector V ismultipliedbyascalar s , the product, written as s V , is a vector whosemagnitudeis s V ,where s istheabsolutevalue of the scalar s . The direction of s V is the sameas that of V if s is positive and opposite that of V if s isnegative.Figure1.5.2showssomeexamplesofproducts of scalars and vectors.FIGURE1.5.1Vectors depicted as directed line segments.AB -A2B FIGURE1.5.2 Examplesofproductsofscalarsandavector V .V 2V(1/2)V-(3/2)V 0593_C01_fmPage 5Monday, May 6, 20021:43 PM 6 Dynamics of Mechanical Systems Two kinds of vectors occur so frequently that they deserve special attention: zero vectorsandunitvectors. A zerovector issimplyavectorwithmagnitudezero. A unitvector isavector with magnitude one; unit vectors have no dimensions or units.Zerovectorsareusefulinequationsinvolvingvectors.Unitvectorsareusefulforseparating the characteristics of vectors. That is, every vector V may be expressed as theproduct of a scalar and a unit vector. In such a product, the scalar represents the magnitudeof the vector and the unit vector represents the direction. Specically, if V is written as:(1.5.1)where s is a scalar and n is a unit vector, then s and n are: (1.5.2) This means that given any non-zero vector V we can always nd a unit vector n with thesame direction as V; thus, n represents the direction of V . 1.6 Reference Frames and Coordinate Systems We can represent a reference frame by identifying it with a coordinateaxes system suchas a Cartesian coordinate system. Specically, we have three mutually perpendicular lines,called axes ,whichintersectatapoint O calledthe origin ,asinFigure1.6.1.Thespaceisthen lled with points that are located relative to O by distances from O to P measuredalonglinesparalleltotheaxes.Thesedistancesformsetsofthreenumbers,calledthe coordinates of the points. Each point is then associated with its coordinates.Thepointsinspacemayalsobelocatedrelativeto O byintroducingadditionallinesconvenientlyassociatedwiththepointstogetherwiththeanglestheselinesmakewiththemutuallyperpendicularaxes.Thecoordinatesofthepointsmaytheninvolvetheseangles.Toillustratetheseconcepts,considerrsttheCartesiancoordinatesystemshowninFigure 1.6.2, where the axes are called X , Y , and Z . Let P be a typical point in space. Thenthe coordinates of P are the distances x , y , and z from P to the planes YZ , ZX , and XY ,respectively. FIGURE1.6.1 A reference frame with origin O . FIGURE1.6.2 Cartesian coordinate system.V n = ss = = V n V V and /O O Z Y X P(x,y,z)0593_C01_fmPage 6Monday, May 6, 20021:43 PMIntroduction 7ConsiderthetaskoflocatingPrelativetotheoriginObymovingfromOtoPalonglinesparalleltoX,Y,andZ,asshowninFigure1.6.3.Thecoordinatesmaythenbeinterpreted as the distances along these lines. The distance d from O to P is then given bythe Pythagorean relation:(1.6.1)Finally, the point P is identied by either the name P or the set of three numbers (x, y, z).Toillustratetheuseofadditionallinesandangles,considerthecylindricalcoordinatesystemshowninFigure1.6.4.Inthissystem,atypicalpointPislocatedrelativetotheorigin O by the coordinates (r, , z) measuring: (1) the distance r along the newly introducedradialline,(2)theinclinationangle betweentheradiallineandthe X-axis,and(3)thedistance z along the line parallel to the Z-axis, as shown in Figure 1.6.4.By comparing Figures 1.6.3 and 1.6.4 we can readily obtain expressions relating Cartesianand cylindrical coordinates. Specically, we obtain the relations:(1.6.2)and(1.6.3)Asathirdillustration,considerthecoordinatesystemshowninFigure1.6.5.Inthiscase,atypicalpointPislocatedrelativetotheoriginObythecoordinates(,,)measuringthedistanceandanglesasshowninFigure1.6.5.Suchasystemiscalledaspherical coordinate system.FIGURE1.6.3Location of P relative to O.FIGURE1.6.4Cylindrical coordinate system.d x y z = + +( )2 2 