dtmc basic

Upload: harsh-arya

Post on 21-Feb-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/24/2019 Dtmc Basic

    1/185

    Discrete Time Markov Chains, Definition

    and classification

    Bo Friis Nielsen1

    1Applied Mathematics and Computer Science

    02407 Stochastic Processes 1, September 1 2015

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

  • 7/24/2019 Dtmc Basic

    2/185

    Discrete time Markov chains

    Today:

    Short recap of probability theory

    Markov chain introduction (Markov property) Chapmann-Kolmogorov equations

    First step analysis

    Next week

    Random walks First step analysis revisited

    Branching processes

    Generating functions

    Two weeks from now Classification of states

    Classification of chains

    Discrete time Markov chains - invariant probability

    distributionBo Friis Nielsen Discrete Time Markov Chains, Definition and classification

  • 7/24/2019 Dtmc Basic

    3/185

    Basic concepts in probability

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

  • 7/24/2019 Dtmc Basic

    4/185

    Basic concepts in probability

    Sample space

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

  • 7/24/2019 Dtmc Basic

    5/185

    Basic concepts in probability

    Sample space

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

  • 7/24/2019 Dtmc Basic

    6/185

    Basic concepts in probability

    Sample space set of all possible outcomesOutcome

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

  • 7/24/2019 Dtmc Basic

    7/185

    Basic concepts in probability

    Sample space set of all possible outcomesOutcome

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    B i i b bili

  • 7/24/2019 Dtmc Basic

    8/185

    Basic concepts in probability

    Sample space set of all possible outcomesOutcome Event

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    B i t i b bilit

  • 7/24/2019 Dtmc Basic

    9/185

    Basic concepts in probability

    Sample space set of all possible outcomesOutcome Event A, B

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    B i t i b bilit

  • 7/24/2019 Dtmc Basic

    10/185

    Basic concepts in probability

    Sample space set of all possible outcomesOutcome Event A, B

    Complementary event

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Basic concepts in probabilit

  • 7/24/2019 Dtmc Basic

    11/185

    Basic concepts in probability

    Sample space set of all possible outcomesOutcome Event A, B

    Complementary event Ac =

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Basic concepts in probability

  • 7/24/2019 Dtmc Basic

    12/185

    Basic concepts in probability

    Sample space set of all possible outcomesOutcome Event A, B

    Complementary event Ac = \A

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Basic concepts in probability

  • 7/24/2019 Dtmc Basic

    13/185

    Basic concepts in probability

    Sample space set of all possible outcomesOutcome Event A, B

    Complementary event Ac = \A

    Union

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Basic concepts in probability

  • 7/24/2019 Dtmc Basic

    14/185

    Basic concepts in probability

    Sample space set of all possible outcomesOutcome Event A, B

    Complementary event Ac = \A

    Union A B

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Basic concepts in probability

  • 7/24/2019 Dtmc Basic

    15/185

    Basic concepts in probability

    Sample space set of all possible outcomesOutcome Event A, B

    Complementary event Ac = \A

    Union A B outcome in at least one ofAor B

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Basic concepts in probability

  • 7/24/2019 Dtmc Basic

    16/185

    Basic concepts in probability

    Sample space set of all possible outcomesOutcome Event A, B

    Complementary event Ac = \A

    Union A B outcome in at least one ofAor B

    Intersection

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Basic concepts in probability

  • 7/24/2019 Dtmc Basic

    17/185

    Basic concepts in probability

    Sample space set of all possible outcomesOutcome Event A, B

    Complementary event Ac = \A

    Union A B outcome in at least one ofAor B

    Intersection A B

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Basic concepts in probability

  • 7/24/2019 Dtmc Basic

    18/185

    Basic concepts in probability

    Sample space set of all possible outcomesOutcome Event A, B

    Complementary event Ac = \A

    Union A B outcome in at least one ofAor B

    Intersection A B Outcome is inbothA and B

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Basic concepts in probability

