dynamic causal modelling (dcm) for fmri

29
Dynamic Causal Modelling Dynamic Causal Modelling (DCM) for fMRI (DCM) for fMRI Wellcome Trust Centre for Neuroimaging University College London Andre Marreiros Andre Marreiros

Upload: clara

Post on 05-Feb-2016

80 views

Category:

Documents


0 download

DESCRIPTION

Dynamic Causal Modelling (DCM) for fMRI. Andre Marreiros. Wellcome Trust Centre for Neuroimaging University College London. Overview. Dynamic Causal Modelling of fMRI. Definitions & motivation. The neuronal model (bilinear dynamics) The Haemodynamic model. Estimation: Bayesian framework. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Dynamic Causal Modelling (DCM) for fMRI

Dynamic Causal Modelling (DCM) Dynamic Causal Modelling (DCM) for fMRIfor fMRI

Wellcome Trust Centre for NeuroimagingUniversity College London

Andre MarreirosAndre Marreiros

Page 2: Dynamic Causal Modelling (DCM) for fMRI

Overview

Dynamic Causal Modelling of fMRI

Definitions & motivation

The neuronal model (bilinear dynamics)

The Haemodynamic model

Estimation: Bayesian framework

DCM latest Extensions

Page 3: Dynamic Causal Modelling (DCM) for fMRI

Principles of organisation

Functional specialization Functional integration

Page 4: Dynamic Causal Modelling (DCM) for fMRI

Conceptual overview

BOLDy

y

y

Inputu(t)

activityz2(t)

activityz1(t)

activityz3(t)

c1 b23

a12

neuronalstates

Page 5: Dynamic Causal Modelling (DCM) for fMRI

Use differential equations to represent a neuronal system

)(

)()(

1

tz

tztz

n

system represented by state variables

• State vector – Changes with time

),,...(

),,...(

1

1111

nnn

n

n uzzf

uzzf

z

z

• Rate of change of state vector– Interactions between elements– External inputs, u

( , , )z f z u • System parameters

Page 6: Dynamic Causal Modelling (DCM) for fMRI

DCM parameters = rate constants

11

dz szdt

Decay function:

Half-life:

Generic solution to the ODEs in DCM:

ln 2 /s -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

0.2

0.4

0.6

0.8

1

10.5 (0)z

1 1( ) (0)exp( )z t z at

1 1

1

( ) 0.5 (0)(0)exp( )

z zz s

1 1 1( ) (0)exp( ), (0) 1z t z st z

Page 7: Dynamic Causal Modelling (DCM) for fMRI

Linear dynamics: 2 nodes

1 1

2 21 1 2

1

2

1

2 21

21

(0) 1(0) 0

( ) exp( )( ) exp( )

0

z szz s a z z

zz

z t stz t sa t st

a

1;4 21 as

2;4 21 as

1;8 21 as

z2

21a

z1

s

s

z1 sa21t z2

Page 8: Dynamic Causal Modelling (DCM) for fMRI

Neurodynamics: 2 nodes with input

u2

u1

z1

z2

activity in z2 is coupled to z1 via coefficient a21

u1

21a

001

01211

2

1

212

1

au

czz

as

zz

z1

z2

Page 9: Dynamic Causal Modelling (DCM) for fMRI

Neurodynamics: positive modulation

000

001

01 2211

2

1221

22

1

212

1

bu

czz

bu

zz

as

zz

u2

u1

z1

z2

modulatory input u2 activity through the coupling a21

u1

u2

index, not squared

z1

z2

Page 10: Dynamic Causal Modelling (DCM) for fMRI

Neurodynamics: reciprocal connections

0,,00

001

1 22121121

2

1221

22

1

21

12

2

1

baau

czz

bu

zz

aa

szz

u2

u1

z1

z2

reciprocal connectiondisclosed by u2

u1

u2 z1

z2

Page 11: Dynamic Causal Modelling (DCM) for fMRI

0 20 40 60

024

0 20 40 60

024

seconds

Haemodynamics: reciprocal connections

blue: neuronal activityred: bold response

h1

h2

u1

u2 z1

z2

h(u,θ) represents the BOLD response (balloon model) to input

BOLD

(without noise)

BOLD

(without noise)

Page 12: Dynamic Causal Modelling (DCM) for fMRI

0 20 40 60

024

0 20 40 60

024

seconds

Haemodynamics: reciprocal connections

BOLD

with

Noise added

BOLD

with

Noise added

y1

y2

blue: neuronal activityred: bold response

u1

u2 z1

z2

euhy ),( y represents simulated observation of BOLD response, i.e. includes noise