21 2 /x ry rz z===cossinr x yy xz z= +( )=( )=2 21 21/tan / O Z Y X P(x,y,z)z y x O Z Y X z P(r, ,z)0593_C01_fmPage 7Monday, May 6, 20021:43 PM8 Dynamics of Mechanical SystemsBycomparingFigures1.6.3and1.6.5,weobtainthefollowingrelationsbetweentheCartesian and spherical coordinates:(1.6.4)and(1.6.5)The uses of vectors and coordinate systems are closely related. To illustrate this, consideragaintheCartesiancoordinatesystemshowninFigure1.6.6.Lettheunitvectors nx,ny,and nz be parallel to the X-, Y-, and Z-axes, as shown. Let p be a position vector locatingPrelativetoO(thatis,pisOP).Thenitisreadilyseenthatpmaybeexpressedasthevector sum (see details in the next chapter):(1.6.6)Also, the magnitude of p is:(1.6.7)FIGURE1.6.5Spherical coordinate system.FIGURE1.6.6Position vector in a Cartesian coordinate system.xyz=== sin cossin sincos= + +( )= + +( )=( )x y zz x y zy x2 2 21 21 2 2 21 21//cos /tan /p n n n = + + x y zx y zp = + +( )x y z2 2 21 2 /O Z Y X (,,)

Z X Y p n P(x,y,z)n n z y x O 0593_C01_fmPage 8Monday, May 6, 20021:43 PMIntroduction 91.7 Systems of UnitsIn this book, we will use both the English and the International unit systems. On occasion,wewillwanttomakeconversionsbetweenthem.Table1.7.1presentsalistingofunitconversion factors for commonly occurring quantities in mechanical system dynamics.TABLE1.7.1Conversion Factors between English and International Unit SystemsTo Convert Multiply byfrom toAcceleration (L/T2) ft/sec2m/sec23.048 000* 101ft/sec2cm/sec23.048 000* 101ft/sec2in./sec21.200 000* 101ft/sec2g 3.105 590 102m/sec2ft/sec23.280 840 100m/sec2in./sec23.937 008 101m/sec2cm/sec21.000 000* 102m/sec2g 1.018 894 101in./sec2ft/sec28.333 333 102in./sec2m/sec22.540 000* 102in./sec2cm/sec22.540 000* 100in./sec2g 2.587 992 103cm/sec2ft/sec23.280 840 102cm/sec2in./sec23.937 008 101cm/sec2m/sec21.000 000* 102cm/sec2g 1.018 894 103g ft/sec23.220 000* 101g in./sec23.864 000* 102g m/sec29.814 564 100g cm/sec29.814 564 102Angular velocity (1/T) rpm rad/sec 1.047 198 101rad/sec rpm 9.549 297 100Angle deg rad 1.745 329 102rad deg 5.729 578 101Area ft2m29.290 304 102ft2cm29.290 304 102in.2m26.451 600* 104in.2cm26.451 600* 100ft2in.21.440 000* 102in.2ft26.944 444 103m2ft21.076 391 101m2in.21.550 003 103m2cm21.000 000* 104cm2ft21.076 391 103cm2in.21.550 003 101 cm2m21.000 000* 104Energy/work ft lb Nm (or J) 1.355 818 100in. lb Nm (or J) 1.129 848 101ft lb in. lb 1.200 000* 101in. lb ft lb 8.333 333 102Nm (or J) ft lb 7.375 621 101Nm (or J) in. lb 8.850 745 100Force lb N 4.448 222 100N lb 2.248 089 1010593_C01_fmPage 9Monday, May 6, 20021:43 PM10 Dynamics of Mechanical SystemsTABLE1.7.1(CONTINUED)Conversion Factors between English and International Unit SystemsTo Convert Multiply byfrom toLength ft m 3.048 000 101ft cm 3.048 000 101ft in. 1.200 000* 101in. m 2.540 000* 102in. cm 2.540 000* 100in. ft 8.333 333 102m ft 3.280 839 100m in. 3.937 008 101m cm 1.000 000* 102cm ft 3.280 840 102cm in. 3.937 008 101cm m 1.000 000 102mi ft 5.280 000* 103mi km 1.609 344 100km mi 6.213 712 101Mass slug kg 1.459 390 101kg slug 6.852 178 102Mass density slug/ft3kg/m35.153 788 102slug/ft3g/cm35.153 788 101kg/m3slug/ft31.940 320 103kg/m3g/cm31.000 000* 103g/cm3slug/ft31.940 320 100g/cm3kg/m31.000 000* 103Moment or torque ft lb Nm 1.355 818 100ft lb in. lb 1.200 000* 101in. lb Nm 1.129 848 101in. lb ft lb 8.333 333 102Nm ft lb 7.375 621 101Nm in. lb 8.850 745 100Moments and products of inertia slug ft2kg m21.355 818 100kg m2slug ft27.375 623 101Power or energy/work rate ft lb/sec HP 1.818 182 103ft lb/sec Nm/sec (or W) 1.355 818 100ft lb/min HP 3.030 303 105ft lb/min Nm/sec (or W) 2.259 697 102HPNm/sec (or W) 7.456 999 102HP ft lb/sec 7.375 621 101HP ft lb/min 4.425 373 101Nm/sec (or W) ft lb/sec 1.341 022 103Nm/sec (or W) ft lb/min 5.500 000* 102Nm/sec (or W) HP 