  • 7/24/2019 Dtmc Basic

    19/185

    Basic concepts in probability

    Sample space set of all possible outcomesOutcome Event A, B

    Complementary event Ac = \A

    Union A B outcome in at least one ofAor B

    Intersection A B Outcome is inbothA and B

    (Empty) or impossible event

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Basic concepts in probability

  • 7/24/2019 Dtmc Basic

    20/185

    Basic concepts in probability

    Sample space set of all possible outcomesOutcome Event A, B

    Complementary event Ac = \A

    Union A B outcome in at least one ofAor B

    Intersection A B Outcome is inbothA and B

    (Empty) or impossible event

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Probability axioms and first results

  • 7/24/2019 Dtmc Basic

    21/185

    Probability axioms and first results

    0 P(A) 1, P() =1

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Probability axioms and first results

  • 7/24/2019 Dtmc Basic

    22/185

    Probability axioms and first results

    0 P(A) 1, P() =1

    P(A B) = P(A) + P(B) forA B=

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Probability axioms and first results

  • 7/24/2019 Dtmc Basic

    23/185

    y

    0 P(A) 1, P() =1

    P(A B) = P(A) + P(B) forA B=

    Leading to

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Probability axioms and first results

  • 7/24/2019 Dtmc Basic

    24/185

    y

    0 P(A) 1, P() =1

    P(A B) = P(A) + P(B) forA B=

    Leading toP() =0, P(Ac) =1 P(A)

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Probability axioms and first results

  • 7/24/2019 Dtmc Basic

    25/185

    y

    0 P(A) 1, P() =1

    P(A B) = P(A) + P(B) forA B=

    Leading toP() =0, P(Ac) =1 P(A)

    P(A B) = P(A) + P(B) P(A B)

    (inclusion- exlusion)

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Conditional probability and independence

  • 7/24/2019 Dtmc Basic

    26/185

    p y p

    P(A|B) = P(A B)P(B)

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Conditional probability and independence

  • 7/24/2019 Dtmc Basic

    27/185

    p y p

    P(A|B) = P(A B)P(B)

    P(A B) = P(A|B)P(B)

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Conditional probability and independence

  • 7/24/2019 Dtmc Basic

    28/185

    p y p

    P(A|B) = P(A B)P(B)

    P(A B) = P(A|B)P(B)

    (multiplication rule)

    iBi=

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Conditional probability and independence

  • 7/24/2019 Dtmc Basic

    29/185

    P(A|B) = P(A B)P(B)

    P(A B) = P(A|B)P(B)

    (multiplication rule)

    iBi= Bi Bj= i=j

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Conditional probability and independence

  • 7/24/2019 Dtmc Basic

    30/185

    P(A|B) =P

    (A B)P(B)

    P(A B) = P(A|B)P(B)

    (multiplication rule)

    iBi= Bi Bj= i=j

    P(A) =

    i

    P(A|Bi)P(Bi) (law of total probability)

    Independence:

    P(A|B) = P(A|Bc) = P(A)

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Conditional probability and independence

  • 7/24/2019 Dtmc Basic

    31/185

    P(A|B) =P

    (A B)P(B)

    P(A B) = P(A|B)P(B)

    (multiplication rule)

    iBi= Bi Bj= i=j

    P(A) =

    i

    P(A|Bi)P(Bi) (law of total probability)

    Independence:

    P(A|B) = P(A|Bc) = P(A) P(A B) = P(A)P(B)

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Discrete random variables

  • 7/24/2019 Dtmc Basic

    32/185

    Mapping from sample space to metric space

    (Read: Real space)

    Probability mass function

    f(x) = P(X=x) = P ({|X() =x})

    Distribution function

    F(x) = P(Xx) = P ({|X() x}) =tx

    f(t)

    Expectation

    E(X) =

    x

    xP(X=x), E(g(X)) =

    x

    g(x)P(X=x) =

    x

    g(x)f(x)

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Joint distribution

  • 7/24/2019 Dtmc Basic

    33/185

    f(x1, x2) = P(X1=x1, X2=x2), F(x1, x2) = P(X1x1, X2 x2)

    fX1

    (x1) = P(X1=x1) = x2

    P(X1=x1, X2=x2) = x2

    f(x1, x2)

