dynamics of fractal-like aerosols during sintering ... · mai 2012 [email protected] 14 a a:...

46
Dynamics of Fractal-like Aerosols during Sintering: Characterization Max L. Eggersdorfer and Sotiris E. Pratsinis Particle Technology Laboratory, ETH Zürich Freitag, 18. Mai 2012 1 [email protected]

Upload: others

Post on 14-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Dynamics of Fractal-like Aerosols

during Sintering: Characterization

Max L. Eggersdorfer and Sotiris E. Pratsinis

Particle Technology Laboratory, ETH Zürich

Freitag, 18. Mai 2012 1 [email protected]

Page 2: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Freitag, 18. Mai 2012 2 [email protected]

• formation of agglomerates &

aggregates

Our motivation: Characterization of

nanoparticle structure during gas-

phase synthesis

Page 3: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Aggregates and Agglomerates

Nanocomposites, paints Catalysts, lightguides, devices

Chemical or

Sinter-forces

Physical

(e.g.vdW)

forces

Less toxic? Potentially toxic?

Current aerosol instruments cannot distinguish them

S.E. Pratsinis in "Aerosol Science and Technology: History and Reviews",

ed. D.S. Ensor & K.N. Lohr, RTI Press (2011), Ch. 18, 475-507.

Page 4: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Particle Generation in the Gas-Phase

4 [email protected] Freitag, 18. Mai 2012

Molecules

Primary particles

Individual primary

particles

Chemical reaction,

nucleation,

condenstation

Agglomerates

Coagulation and

Sintering

Aggregates

agglomerate

aggregate

Page 5: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Continuum

Mesoscale

Molecular

dynamics Quantum

mechanics

B. Buesser & S.E. Pratsinis, Annual Rev. Chem. Biomol. Eng., 3 (2012) 103–127.

Page 6: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Freitag, 18. Mai 2012 6 [email protected]

Relation between mass, mobility and primary diameter

r = 5720 kg/m3

measure:

dm = 50 nm

m = 9∙10-2 fg

calculate:

dva = 10 nm

Page 7: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Freitag, 18. Mai 2012 7 [email protected]

Part 1: Numerical

• characterization of agglomerate structure

• formation of aggregates by sintering

mass – mobility relation

Part 2: Experimental

• mass-mobility characterization of ZrO2

Outline agglomerate

aggregate

Page 8: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Freitag, 18. Mai 2012 8 [email protected]

Scaling of Agglomerate Structure

3m r

Dm r

agglomerate

aggregate

Page 9: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Characteristic Agglomerate Radius

Freitag, 18. Mai 2012 9 [email protected]

Mass fractal dimension1, Df Mass-mobility exponent3, Dfm fD

g

n

p p

rmk

m r

fmD

mm

p p

m rk

m r

1. S.R. Forrest & T. A. Witten, J. Phys. A: Math. Gen. 12 (1979) L109-L117.

2. C.M. Sorensen, Aerosol Sci. Technol. 45 (2011) 755-769.

3. K. Park, F. Cao, D.B. Kittelson & P.H. McMurry, Environ. Sci. Technol. 37 (2003), 577-583.

Cluster-cluster2:

Df ≈ 1.8

Radius of gyration Mobility radius

am

ar

Cluster-cluster2:

Dfm ≈ 2.15

agglomerate

aggregate

Page 10: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Freitag, 18. Mai 2012 10 [email protected]

Formation of Aggregates by Sintering

S.C. Kim, J. Wang, M.S. Emery, W.G. Shin, G.W. Mulholland

& D.Y.H. Pui, J. Aerosol Sci. 43 (2009) 344-355.

Ag: grain boundary diffusion SiO2: viscous flow sintering

J.C. Park, D.A. Gilbert, K. Liu & A.Y. Louie, J. Mater. Chem.

22 (2012) 8449-8454.

agglomerate

aggregate

Page 11: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Simulation Method: Viscous Flow Sintering

Freitag, 18. Mai 2012 11

1. Energy balance1

2. Mass balance2

23ii

dAdV

dt

Change in surface energy = viscous dissipation

1. J. Frenkel, J. Phys. 9 (1945) 385-391.

2. R.M. Kadushnikov, V.V. Skorokhod, I.G. Kamenin, V.M. Alievskii, E.Y. Nurkanov, D.M.

Alievskii, Powder Metall. Met. C+ 40 (2001) 154-163.

