dynamical simulations of virus wrapping and budding

14
Dynamical simulations of virus wrapping and budding T. Ruiz-Herrero 1 , M. F. Hagan 2 , E. Velasco 1 1. Universidad Autónoma de Madrid, Madrid, Spain 2. Brandeis University, Waltham, MA, USA

Upload: berne

Post on 17-Jan-2016

31 views

Category:

Documents


0 download

DESCRIPTION

Dynamical simulations of virus wrapping and budding. T. Ruiz-Herrero 1 , M. F. Hagan 2 , E. Velasco 1. Universidad Autónoma de Madrid, Madrid, Spain Brandeis University, Waltham, MA, USA. INTRODUCTION. exiting the cell. Budding. acquiring membrane coating. Attachment to the cell membrane - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Dynamical simulations  of virus wrapping and budding

Dynamical simulations of virus wrapping and budding

T. Ruiz-Herrero1, M. F. Hagan2, E. Velasco1

1. Universidad Autónoma de Madrid, Madrid, Spain2. Brandeis University, Waltham, MA, USA

Page 2: Dynamical simulations  of virus wrapping and budding

INTRODUCTION

Budding

exiting the cell

acquiring membrane coating

Attachment to the cell membraneWrappingFusion of the final neck

Budding steps

T. RUIZ-HERRERO 1/13

Page 3: Dynamical simulations  of virus wrapping and budding

COARSE GRAINING

polar head Hydrophilic tail

T. RUIZ-HERRERO 2/13

Page 4: Dynamical simulations  of virus wrapping and budding

MEMBRANE MODEL:cooke model

Vrep

Vbond

Vbend

Vatrr

[Cooke et al, Phys. Rev. E, 72 (2205)]

T. RUIZ-HERRERO 3/13

Page 5: Dynamical simulations  of virus wrapping and budding

MEMBRANE MODEL CHARACTERISTICS

● Broad range of fluidity● Easily tunable● Good agreement with measurements: rigidity, diffusion, density

ωC

κ/ε0

ωC

A/σ2

kBT/ε0=1.1 [from Cooke et al,Phys Rev E, 72 (2205)]

Area per molecule Bending rigidity

T. RUIZ-HERRERO 4/13

Page 6: Dynamical simulations  of virus wrapping and budding

MEMBRANE PARTICLE INTERACTION AND SIMULATION CHARACTERISTICS

s=R-σ/2

Simulation characteristics: Important parameters:

• Molecular dynamics simulation R • NPT ensamble ε• Langevin thermostat kBT/ε=1.1 ωc κ,ρ• Andersen barostat P=0• Verlet algorithm

s

Membrane-particle interaction

T. RUIZ-HERRERO 5/13

Page 7: Dynamical simulations  of virus wrapping and budding

SIMULATIONS RESULTS: MAIN BEHAVIORS

WRAPPING NON-WRAPPING

T. RUIZ-HERRERO 6/13

MEMBRANE BREAKING

Page 8: Dynamical simulations  of virus wrapping and budding

SYSTEM BEHAVIOR 1: NON-WRAPPING

/0=1e3 /0=5e3

/0=1e4/0=3e4

T. RUIZ-HERRERO 7/13

Page 9: Dynamical simulations  of virus wrapping and budding

SYSTEM BEHAVIOR 2: WRAPPING

/0=5e2 /0=5e3 /0=1.5e4

/0=1.55e4 /0=1.6e4 /0=1.65e4

T. RUIZ-HERRERO 8/13

Page 10: Dynamical simulations  of virus wrapping and budding

SYSTEM BEHAVIOR 3: MEMBRANE BREAKING

/0=5.5e3 /0=6e3 /0=7e3

/=7.5e3 /0=9.5e3 /0=1e4

T. RUIZ-HERRERO 9/13

Page 11: Dynamical simulations  of virus wrapping and budding

PHASE DIAGRAMS

ε/ε0

In general, good agreement between simulations and theorySubtle dependence on bending coefficientFor small epsilons deviation from theory

/ε0

R/σ=10

R/σ

ε/ε0

/kBT=12.5

T. RUIZ-HERRERO 10/13

Page 12: Dynamical simulations  of virus wrapping and budding

ELASTIC THEORY

T. RUIZ-HERRERO 11/13

Page 13: Dynamical simulations  of virus wrapping and budding

ENERGY MAPS AND BUDDING PATHWAYS

Penetration[σ]Penetration[σ]

Penetration[σ]

θ[rad] θ[rad]

θ[rad]

ε/ε0=0.7 ε/ε0=0.9

ε/ε0=1.1

T. RUIZ-HERRERO 12/13

Page 14: Dynamical simulations  of virus wrapping and budding

BUDDING DYNAMICS: TIME SCALES AND PENETRATION

Penetration vs time

• steepness of the budding pathway ---> process speed • strenght adhesion energy ---> maximum penetration

T. RUIZ-HERRERO 13/13