    FX1 (x1) =

    tx1,x2

    P(X1=t1, X2=x2) =F(x1,)

    Straightforward to extend tonvariables

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

  • 7/24/2019 Dtmc Basic

    34/185

    We can define the joint distribution of (X0, X1)through

    P(X0=x0, X1 =x1) = P(X0 =x0)P(X1=x1|X0 =x0) = P(X0=x0)Px0,x1

    Suppose now some stationarity in addition that X2 conditioned

    onX1 is independent onX0

    P(X0 =x0, X1 =x1, X2=x2) =P(X0=x0)P(X1=x1|X0=x0)P(X2=x2|X0 =x0, X1=x1) =

    P(X0=x0)P(X1=x1|X0=x0)P(X2=x2|X1=x1) =

    px0 Px0,x1 Px1,x2

    which generalizes to arbitraryn.

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Markov property

  • 7/24/2019 Dtmc Basic

    35/185

    P (Xn=xn|H)

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Markov property

  • 7/24/2019 Dtmc Basic

    36/185

    P (Xn=xn|H)

    = P (Xn=xn|X0=x0, X1=x1, X2=x2, . . . Xn1=xn1)

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Markov property

  • 7/24/2019 Dtmc Basic

    37/185

    P (Xn=xn|H)

    = P (Xn=xn|X0=x0, X1=x1, X2=x2, . . . Xn1=xn1)

    = P (Xn=xn|Xn1=xn1)

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Markov property

  • 7/24/2019 Dtmc Basic

    38/185

    P (Xn=xn|H)

    = P (Xn=xn|X0=x0, X1=x1, X2=x2, . . . Xn1=xn1)

    = P (Xn=xn|Xn1=xn1) Generally the next state depends on the current state and

    the time

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Markov property

  • 7/24/2019 Dtmc Basic

    39/185

    P (Xn=xn|H)

    = P (Xn=xn|X0=x0, X1=x1, X2=x2, . . . Xn1=xn1)

    = P (Xn=xn|Xn1=xn1) Generally the next state depends on the current state and

    the time

    In most applications the chain is assumed to be time

    homogeneous, i.e. it does not depend on time

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Markov property(X |H)

  • 7/24/2019 Dtmc Basic

    40/185

    P (Xn=xn|H)

    = P (Xn=xn|X0=x0, X1=x1, X2=x2, . . . Xn1=xn1)

    = P (Xn=xn|Xn1=xn1) Generally the next state depends on the current state and

    the time

    In most applications the chain is assumed to be time

    homogeneous, i.e. it does not depend on time The only parameters needed are

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Markov propertyP (X |H)

  • 7/24/2019 Dtmc Basic

    41/185

    P (Xn=xn|H)

    = P (Xn=xn|X0=x0, X1=x1, X2=x2, . . . Xn1=xn1)

    = P (Xn=xn|Xn1=xn1) Generally the next state depends on the current state and

    the time

    In most applications the chain is assumed to be time

    homogeneous, i.e. it does not depend on time The only parameters needed are P (Xn=j|Xn1 =i)

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Markov propertyP (X |H)

  • 7/24/2019 Dtmc Basic

    42/185

    P (Xn=xn|H)

    = P (Xn=xn|X0=x0, X1=x1, X2=x2, . . . Xn1=xn1)

    = P (Xn=xn|Xn1=xn1) Generally the next state depends on the current state and

    the time

    In most applications the chain is assumed to be time

    homogeneous, i.e. it does not depend on time The only parameters needed are P (Xn=j|Xn1 =i) =pij

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Markov propertyP (X |H)

  • 7/24/2019 Dtmc Basic

    43/185

    P (Xn=xn|H)

    = P (Xn=xn|X0=x0, X1=x1, X2=x2, . . . Xn1=xn1)

    = P (Xn=xn|Xn1=xn1) Generally the next state depends on the current state and

    the time

    In most applications the chain is assumed to be time

    homogeneous, i.e. it does not depend on time The only parameters needed are P (Xn=j|Xn1 =i) =pij We collect these parameters in a matrix