23 iV

0idV

dt

Constant strain rate in particle Geometric Model

[email protected]

agglomerate

aggregate

Page 12: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

agglomerate

aggregate

Formation of Aggregates by Sintering

Freitag, 18. Mai 2012 12 [email protected]

Page 13: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Freitag, 18. Mai 2012 13 [email protected]

Evolution of Df & Dfm

1. A. Camenzind, H. Schulz, A. Teleki, G. Beaucage, T. Narayanan & S.E. Pratsinis, Eur. J. Inorg. Chem. (2008) 911-918.

Ensemble average over 200 clusters with 16-512 PPs

agglomerate

aggregate

Page 14: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Scaling of Projected Aggregate1 Area during Sintering

Freitag, 18. Mai 2012 14 [email protected]

aa: projected area

1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404.

D

ava a

va

an k

a

6va BET

vd d

a

3 6va

va

vn

d

nva: average number of PPs

dva: average PP diameter

Page 15: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Scaling of Projected Aggregate1 Area during Sintering

Freitag, 18. Mai 2012 15 [email protected]

D

ava a

va

an k

a

viscous flow sintering2

1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404.

2. M.L. Eggersdorfer, D. Kadau, H.J. Herrmann & S.E. Pratsinis, Langmuir 27 (2011) 6358-6367.

Page 16: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

viscous flow sintering2

Scaling of Projected Aggregate1 Area during Sintering

Freitag, 18. Mai 2012 16 [email protected]

ka = 1 & D = 1.07 are nearly

independent of sintering mechanism

grain boundary diffusion3

D

ava a

va

an k

a

1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404.

2. M.L. Eggersdorfer, D. Kadau, H.J. Herrmann & S.E. Pratsinis, Langmuir 27 (2011) 6358-6367.

3. M.L. Eggersdorfer, D. Kadau, H.J. Herrmann & S.E. Pratsinis, J. Aerosol Sci. 46 (2012) 7-19.

Page 17: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Mass-mobility Relation

Freitag, 18. Mai 2012 17 [email protected]

1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404.

2. P. Meakin, Adv. Colloid Interface Sci. 28 (1988) 249-331.

3. S.N. Rogak, R.C. Flagan & H.V. Nguyen, Aerosol Sci. Technol. 18 (1993) 25-47.

Surface area mean diameter from mobility size and volume

Surface area mean diameter:

6va

vd

a Average number of

primary particles: va

va

vn

v

Scaling of projected aggregate area:1

aa = projected aggregate area

D

ava a

p

an k

a

Mobility in free molecular2 and transition regime:3

4 am

ad

1 2 3

2

6

DDa

va m

kd d

v

Page 18: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Summary & Conclusions

Freitag, 18. Mai 2012 18 [email protected]

• Mass-mobility relation in free molecular and transition

regime:

1 2 32

6

DDa

va m

kd d

v

• independent of time, material or sintering

mechanism, with ka = 1.0 & D = 1.07

agglomerate

aggregate

Page 19: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Reality Check: Characterization of ZrO2 Nanoparticles

Freitag, 18. Mai 2012 19 [email protected]

m

dm

dBET

dp

Measure:

1 2 3

2

6

DDa

m

kd

vvad

Page 20: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Effect of Liquid Precursor Feed Rate X

Freitag, 18. Mai 2012 20 [email protected]

X/Y Flame

X: precursor feed liquid (ml/min)

Y: dispersion gas (l/min)

4/5 Flame

8/5 Flame

12/5 Flame

Inreasing liquid

precursor feed rate

results in faster sintering

& coagulation 1

1. S.E. Pratsinis, W.H. Zhu & S. Vemury,

Powder Technol. 86 (1996) 87-93.

Page 21: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Freitag, 18. Mai 2012 21 [email protected]

M.L. Eggersdorfer, A.J. Gröhn, C.M. Sorensen, P.H. McMurry & S.E. Pratsinis (2012) in review.

Effect of Precursor Feed Rate: Mass-Mobility

Dfm ≈ 2.15:

agglomerates or

aggregates at

beginning of sintering

1 2 3

2

6

DDa

va m

kd d

v

Page 22: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Freitag, 18. Mai 2012 22 [email protected]

dva can be rapidly

determined during

nanoparticle

production by

DMA-APM

measurements with

material density

and

agglomerate

aggregate

Effect of Liquid Precursor Feed Rate: dva

1 2 3

2

6

DDa

va m

kd d

v

M.L. Eggersdorfer, A.J. Gröhn, C.M. Sorensen, P.H. McMurry & S.E. Pratsinis, Mass-Mobility Characterization of Flame-made ZrO2

Aerosols: the Primary Particle Diameter & extent of Aggregation , in review. (2012)

Page 23: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Freitag, 18. Mai 2012 23 [email protected]

Increasing O2 flow rate results in a

shorter residence time at high

temperatures1 1. S.E. Pratsinis, W.H. Zhu & S. Vemury,

Powder Technol. 86 (1996) 87-93.