3.300 000* 104Pressure or stress lb/in.2 (or psi) N/m2 (or Pa) 6.894 757 103lb/in.2 (or psi) lb/ft21.440 000* 102lb/ft2N/m2 (or Pa) 4.788 026 101lb/ft2lb/in.2 (or psi) 6.944 444 103N/m2 (or Pa) lb/in.2 (or psi) 1.450 377 104N/m2 (or Pa) lb/ft22.088 543 102Velocity ft/sec m/sec 3.048 000* 101ft/sec cm/sec 3.048 000* 101ft/sec km/hr 1.097 280* 100ft/sec in./sec 1.200 000* 101ft/sec mi/hr (or mph) 6.818 182 101in./sec m/sec 2.540 000* 102in./sec cm/sec 2.540 000* 100in./sec km/hr 9.144 000* 1020593_C01_fmPage 10Monday, May 6, 20021:43 PMIntroduction 111.8 ClosureIn this introduction to our study of mechanical system dynamics, we have focused uponterminology and procedures that are believed to be useful in the sequel. As we proceed,we will continue to introduce terminology and procedures as needed. In this regard, wewill expand and elaborate upon our review of vector methods in Chapter 2. Throughoutthe text we will attempt to illustrate the subject matter under discussion by examples andby providing exercises (or problems) for the reader. These problems, appearing at the endsof the chapters, are not intended to be burdensome but instead to serve as a learning aidfor the reader. In addition, references will be provided for parallel study and for more in-depth study.References1.1. Noble, B., Applied Linear Algebra, Prentice Hall, Englewood Cliffs, NJ, 1969, pp. 104, 461.1.2. Usmani, R. A., Applied Linear Algebra, Dekker, New York, 1987, chap. 1.1.3. Shields, P. C., Elementary Linear Algebra, Worth Publishers, New York, 1968, pp. 3132.1.4. Baumeister,T.,Avallone,E.A.,andBaumeister,T.,III,Eds.,MarksStandardHandbookforMechanical Engineers, 8th ed., McGraw-Hill, 1978, pp. 1-331-39.TABLE1.7.1(CONTINUED)Conversion Factors between English and International Unit SystemsTo Convert Multiply byfrom toVelocity in./sec ft/sec 8.333 333 102in./sec mi/hr (or mph) 5.681 818 102mi/hr (or mph) m/sec 4.470 400* 101mi/hr (or mph) km/hr 1.609 344 100mi/hr (or mph) ft/sec 1.466 667 100mi/hr (or mph) in./sec 1.760 000* 101m/sec ft/sec 3.280 840 100m/sec in./sec 3.937 008 101m/sec mi/hr (or mph) 2.236 936 100m/sec cm/sec 1.000 000 102m/sec km/hr 3.600 000* 100km/hr ft/sec 9.113 444 101km/hr in./sec 1.093 613 101km/hr mi/hr (or mph) 6.213 712 101km/hr m/sec 2.777 777 101Weight density lb/ft3N/m31.570 670 102lb/ft3lb/in.35.787 037 104lb/in.3N/m39.089 525 102lb/in.3lb/ft31.728 000* 103N/m3lb/ft36.366 671 103N/m3lb/in.31.100 167 101Note:cm, centimeters; deg, degrees; ft, feet; g, grams; g, gravity acceleration (taken as 32.2 ft/sec2); HP,horsepower; in., inches; J, Joules; kg, kilograms; lb, pounds; m, meters; mi, miles; mph, miles perhour;N,Newtons;Pa,Pascals;psi,poundspersquareinch;rad,radius;rpm,revolutionsperminute; sec, seconds; W, watts.*Exact by denition.0593_C01_fmPage 11Monday, May 6, 20021:43 PM12 Dynamics of Mechanical Systems1.5. Hsu, H. P., Vector Analysis, Simon & Schuster Technical Outlines, New York, 1969.1.6. Brand, L., Vector and Tensor Analysis, Wiley, New York, 1964.1.7. Kane, T. R., Analytical Elements of Mechanics, Vol. 2, Academic Press, New York, 1961.1.8. Kane, T. R., and Levinson, D. A., Dynamics: Theory and Applications, McGraw-Hill, New York,1985, pp. 361371.1.9. Likins, P. W., Elements of Engineering Mechanics, McGraw-Hill, New York, 1973.1.10. Beer, F. P., and Johnston, E. R., Jr., Vector Mechanics for Engineers, 6th ed., McGraw-Hill, NewYork, 1996.1.11. Yeh, H., and Abrams, J. I., Principles of Mechanics of Solids and Fluids, Vol. 1, Particle and Rigid-Body Mechanics, McGraw-Hill, New York, 1960.1.12. Haug, E. J., Intermediate Dynamics, Prentice Hall, Englewood Cliffs, NJ, 1992.1.13. Meriam, J. L., and Kraige, L. G., Engineering Mechanics, Vol. 2, Dynamics, 3rd ed., John Wiley& Sons, New York, 1992.1.14. Hibbler, R. C., Engineering