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Markov propertyP (X x |H)

  • 7/24/2019 Dtmc Basic

    44/185

    P (Xn=xn|H)

    = P (Xn=xn|X0=x0, X1=x1, X2=x2, . . . Xn1=xn1)

    = P (Xn=xn|Xn1=xn1) Generally the next state depends on the current state and

    the time

    In most applications the chain is assumed to be time

    homogeneous, i.e. it does not depend on time The only parameters needed are P (Xn=j|Xn1 =i) =pij We collect these parameters in a matrix P={pij}

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Markov propertyP (X x |H)

  • 7/24/2019 Dtmc Basic

    45/185

    P (Xn=xn|H)

    = P (Xn=xn|X0=x0, X1=x1, X2=x2, . . . Xn1=xn1)

    = P (Xn=xn|Xn1=xn1) Generally the next state depends on the current state and

    the time

    In most applications the chain is assumed to be time

    homogeneous, i.e. it does not depend on time The only parameters needed are P (Xn=j|Xn1 =i) =pij We collect these parameters in a matrix P={pij}

    The joint probability of the first noccurrences is

    P(X0 =x0, X1 =x1, X2=x2. . . , Xn=xn) =px0 Px0,x1 Px1,x2. . . Pxn1,xn

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    A profuse number of applications

  • 7/24/2019 Dtmc Basic

    46/185

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    A profuse number of applications

  • 7/24/2019 Dtmc Basic

    47/185

    Storage/inventory models

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    A profuse number of applications

  • 7/24/2019 Dtmc Basic

    48/185

    Storage/inventory models Telecommunications systems

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    A profuse number of applications

  • 7/24/2019 Dtmc Basic

    49/185

    Storage/inventory models Telecommunications systems

    Biological models

    Xnthe value attained at time n

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    A profuse number of applications

  • 7/24/2019 Dtmc Basic

    50/185

    Storage/inventory models Telecommunications systems

    Biological models

    Xnthe value attained at time n Xncould be

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    A profuse number of applications

  • 7/24/2019 Dtmc Basic

    51/185

    Storage/inventory models Telecommunications systems

    Biological models

    Xnthe value attained at time n Xncould be

    The number of cars in stock

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    A profuse number of applications

  • 7/24/2019 Dtmc Basic

    52/185

    Storage/inventory models Telecommunications systems

    Biological models

    Xnthe value attained at time n Xncould be

    The number of cars in stock The number of days since last rainfall

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    A profuse number of applications

  • 7/24/2019 Dtmc Basic

    53/185

    Storage/inventory models Telecommunications systems

    Biological models

    Xnthe value attained at time n Xncould be

    The number of cars in stock The number of days since last rainfall The number of passengers booked for a flight

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    A profuse number of applications

  • 7/24/2019 Dtmc Basic

    54/185

    Storage/inventory models Telecommunications systems

    Biological models

    Xnthe value attained at time n Xncould be

    The number of cars in stock The number of days since last rainfall The number of passengers booked for a flight

    See textbook for further examples

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Example 1: Random walk with tworeflecting barriers0andN

  • 7/24/2019 Dtmc Basic

    55/185

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Example 1: Random walk with tworeflecting barriers0andN

  • 7/24/2019 Dtmc Basic

    56/185

    P=

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Example 1: Random walk with tworeflecting barriers0andN

  • 7/24/2019 Dtmc Basic

    57/185

    P=

    1 p

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Example 1: Random walk with tworeflecting barriers0andN

  • 7/24/2019 Dtmc Basic

    58/185

    P=

    1 p p

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Example 1: Random walk with tworeflecting barriers0andN

  • 7/24/2019 Dtmc Basic

    59/185

    P=

    1 p p 0 . . . 0 0 0

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Example 1: Random walk with tworeflecting barriers0andN

  • 7/24/2019 Dtmc Basic

    60/185

    P=

    1 p p 0 . . . 0 0 0q

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Example 1: Random walk with tworeflecting barriers0andN