Effect of Oxygen Dispersion Flow Rate agglomerate

aggregate

Page 24: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Summary & Conclusions

Freitag, 18. Mai 2012 24 [email protected]

• Mass-mobility relation in free molecular and transition

regime:

1 2 32

6

DDa

va m

kd d

v

• The dva by online mass-mobility measurements is in

good agreement with ex-situ BET & TEM

measurements.

• independent of time, material or sintering

mechanism, with ka = 1.0 & D = 1.07

agglomerate

aggregate

Page 25: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Freitag, 18. Mai 2012 25

Acknowledgments:

Prof. Peter H. McMurry, University of Minnesota

Prof. Christopher M. Sorensen, Kansas State University

Prof. Hans J. Herrmann, ETH Zürich

Arto Gröhn, ETH Zürich

Dr. Dirk Kadau, Wärtsilä Schweiz AG

Dr. Frank Krumeich, ETH Zürich

Creux du Van, Neuchatel, August 22, 2011

Thank you for your attention

Page 26: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Freitag, 18. Mai 2012 26 [email protected]

Page 27: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Agglomerates of Polydisperse Primary Particles (PP)

Freitag, 18. Mai 2012 27 [email protected]

by cluster-cluster agglomeration1:

by particle-cluster agglomeration2:

Ballistic (BCCA)

Diffusive (DLCA)

Diffusive (DLA)

Ballistic (BPCA)

1. R. Botet, R. Jullien & M. Kolb, J. Phys. A: Math. Gen. 17 (1984) L75-L79.

2. T.A. Witten & L.M. Sander, Phys. Rev. Lett. 47 (1981) 1400-1403.

Log-normal PP distribution

Page 28: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Effect of PP Polydispersity on Df

Freitag, 18. Mai 2012 28 [email protected]

1. G. Bushell & R. Amal, J. Colloid Interface Sci. 205 (1998) 459-469.

2. M.L. Eggersdorfer & S.E. Pratsinis, Aerosol Sci. Technol. 46 (2012) 347-353.

3. M. Tence, J.P. Chevalier & R. Jullien, J. Phys. 47 (1986) 1989-1998.

Page 29: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Effect of PP Polydispersity on Df

Freitag, 18. Mai 2012 29 [email protected]

1. G. Bushell & R. Amal, J. Colloid Interface Sci. 205 (1998) 459-469.

2. M.L. Eggersdorfer & S.E. Pratsinis, Aerosol Sci. Technol. 46 (2012) 347-353.

3. M. Tence, J.P. Chevalier & R. Jullien, J. Phys. 47 (1986) 1989-1998.

Page 30: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Summary & Conclusions

Freitag, 18. Mai 2012 30 [email protected]

• PP Polydispersity reduces Df & Dfm and determines

agglomerate structure for large sg (> 2.5)

Page 31: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Freitag, 18. Mai 2012 31 [email protected]

Mobility dm & Primary Particle Diameter dva during Sintering

Page 32: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Freitag, 18. Mai 2012 32 [email protected]

Mobility dm & Primary Particle Diameter dva during Sintering

Page 33: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Freitag, 18. Mai 2012 33 [email protected]

1. S.C. Kim, J. Wang, M.S. Emery, W.G. Shin, G.W. Mulholland & D.Y.H. Pui, J. Aerosol Sci. 43 (2009) 344-355.

r = 10500 kg/m3

1 2 3

26

6

DDa

va m

kvd d

a v

Application to Silver Nanoparticle Sintering1

mobility size,

dm

mass, m

Determine PP diameter dva and

degree of sintering ONLINE

without TEM or sintering rate

Page 34: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Freitag, 18. Mai 2012 34 [email protected]

Comparison to Experiments1:

Sintering of Ag – Nanoparticle Aggregates

1. S.C. Kim, J. Wang, M.S. Emery, W.G. Shin, G.W. Mulholland & D.Y.H. Pui, J. Aerosol Sci. 43 (2009) 344-355.

2. C.M. Sorensen, Aerosol Sci. Technol. 45 (2011) 755-769.

Close to theoretical value of Dfm = 2.15 for DLCA2

Increase in prefactor km is indication for sinter neck formation

Monotonic increase in Dfm

A maximum in km is reached

Page 35: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Freitag, 18. Mai 2012 35 [email protected]

1. S.C. Kim, J. Wang, M.S. Emery, W.G. Shin, G.W. Mulholland & D.Y.H. Pui, J. Aerosol Sci. 43 (2009) 344-355.

20°C

200°C

600°C

Application to Experiments1:

Sintering of Ag – Nanoparticle Aggregates

Page 36: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Freitag, 18. Mai 2012 36 [email protected]