Mechanics: Statics and Dynamics, Macmillan, New York, 1974.1.15. Shelley, J. P., Vector Mechanics for Engineers, Vol. II, Dynamics, Schaums Solved Problems Series,McGraw-Hill, New York, 1991.1.16. Jong,I.C.,andRogers,B.G.,EngineeringMechanics,StaticsandDynamics,SaundersCollegePublishing, Holt, Rinehart & Winston, Philadelphia, PA, 1991.1.17. Huston, R. L., Multibody Dynamics, ButterworthHeinemann, Stoneham, MA, 1990.1.18. Higdon, A., and Stiles, W. B., Engineering Mechanics, Vol. II, Dynamics, 3rd ed., Prentice Hall,Englewood Cliffs, NJ, 1968.1.19. Meirovitch, L., Methods of Analytical Dynamics, McGraw-Hill, New York, 1970.1.20. Paul, B., Kinematics and Dynamics of Planar Machinery, Prentice Hall, Englewood Cliffs, NJ, 1979.1.21. Sneck, H. J., Machine Dynamics, Prentice Hall, Englewood Cliffs, NJ, 1991.1.22. Mabie, H. H., and Reinholtz, C. F., Mechanisms and Dynamics of Machinery, 4th ed., Wiley, NewYork, 1987.1.23. Ginsberg, J. H., Advanced Engineering Dynamics, Harper & Row, New York, 1988.1.24. Shames, I. H., Engineering Mechanics, Prentice Hall, Englewood Cliffs, NJ, 1980.1.25. Liu, C. Q., and Huston, R. L., Formulas for Dynamic Analyses, Marcel Dekker, New York, 1999.ProblemsSection1.5 VectorReviewP1.5.1: Suppose a velocity vector V is expressed in the form:where i, j, and k are mutually perpendicular unit vectors.a. Determine the magnitude of V.b. Find a unit vector n parallel to V and having the same sense as V.Section1.6 ReferenceFramesandCoordinateSystemsP1.6.1: Suppose the Cartesian coordinates (x, y, z) of a point P are (3, 1, 4).a. Find the cylindrical coordinates (r, , z) of P.b. Find the spherical coordinates (, , ) of P.V i j k = + + 3 4 12 ft sec0593_C01_fmPage 12Monday, May 6, 20021:43 PMIntroduction 13P1.6.2: Suppose the Cartesian coordinates (x, y, z) of a point P are (1, 2, 5).a. Find the cylindrical coordinates (r, , z) of P.b. Find the spherical coordinates (, , ) of P.P1.6.3: Suppose the cylindrical coordinates (r, , z) of a point P are (4, /6, 2).a. Find the Cartesian coordinates (x, y, z) of P.b. Find the Spherical coordinates (, , ) of P.P1.6.4: Suppose the spherical coordinates (, , ) of a point P are (7, /4, /3).a. Find the Cartesian coordinates (x, y, z) of P.b. Find the cylindrical coordinates (r, , z) of P.P1.6.5:Considerthecylindricalcoordinatesystem(r,,z)withzidenticallyzero.Thissystem then reduces to the polar coordinate system as shown in Figure P1.6.1.a. Express the coordinates (x, y) in terms of (r, ).b. Express the coordinates (r, ) in terms of (x, y).P1.6.6:SeeProblem1.6.5.LetnxandnybeunitvectorsparalleltotheX-andY-axes,asshown. Let nr and n be unit vectors parallel and perpendicular to the radial line as shown.a. Express nr and n in terms of nx and ny.b. Express nx and ny in terms of nr and n.Section1.7 SystemsofUnitsP1.7.1: An automobile A is traveling at 60 mph.a. Express the speed of A in ft/sec.b. Express the speed of A in km/sec.FIGUREP1.6.1Polar coordinate system.O

r Y X P(r,)n nn n y x r 0593_C01_fmPage 13Monday, May 6, 20021:43 PM14 Dynamics of Mechanical SystemsP1.7.2: A person weighs 150 lb.a. What is the persons weight in N?b. What is the persons mass in slug?c. What is the persons mass in kg?P1.7.3: An automobile A accelerates from a stop at 3 mph/sec.a. Express the acceleration in ft/sec2.b. Express the acceleration in m/sec2.c. Express the acceleration in g.0593_C01_fmPage 14Monday, May 6, 20021:43 PM 15 2 Review of Vector Algebra 2.1 Introduction InChapter1,wereviewedthebasicconceptsofvectors.Weconsideredvectors,scalars,andthemultiplicationofvectorsandscalars.Wealsoexaminedzerovectorsandunitvectors. In this chapter, we will build upon these ideas as we develop a review of vectoralgebra. Specically, we will review the concepts of vector equality, vector addition, andvector multiplication. We will also review the concepts of reference frames and unit vectorsets. Finally, we will review the elementary procedures of matrix algebra. 