  • 7/24/2019 Dtmc Basic

    61/185

    P=

    1 p p 0 . . . 0 0 0q 1 p q

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Example 1: Random walk with tworeflecting barriers0andN

  • 7/24/2019 Dtmc Basic

    62/185

    P=

    1 p p 0 . . . 0 0 0q 1 p q p

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Example 1: Random walk with tworeflecting barriers0andN

  • 7/24/2019 Dtmc Basic

    63/185

    P=

    1 p p 0 . . . 0 0 0q 1 p q p . . . 0 0 0

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Example 1: Random walk with tworeflecting barriers0andN

  • 7/24/2019 Dtmc Basic

    64/185

    P=

    1 p p 0 . . . 0 0 0q 1 p q p . . . 0 0 0

    0 q 1 p q . . . 0 0 0...

    ... ...

    ... ...

    ... ...

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Example 1: Random walk with tworeflecting barriers0andN

  • 7/24/2019 Dtmc Basic

    65/185

    P=

    1 p p 0 . . . 0 0 0q 1 p q p . . . 0 0 0

    0 q 1 p q . . . 0 0 0... ...

    ... ...

    ... ...

    ...

    0 0 0 . . .

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Example 1: Random walk with tworeflecting barriers0andN

  • 7/24/2019 Dtmc Basic

    66/185

    P=

    1 p p 0 . . . 0 0 0q 1 p q p . . . 0 0 0

    0 q 1 p q . . . 0 0 0... ...

    ... ...

    ... ...

    ...

    0 0 0 . . . q 1 p q p

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Example 1: Random walk with tworeflecting barriers0andN

  • 7/24/2019 Dtmc Basic

    67/185

    P=

    1 p p 0 . . . 0 0 0q 1 p q p . . . 0 0 0

    0 q 1 p q . . . 0 0 0... ...

    ... ...

    ... ...

    ...

    0 0 0 . . . q 1 p q p0 0 0 . . . 0

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Example 1: Random walk with tworeflecting barriers0andN

  • 7/24/2019 Dtmc Basic

    68/185

    P=

    1 p p 0 . . . 0 0 0q 1 p q p . . . 0 0 0

    0 q 1 p q . . . 0 0 0... ...

    ... ...

    ... ...

    ...

    0 0 0 . . . q 1 p q p0 0 0 . . . 0 q

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Example 1: Random walk with tworeflecting barriers0andN

  • 7/24/2019 Dtmc Basic

    69/185

    P=

    1 p p 0 . . . 0 0 0q 1 p q p . . . 0 0 0

    0 q 1 p q . . . 0 0 0... ...

    ... ...

    ... ...

    ...

    0 0 0 . . . q 1 p q p0 0 0 . . . 0 q 1 q

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Example 2: Random walk with onereflecting barrier at0

  • 7/24/2019 Dtmc Basic

    70/185

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Example 2: Random walk with onereflecting barrier at0

  • 7/24/2019 Dtmc Basic

    71/185

    P=

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Example 2: Random walk with onereflecting barrier at0

  • 7/24/2019 Dtmc Basic

    72/185

    P=

    1 p p 0 0 0 . . .

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Example 2: Random walk with onereflecting barrier at0

  • 7/24/2019 Dtmc Basic

    73/185

    P=

    1 p p 0 0 0 . . .q 1 p q p 0 0 . . .

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Example 2: Random walk with onereflecting barrier at0

  • 7/24/2019 Dtmc Basic

    74/185

    P=

    1 p p 0 0 0 . . .q 1 p q p 0 0 . . .

    0 q 1 p q p 0 . . .0 0 q 1 p q p . . .

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Example 2: Random walk with onereflecting barrier at0

  • 7/24/2019 Dtmc Basic

    75/185

    P=

    1 p p 0 0 0 . . .q 1 p q p 0 0 . . .

    0 q 1 p q p 0 . . .0 0 q 1 p q p . . ....

    ... ...

    ... ... . . .