Evolution of Prefactors kn & km

fD

g

n

p p

rmk

m r

fmD

mm

p p

rmk

m r

Both kn and km reach a maximum

km = 1

kn = (5/3)3/2 = 2.15

Asymptotic values

Page 37: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Freitag, 18. Mai 2012 37 [email protected]

1. S.C. Kim, J. Wang, M.S. Emery, W.G. Shin, G.W. Mulholland & D.Y.H. Pui, J. Aerosol Sci. 43 (2009) 344-355.

2. C.M. Sorensen, Aerosol Sci. Technol. 45 (2011) 755-769.

Comparison to Experiments1:

Sintering of Ag – Nanoparticle Aggregates

Monotonic increase in Dfm

A maximum in km is reached

Increase in prefactor km is indication for sinter neck formation

Close to theoretical value of Dfm = 2.15 for DLCA2

Page 38: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Summary and Conclusions I

Freitag, 18. Mai 2012 38 [email protected]

1. We propose a formula to calculate dva for nanoparticle agglomerates/aggregates/spheres.

1. M.L. Eggersdorfer, D. Kadau, H.J. Herrmann & S.E. Pratsinis, Langmuir 27 (2011) 6358-6367.

1 2 3

26

6

DDa

va m

kvd d

a v

2. Viscous flow1 and grain boundary diffusion sintering simulations show that

is valid during sintering → D & ka.

D

ava a

va

an k

a

Page 39: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Freitag, 18. Mai 2012 39 [email protected]

Summary and Conclusions II

3. dva & nva can be determined by realtime mass-mobility (e.g. DMA-APM) measurements using D & ka from simulations.

4. Good agreement between dva and dTEM is found.

5. The extent of sintering is best described by mass-mobility exponent Dfm (monotonic increase).

6. Increase in prefactor km is an indication for sinter neck formation.

Page 40: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Freitag, 18. Mai 2012 40

A. Camenzind, H. Schulz, A. Teleki, G. Beaucage, T. Narayanan & S.E. Pratsinis, Eur. J. Inorg. Chem. (2008) 911-918.

[email protected]

Page 41: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Freitag, 18. Mai 2012 41 [email protected]

M.L. Eggersdorfer, S.E. Pratsinis, Aerosol Sci. Technol., accepted.

Evolution of Prefactor kn and km during Sintering

fD

g

n

p p

rmk

m r

fmD

mm

p p

rmk

m r

Page 42: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Simulation Method: Multi-Particle Sintering

Freitag, 18. Mai 2012 42

• Color: particle size based on curvature

• Vorlume1 software to calculate particle

volume, surface and neck area.

1. F. Cazals, H. Kanhere & S. Loriot, INRIA Tech Report No. 7013 (2009).

2. J.P. Ryckaert, G. Ciccotti & H.J.C. Berendsen, J. Comp. Phys. 23 (1977) 327-341.

• SHAKE2 algorithm to fulfill constraints for

particle distances.

• Simulate viscous sintering of aggregates:

• N = 2 – 512 primary particles

• Average over 50 aggregates of each

size (irregular structures)

[email protected]

Page 43: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Freitag, 18. Mai 2012 43 [email protected]

Effect of Primary Particle Polydispersity on Df and kn

M.L. Eggersdorfer, S.E. Pratsinis, Aerosol Sci. Technol., accepted.

Page 44: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Freitag, 18. Mai 2012 44 [email protected]

Effect of Primary Particle Polydispersity on D and ka

M.L. Eggersdorfer, S.E. Pratsinis, Aerosol Sci. Technol., accepted.

Page 45: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Freitag, 18. Mai 2012 45 [email protected]

Goal: Online Characterization of Nanoparticle Morphology

1. P. Meakin, Adv. Colloid Interface Sci. 28 (1988) 249-331.

2. S.N. Rogak, R.C. Flagan & H.V. Nguyen, Aerosol Sci. Technol. 18 (1993) 25-47.

Mobility size1,2 dm: dm,1 = dm,2 = dm,3

Mass m: m1 > m2 > m3

Surface area a: a1 < a2 < a3

The measurement of only one property, e.g. dm,

is not sufficient to characterize aggregate/

agglomerate structure

→ e.g. DMA

→ e.g. APM

→ e.g. UNPA

Page 46: Dynamics of Fractal-like Aerosols during Sintering ... · Mai 2012 meggers@ptl.mavt.ethz.ch 14 a a: projected area 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. D

Freitag, 18. Mai 2012 46 [email protected]

agglomerate:

physically bonded

aggregate:

chemically or sinter-bonded

Nomenclature

S.C. Kim, J. Wang, M.S. Emery, W.G. Shin, G.W. Mulholland

& D.Y.H. Pui, J. Aerosol Sci. 43 (2009) 344-355.

ZrO2 agglomerate generated by FSP @ PTL, ETH Zürich