2.2 Equality of Vectors, Fixed and Free Vectors Recallthatthecharacteristicsofavectorareits magnitude ,its orientation ,andits sense .Indeed, we could say that a vector is dened by its characteristics. The concept of vectorequalityfollowsfromthisdenition:Specically,twovectorsare equal if(andonlyif)they have the same characteristics. Vector equality is fundamental to the development ofvectoralgebra.Forexample,ifvectorsareequal,theymaybeinterchangedinvectorequations,whichenablesustosimplifyexpressions.Itshouldbenoted,however,thatvector equality does not necessarily denote physical equality, particularly when the vec-tors model physical quantities. This occurs, for example, with forces. We will explore thisconcept later.Two fundamental ideas useful in relating mathematical and physical quantities are theconceptsof xed and free vectors. A xed vectorhasitslocationrestrictedtoalinexedinspace.Toillustratethis,considerthexedline L asshowninFigure2.2.1.Let v beavector whose location is restricted to L , and let the location of v along L be arbitrary. Then v is a xed vector. Because the location of v along L is arbitrary, v might even be called a sliding vector .Alternatively,a free vectorisavectorthatmaybeplacedanywhereinspaceifitscharacteristicsaremaintained.Unitvectorssuchas n x , n y ,and n z showninFigure2.2.1are examples of free vectors. Most vectors in our analyses will be free vectors. Indeed, wewill assume that vectors are free vectors unless otherwise stated. 0593_C02_fmPage 15Monday, May 6, 20021:46 PM 16 Dynamics of Mechanical Systems 2.3 Vector Addition Vectors obey the parallelogram law of addition. This is a simple geometric algorithm forunderstandingandexhibitingthepowerfulanalyticalutilityofvectors.Toseethis,con-sidertwovectors A and B asinFigure2.3.1.Let A and B befreevectors.Toadd A and B , let them be connected head-to-tail (without changing their characteristics) as in Figure2.3.2. That is, relocate B so that its tail is at the head of A . Then, the sum of A and B , calledthe resultant ,isthevector R connectingthetailof A totheheadof B, asinFigure2.3.3.That is,(2.3.1)The vectors A and B are called the components of R .Thereasonforthenameparallelogramlawisthatthesameresultisobtainedifthehead of B is connected to the tail of A , as in Figure 2.3.4. The two ways of adding A and B produce a parallelogram, as shown. The order of the addition that is, which vectoris taken rst and which is taken second is therefore unimportant; hence, vector additionis commutative . That is,(2.3.2) FIGURE2.2.1 A xed line L and a xed vector V . FIGURE2.3.1 Two vectors A and B to be added. FIGURE2.3.2 Vectors A and B connected head to tail.O Y L Z X n n n z y x V R A B+A B B A ++A B A B 0593_C02_fmPage 16Monday, May 6, 20021:46 PM Review of Vector Algebra 17Vector subtraction maybedenedfromvectoraddition.Specically,thedifferenceoftwo vectors A and B , written as A B , is simply the sum of A with the negative of B . That is,(2.3.3)An item of interest in vector addition is the magnitude of the resultant, which may bedetermined using the geometry of the parallelogram and the law of cosines. For example,in Figure 2.3.5, let be the angle between A and B, as shown. Then, the magnitude of theresultant R is given by:(2.3.4) Example 2.3.1: Resultant Magnitude To illustrate the use of Eq. (2.3.4), suppose the magnitude of A is 15 N, the magnitude of B is 12 N, and the angle between A and B is 60. Then, the magnitude of the resultant R is:(2.3.5)Observe from Eq. (2.3.4) that if we double the magnitude of both A and B , the magnitudeof the resultant R is also doubled. Indeed, if we multiply A and B by any scalar