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Example 3: Random walk with twoabsorbing barriers

  • 7/24/2019 Dtmc Basic

    76/185

    P=

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Example 3: Random walk with twoabsorbing barriers

  • 7/24/2019 Dtmc Basic

    77/185

    P=

    1

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Example 3: Random walk with twoabsorbing barriers

  • 7/24/2019 Dtmc Basic

    78/185

    P=

    1 0 0 0 0 . . . 0 0 0

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Example 3: Random walk with twoabsorbing barriers

  • 7/24/2019 Dtmc Basic

    79/185

    P=

    1 0 0 0 0 . . . 0 0 0

    q 1 p q p 0 0 . . . 0 0 0

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Example 3: Random walk with twoabsorbing barriers

  • 7/24/2019 Dtmc Basic

    80/185

    P=

    1 0 0 0 0 . . . 0 0 0

    q 1 p q p 0 0 . . . 0 0 00 q 1 p q p 0 . . . 0 0 00 0 q 1 p q p . . . 0 0 0...

    ... ...

    ... ...

    ... ...

    ... ...

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Example 3: Random walk with twoabsorbing barriers

  • 7/24/2019 Dtmc Basic

    81/185

    P=

    1 0 0 0 0 . . . 0 0 0

    q 1 p q p 0 0 . . . 0 0 00 q 1 p q p 0 . . . 0 0 00 0 q 1 p q p . . . 0 0 0...

    ... ...

    ... ...

    ... ...

    ... ...

    0 0 0 0 0 . . . q 1 p q p

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Example 3: Random walk with twoabsorbing barriers

  • 7/24/2019 Dtmc Basic

    82/185

    P=

    1 0 0 0 0 . . . 0 0 0

    q 1 p q p 0 0 . . . 0 0 00 q 1 p q p 0 . . . 0 0 00 0 q 1 p q p . . . 0 0 0...

    ... ...

    ... ...

    ... ...

    ... ...

    0 0 0 0 0 . . . q 1 p q p0 0 0 0 0 . . . 0 0 1

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

  • 7/24/2019 Dtmc Basic

    83/185

    The matrix can be finite

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

  • 7/24/2019 Dtmc Basic

    84/185

    The matrix can be finite (if the Markov chain is finite)

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

  • 7/24/2019 Dtmc Basic

    85/185

    The matrix can be finite (if the Markov chain is finite)

    P=

    p1,1 p1,2 p1,3 . . . p1,np2,1 p2,2 p2,3 . . . p2,np3,1 p3,2 p3,3 . . . p3,n

    ... ...

    ... ...

    ...

    pn,1 pn,2 pn,3 . . . pn,n

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

  • 7/24/2019 Dtmc Basic

    86/185

    The matrix can be finite (if the Markov chain is finite)

    P=

    p1,1 p1,2 p1,3 . . . p1,np2,1 p2,2 p2,3 . . . p2,np3,1 p3,2 p3,3 . . . p3,n

    ... ...

    ... ...

    ...

    pn,1 pn,2 pn,3 . . . pn,n

    Two reflecting/absorbing barriers

    Bo Friis Nielsen Discrete Time Markov Chains Definition and classification

    or infinite

  • 7/24/2019 Dtmc Basic

    87/185

    or infinite

    Bo Friis Nielsen Discrete Time Markov Chains Definition and classification

    or infinite (if the Markov chain is infinite)

  • 7/24/2019 Dtmc Basic

    88/185

    or infinite (if the Markov chain is infinite)

    Bo Friis Nielsen Discrete Time Markov Chains Definition and classification

    or infinite (if the Markov chain is infinite)

  • 7/24/2019 Dtmc Basic

    89/185

    or infinite (if the Markov chain is infinite)

    P=

    p1,1 p1,2 p1,3 . . . p1,n . . .p2,1 p2,2 p2,3 . . . p2,n . . .

    p3,1 p3,2 p3,3 . . . p3,n . . ....

    ... ...

    ... ...

    ...

    pn,1 pn,2 pn,3 . . . pn,n . . ....

    ... ...

    ... ...

    ...