Page 13: Dynamic Causal Modelling (DCM) for fMRI

Bilinear state equation in DCM for fMRI

state changes connectivity external

inputsstate vector

direct inputs

CuzBuAzm

j

jj

)(1

mnmn

m

n

m

j jnn

jn

jn

j

j

nnn

n

n u

u

cc

cc

z

z

bb

bbu

aa

aa

z

z

1

1

1111

11

111

1

1111

modulation ofconnectivity

n regions m drv inputsm mod inputs

Page 14: Dynamic Causal Modelling (DCM) for fMRI

The haemodynamic “Balloon” model

sf

tionflow induc

q/vvf,Efqτ /α

dHbchanges in1)( /αvfvτ

volumechanges in1

)1( fγszsry signalvasodilato

( )neuronal input

z t

,)( signal BOLD

qvty

5 haemodynamic parameters: , , , ,h

Page 15: Dynamic Causal Modelling (DCM) for fMRI

BOLDy

y

y

haemodynamicmodel

Inputu(t)

activityz2(t)

activityz1(t)

activityz3(t)

effective connectivity

direct inputs

modulation ofconnectivity

The bilinear model CuzBuAz jj )(

c1 b23

a12

neuronalstates

λ

z

y

integration

Neuronal state equation ),,( nuzFz Conceptual overview

Friston et al. 2003,NeuroImage

uz

uFC

zz

uuzFB

zz

zFA

jj

j

2

Page 16: Dynamic Causal Modelling (DCM) for fMRI

fMRI data

Posterior densities of parameters

Neuronal dynamics Haemodynamics

Model comparison

DCM roadmap

Model inversion using

Expectation-maximization

State space Model

Priors

Page 17: Dynamic Causal Modelling (DCM) for fMRI

Constraints on•Haemodynamic parameters

•Connections

Models of•Haemodynamics in a single region

•Neuronal interactions

Bayesian estimation

)(p

)()|()|( pypyp

)|( yp

posterior

priorlikelihood term

Estimation: Bayesian framework

Page 18: Dynamic Causal Modelling (DCM) for fMRI

sf (rCBF)induction -flow

s

v

f

stimulus function u

modeled BOLD response

vq q/vvf,Efqτ /α1)(

dHbin changes

/αvfvτ 1

in volume changes

f

q

)1(signalry vasodilatodependent -activity

fγszs

s

( , , )h x u ( , , )y h x u X e

observation model

hidden states},,,,{ qvfszx

state equation( , , )x F x u

parameters

},{

},...,{

},,,,{1

nh

mn

h

CBBA

Overview:parameter estimation

ηθ|y

neuronal stateequation CuzBuAz j

j )(

• Specify model (neuronal and haemodynamic level)

• Make it an observation model by adding measurement error e and confounds X (e.g. drift).

• Bayesian parameter estimation using expectation-maximization.

• Result:(Normal) posterior parameter distributions, given by mean ηθ|y and Covariance Cθ|y.

Page 19: Dynamic Causal Modelling (DCM) for fMRI

0 20 40 60-10123

0 20 40 60-10123

seconds

Forward coupling, a21

21a

Input coupling, c1

1c

Prior density Posterior density true values

Parameter estimation: an example

u1

21a

z1

z2

Simulated response

Page 20: Dynamic Causal Modelling (DCM) for fMRI

Inference about DCM parameters:single-subject analysis

• Bayesian parameter estimation in DCM: Gaussian assumptions about the posterior distributions of the parameters

• Quantify the probability that a parameter (or contrast of parameters cT ηθ|y) is above a chosen threshold γ:

ηθ|y

Page 21: Dynamic Causal Modelling (DCM) for fMRI

Model comparison and selection

Given competing hypotheses, which model is the best?

Pitt & Miyung (2002), TICS

)()()|(logmcomplexity

maccuracymyp

)|()|(jmypimypBij

Page 22: Dynamic Causal Modelling (DCM) for fMRI

V1

V5

SPCPhotic

Motion

Time [s]

Attention

We used this model to assess the site of attention modulation during visual motion processing in an fMRI paradigm reported by Büchel & Friston.

Friston et al. 2003,NeuroImage

Attention to motion in the visual system

- fixation only- observe static dots+ photic V1- observe moving dots + motion V5- task on moving dots + attention V5 + parietal cortex

?