s , R willalso be multiplied by s . That is,(2.3.6)This means that vector addition is distributive with respect to scalar multiplication.Next,supposewehave three vectors A , B ,and C ,andsupposewewishtondtheirresultant.Supposefurtherthatthevectorsare not paralleltothesameplane,as,forexample, in Figure 2.3.6. The resultant R is obtained in the same manner as before. Thatis,thevectorsareconnectedheadtotail,asdepictedinFigure2.3.7.Then,theresultant R is obtained by connecting the tail of the rst vector A to the head of the third vector C as in Figure 2.3.7. That is,(2.3.7) FIGURE2.3.3 Resultant(sum) R ofvectors A and B . FIGURE2.3.4 Two ways of adding vectors A and B . FIGURE2.3.5 Vector triangle geometry. + ( ) A BR A B A B+ + ( )2 22 cos R( ) +( ) ( )( )( ) ( ) 15 12 2 15 12 2 3 23 432 2 1 2cos ./ Ns s s s A B R A B + + ( )R A B C+ +A B R A B A B R A B R 0593_C02_fmPage 17Monday, May 6, 20021:46 PM 18 Dynamics of Mechanical Systems Example 2.3.2: Resultant Magnitude in Three Dimensions As an illustration, suppose C is perpendicular to the plane of vectors A and B of Example2.3.1andsupposethemagnitudeofCis10N.Then,fromtheresultsofEq.(2.3.5),themagnitude of R is:(2.3.8)This procedure has several remarkable features. First, as before, the order of the compo-nents in Eq. (2.3.7) is unimportant. That is,(2.3.9)Second,toobtaintheresultant Rwemayrstaddanytwoofthevectors,say AandB,andthenaddtheresultantofthissumtoC.ThismeansthesummationinEq.(2.3.7)isassociative. That is,(2.3.10)This feature may be used to obtain the magnitude of the resultant by repeated use of thelaw of cosines as before.Third,observethatcongurationsexistwherethemagnitudeoftheresultantislessthan the magnitude of the individual components. Indeed, the magnitude of the resultantcould be zero.Finally, with three or more components, the procedure of nding the magnitude of theresultant by repeated use of the law of cosines is cumbersome and tedious.An attractive feature of vector addition is that the resultant magnitude may be obtainedbystrictlyanalyticalmeansthatis,withoutregardtotrianglegeometry.Thisistheoriginal reason for using vectors in analysis. We will explore this further in the next section.FIGURE2.3.6Vectors A, B, and C to be added.FIGURE2.3.7Resultant of vectors A, B, and C of Figure 2.3.6.Z Y X C A B Z Y X C A B R R ( ) +( )[ ] 23 43 10 25 472 21 2. ./NA B C C A B B C AA C B B A C C B A R+ ++ ++ + + ++ ++ + R A B C A B C A B C+ ++ ( ) ++ + ( )0593_C02_fmPage 18Monday, May 6, 20021:46 PMReview of Vector Algebra 192.4 Vector ComponentsConsider again Eq. (2.3.7) where we have the vector sum:(2.4.1)Instead of thinking of this expression as a sum of components, consider it as a represen-tationofthevectorR.SupposefurtherthatthecomponentsA,B,andChappentobemutuallyperpendicularandparalleltocoordinateaxes,asshowninFigure2.4.1.Then,by the Pythagoras theorem, the magnitude of R is simply:(2.4.2)To develop these ideas still further, suppose that nx, ny, and nz are unit vectors parallelto X, Y, and Z, as in Figure 2.4.2. Then, from our discussion in Chapter 1, we see that A,B, and C can be expressed in the forms:(2.4.3)wherea,b,andcarescalarsrepresentingthemagnitudesof A,B,andC.Hence,Rmaybe expressed as:(2.4.4)FIGURE2.4.1Vector R with mutually perpendicular components.FIGURE2.4.2Vectors A, B, and C and unit vectors nx, ny, and nz.Z X Y R C B A Z X Y R C B A n n n z x y R A B C+ +R A B C+ +( )2 2 21 2 /A An nB Bn nC Cn n x xy yz zabcR n n n+ + a b cx y z0593_C02_fmPage 19Monday, May 6, 20021:46 PM20 Dynamics of Mechanical SystemsThen, the magnitude of R is:(2.4.5)A question that arises is what if A, B, and C are not mutually perpendicular? How thencanwendthemagnitudeoftheresultant? Apowerfulfeatureofthevectormethodisthat the same general procedure can be used regardless of the directions of the components.All that is required is to express the components as sums of vectors parallel to the X-, Y-,and Z-axes (or other convenient mutually perpendicular directions). For example, supposeavectorAisinclinedrelativetothe X-,Y-,andZ-axes,asinFigure2.4.3.Let x,y,andz be the angles that A makes with the axes. Next, let us express A in the desired form:(2.4.6)where Ax, Ay, and Az are vector components of A parallel to X, Y, and Z. Ax, Ay, and AzmaybeconsideredasprojectionsofAalongtheX-,Y-,andZ-axes.Theirmagnitudesare proportional to the magnitude of A and the cosines of the angles x, y, and z. That is,(2.4.7)where ax , ay , and az are dened as given in the equations. As before, let nx, ny, and nz beunit vectors parallel to X, Y, and Z. Then, Ax, Ay, and Az can be expressed as:(2.4.8)Finally, by substituting into Eq. (2.4.6), A may be expressed in the form:(2.4.9)FIGURE2.4.3AvectorAinclinedrelativetothecoordinate axes.R+ +( )a b c2 2 21 2 /A A A A+ +x y zA AA AA Ax x xy y yz z zaaa coscoscosA n A nA n A nA n A nx x x x xy y y y yz z z z zaaa coscoscosA n n n A n A n A n+ ++ + a a ax x y y z z x x y y z zcos cos cos Z Y X n n n n z z yx yy x 0593_C02_fmPage 20Monday, May 6, 20021:46 PMReview of Vector Algebra 21Then, the magnitude of A is simply:(2.4.10)Next, suppose that n is a unit vector parallel to A, as in Figure 2.4.3. Then, by followingthe same procedure as in Eq. (2.4.9), n may be expressed as:(2.4.11)Because the magnitude of n is 1, we then have:(2.4.12)Example 2.4.1: Vector Addition Using ComponentsTo illustrate the use of these ideas, consider again the vectors of Examples 2.3.1 and 2.3.2(see Figures 2.3.6 and 2.3.7). Specically, let A be parallel to the Y-axis with a magnitudeof15N.LetBbeparalleltotheYZplaneandinclinedat60relativetotheY-axis.LetthemagnitudeofBbe12N.LetCbeparalleltotheX-axiswithamagnitudeof10N(Figure 2.4.4). As before let nx, ny, and nz be unit vectors parallel to the X-, Y-, and Z-axes.Then, A, B, and C may be expressed as:(2.4.13)Hence, R becomes:(2.4.14)Then, the magnitude of R is:(2.4.15)ThisisthesameresultasinExample2.3.2(seeEq.(2.3.8)).Here,however,weobtainedthe result without using the law of cosines as in Eq. (2.3.4).Example 2.4.2: Direction CosinesA particle P is observed to move on a curve C in a Cartesian reference frame R, as shownin Figure 2.4.5. The coordinates of P are functions of time t. Suppose that at an instant ofinterestx,y,andzhavethevalues8m,12m,and7m,respectively.DeterminetheorientationanglesofthelineofsightofanobserverofPiftheobserverisattheoriginO. Specically, determine the angles x, y, and z of OP with the X-, Y-, and Z-axes.A+ +( )a a ax y z2 2 21 2 /n n n n+ + cos cos cos x x y y z z12 2 2 + + cos cos cos x y zA nB n n n nC n

+ +

1512 60 12 60 6 10 39210xy z y zxNNNcos sin .R A B C n n n nn n n + ++ +( )+ + +15 6 10 392 1010 21 10 392y y z xx y zNN..R ( ) +( ) +( )[ ] 10 21 10 392 25 472 2 21 2. ./N N0593_C02_fmPage 21Monday, May 6, 20021:46 PM22 Dynamics of Mechanical SystemsSolution:ThelineofsightOPmayberepresentedbythepositionvectorpofFigure2.4.5. In terms of unit vectors nx, ny, and nz parallel to X, Y, and Z, p may be expressed as:(2.4.16)Then, the magnitude of p is:(2.4.17)Therefore, a unit vector n parallel to p is:(2.4.18)Then, from Eq. (2.4.11), the direction cosines are:(2.4.19)Hence, x, y, and z are:(2.4.20)Observe that the functional representation of the coordinates x, y, and z of P as:(2.4.21)forms a set of parametric equations dening C.Finally, if a vector V is expressed in the form:(2.4.22)FIGURE2.4.4The system of Figure 2.3.6.FIGURE2.4.5A particle P moving in a reference frame R.C A B n Y X Z n n z y x Z Y X O R C P(x,y,z)n n n z y x p n n n n n n+ ++ + x y z mx y z x y z8 12 7p ( ) +( ) +( )[ ] 8 12 7 16 032 2 21 2 /. mn p p n n n + + 0 499 0 749 0 