Page 23: Dynamic Causal Modelling (DCM) for fMRI

V1

V5

SPC

Motion

Photic

Attention

0.85

0.57 -0.02

1.360.70

0.84

0.23

Model 1:attentional modulationof V1→V5

V1

V5

SPC

Motion

Photic Attention0.86

0.56 -0.02

1.42

0.550.75

0.89

Model 2:attentional modulationof SPC→V5

Comparison of two simple models

Bayesian model selection: Model 1 better than model 2

→ Decision for model 1: in this experiment, attention

primarily modulates V1→V5

1 2log ( | ) log ( | )p y m p y m

Page 24: Dynamic Causal Modelling (DCM) for fMRI

• potential timing problem in DCM:temporal shift between regional time series because of multi-slice acqisition

• Solution:– Modelling of (known) slice timing of each area.

1

2

slic

e ac

quis

ition

visualinput

Extension I: Slice timing model

Slice timing extension now allows for any slice timing differences!

Long TRs (> 2 sec) no longer a limitation.

(Kiebel et al., 2007)

Page 25: Dynamic Causal Modelling (DCM) for fMRI

)(tu

ijij uBA

input

Single-state DCM

1x

Intrinsic (within-region) coupling

Extrinsic (between-region) coupling

NNNN

N

x

xtx

AA

AAA

CuxuBAtx

1

1

111

)(

)(

Two-state DCM

Ex1

)exp( ijij uBA

Ix1

11 11exp( )IE IEA uBIEx ,1

CuzBuAzz jj

Extension II: Two-state model

IN

EN

I

E

AA

AAA

AA

AAA

u

xx

xx

tx

eeeee

eeeee

A

CuxABtx

IINN

IENN

EINN

EENNN

IIIE

NEIEE

1

1

)(

000

000

)(

1

1111

11111

Page 26: Dynamic Causal Modelling (DCM) for fMRI

SPCSPC

SPCSPCVSPC

VV

SPCVVVVV

VV

VVVV

IIIEEIEEEE

IIIEEEEIEEEE

IIIEEEEIEE

A

0000000

0000000000000

5

55

55515

11

5111

Attention

SPCSPC

SPCSPCVSPC

VV

SPCVVVVV

VV

VVVV

IIIEEIEEEE

IIIEEEEIEEEE

IIIEEEEIEE

A

0000000

0000000000000

5

55

55515

11

5111

Attention

SPCSPC

SPCSPCVSPC

VV

SPCVVVVV

VV

VVVV

IIIEEIEEEE

IIIEEEEIEEEE

IIIEEEEIEE

A

0000000

0000000000000

5

55

55515

11

5111

Attention

DCM for Büchel & Friston

- FWD

- Intr

- BCW

b

Exam

ple:

Tw

o-st

ate

Mod

el

Com

pari

son

Page 27: Dynamic Causal Modelling (DCM) for fMRI

bilinear DCM

CuxDxBuAdtdx m

i

n

j

jj

ii

1 1

)()(CuxBuAdtdx m

i

ii

1

)(

Bilinear state equation

u1

u2

nonlinear DCM

Nonlinear state equation

u2

u1

Here DCM can model activity-dependent changes in connectivity; how connections are enabled or gated by activity in one or more areas.

Extension III: Nonlinear DCM for fMRI

Page 28: Dynamic Causal Modelling (DCM) for fMRI

Extension III: Nonlinear DCM for fMRI

.

The posterior density of indicates that this gating existed with 97.4% confidence.

(The D matrix encodes which of the n neural units gate which connections in the system)

)(1,5

SPCVVD

Can V5 activity during attention to motion be explained by allowing activity in SPC to modulate the V1-to-V5 connection?

V1 V5

SPC

visualstimulation

attention

0.03(100%)

motion

0.04(100%)

1.65(100%)

0.19(100%)

0.01(97.4%)

Page 29: Dynamic Causal Modelling (DCM) for fMRI

Conclusions

Dynamic Causal Modelling (DCM) of fMRI is mechanistic model that is informed by anatomical and physiological principles.

DCM is not model or modality specific (Models will change and the method extended to other modalities e.g. ERPs)

DCM uses a deterministic differential equation to model neuro-dynamics (represented by matrices A,B and C)

DCM uses a Bayesian framework to estimate model parameters

DCM provides an observation model for neuroimaging data, e.g. fMRI, M/EEG