437 . . .x y zcos . , cos . , cos . x y z 0 499 0 749 0 437 x y z 60 6 41 54 64 11 . deg. deg. degx x t y y t z z t( )( )( ) , ,V n n n+ + v v vx x y y z z0593_C02_fmPage 22Monday, May 6, 20021:46 PMReview of Vector Algebra 23where nx, ny, and nz are mutually perpendicular unit vectors, then vx, vy, and vz are calledthe scalar components of V relative to nx, ny, and nz. Then, from Eq. (2.4.10), the magnitudeof V is:(2.4.23)ObservethatifViszero,then|V|iszero,andeachofthescalarcomponentsisalsozero. This is the basis for force equilibrium procedures of elementary mechanics.2.5 Angle Between Two VectorsTheconceptoftheanglebetweentwovectorsisusefulindevelopingtheproceduresofvector multiplication. We already used this idea in Section 2.3 with the law of cosines (seeFigure2.3.5).Theanglebetweentwovectorsisdenedasfollows:LetAandBbeanynonzerovectorsasinFigure2.5.1.Letthevectorsbeconnectedtailtotail,asinFigure2.5.2. Then the angle as shown is dened as the angle between the vectors. Observe that always has values between 0 and 180.2.6 Vector Multiplication: Scalar ProductMultiplyingvectorscanbeaccomplishedinseveralways,whichwewillreviewinthisandthefollowingsections.Considerrstthe scalarproduct,socalledbecausetheresultis a scalar: Given any two vectors A and B, the scalar product, written as A B, is dened as:(2.6.1)where is the angle between A and B (see Section 2.5.1). Because a dot is placed betweenthe vectors, the operation is often called the dot product.Observe in the denition of Eq. (2.6.1) that, if we interchange the positions of A and B,the result remains the same. That is,(2.6.2)Hence, the scalar product is commutative.Consider some special cases. First, observe that the scalar product of two perpendicularvectors is zero, as the cos is zero. Next, consider the scalar product of a vector A with itself:(2.6.3)V+ +( )v v vx y z2 2 21 2 /A B A B cosA B A B B A B A cos cos A A A A cos0593_C02_fmPage 23Monday, May 6, 20021:46 PM24 Dynamics of Mechanical SystemsHowever, the angle that a vector makes with itself is zero (see Problem P2.5.1); hence, wehave:(2.6.4)where the last equality is a denition of A2.Suppose in this last case that A is a unit vector, say n. Then,(2.6.5)Next,supposethat n1,n2,andn3aremutuallyperpendicularunitvectorsparalleltotheX-, Y-, and Z-axes as shown in Figure 2.6.1. Then, the various scalar products of these unitvectors may be expressed as:(2.6.6)(2.6.7)These results may be expressed in the compact form:(2.6.8)where ij is often called Kroneckers delta function.Next, suppose that n is a unit vector parallel to a line L and that A is a nonzero vector,as in Figure 2.6.2. Then, A n is:(2.6.9)Wecaninterpretthisresultastheprojectionof AontoL.Indeed,supposeweexpressA in terms of two components: one parallel to L, called A||, and the other perpendicularto L, called A. Then,(2.6.10)FIGURE2.5.1Two nonzero vectors.FIGURE2.5.2Vectors A and B connected tail to tail.A B A B A A A A A A 22n n n n 221n n n n n n1 1 2 2 3 31 1 1 , ,n n n n n n n n n n n n1 2 2 1 1 3 3 1 2 3 3 20 n ni j iji ji j

10 A n A n A cos cos A A A+ ||0593_C02_fmPage 24Monday, May 6, 20021:46 PMReview of Vector Algebra 25where A|| is:(2.6.11)To further develop these components, let a vector C be the resultant (sum) of vectors Aand B. That is,(2.6.12)Let L be a line passing through the tail O of C, as in Figure 2.6.3, and let n be a unit vectorparalleltoL.LetAandBbetheprojectionpointsoftheheadsofAandBontoL,asshown.Then,fromEq.(2.6.9),thelengthsofthelinesegmentsOA,AB,andOBmaybeexpressed as:(2.6.13)However, from Figure 2.6.3, we see that:(2.6.14)Hence,(2.6.15)Therefore, from Eq. (2.6.12), we have the distributive law:(2.6.16)Continuing in this manner, suppose s is a scalar. Then, from the denition of Eq. (2.6.1),we have:(2.6.17)FIGURE2.6.1Mutually perpendicular uni