    Bo Friis Nielsen Discrete Time Markov Chains Definition and classification

    or infinite (if the Markov chain is infinite)

  • 7/24/2019 Dtmc Basic

    90/185

    or infinite (if the Markov chain is infinite)

    P=

    p1,1 p1,2 p1,3 . . . p1,n . . .p2,1 p2,2 p2,3 . . . p2,n . . .

    p3,1 p3,2 p3,3 . . . p3,n . . ....

    ... ...

    ... ...

    ...

    pn,1 pn,2 pn,3 . . . pn,n . . ....

    ... ...

    ... ...

    ...

    At most one barrier

    Bo Friis Nielsen Discrete Time Markov Chains Definition and classification

    The matrixPcan be interpreted as

  • 7/24/2019 Dtmc Basic

    91/185

    Bo Friis Nielsen Discrete Time Markov Chains Definition and classification

    The matrixPcan be interpreted as

  • 7/24/2019 Dtmc Basic

    92/185

    the engine that drives the process

    Bo Friis Nielsen Discrete Time Markov Chains Definition and classification

    The matrixPcan be interpreted as

  • 7/24/2019 Dtmc Basic

    93/185

    the engine that drives the process

    the statistical descriptor of the quantitative behaviour

    Bo Friis Nielsen Discrete Time Markov Chains Definition and classification

    The matrixPcan be interpreted as

  • 7/24/2019 Dtmc Basic

    94/185

    the engine that drives the process

    the statistical descriptor of the quantitative behaviour

    a collection of discrete probability distributions

    Bo Friis Nielsen Discrete Time Markov Chains Definition and classification

    The matrixPcan be interpreted as

  • 7/24/2019 Dtmc Basic

    95/185

    the engine that drives the process

    the statistical descriptor of the quantitative behaviour

    a collection of discrete probability distributions For eachiwe have a conditional distribution

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    The matrixPcan be interpreted as

  • 7/24/2019 Dtmc Basic

    96/185

    the engine that drives the process

    the statistical descriptor of the quantitative behaviour

    a collection of discrete probability distributions For eachiwe have a conditional distribution

    What is the probability of the next state being jknowing thatthe current state isi

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    The matrixPcan be interpreted as

  • 7/24/2019 Dtmc Basic

    97/185

    the engine that drives the process

    the statistical descriptor of the quantitative behaviour

    a collection of discrete probability distributions For eachiwe have a conditional distribution

    What is the probability of the next state being jknowing thatthe current state isi pij= P (Xn=j|Xn1 =i)

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    The matrixPcan be interpreted as

  • 7/24/2019 Dtmc Basic

    98/185

    the engine that drives the process

    the statistical descriptor of the quantitative behaviour

    a collection of discrete probability distributions For eachiwe have a conditional distribution

    What is the probability of the next state being jknowing thatthe current state isi pij= P (Xn=j|Xn1 =i)

    jpij=1

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    The matrixPcan be interpreted as

  • 7/24/2019 Dtmc Basic

    99/185

    the engine that drives the process

    the statistical descriptor of the quantitative behaviour

    a collection of discrete probability distributions For eachiwe have a conditional distribution

    What is the probability of the next state being jknowing thatthe current state isi pij= P (Xn=j|Xn1 =i)

    jpij=1

    We say thatPis a stochastic matrix

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    More definitions and the first properties

  • 7/24/2019 Dtmc Basic

    100/185

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    More definitions and the first properties

  • 7/24/2019 Dtmc Basic

    101/185

    We have defined rules for the behaviour from one value

    and onwards

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    More definitions and the first properties

  • 7/24/2019 Dtmc Basic

    102/185

    We have defined rules for the behaviour from one value

    and onwards

    Boundary conditions

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    More definitions and the first properties

  • 7/24/2019 Dtmc Basic

    103/185

    We have defined rules for the behaviour from one value

    and onwards

    Boundary conditions specify e.g. behaviour ofX0

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    More definitions and the first properties

  • 7/24/2019 Dtmc Basic

    104/185

    We have defined rules for the behaviour from one value

    and onwards

    Boundary conditions specify e.g. behaviour ofX0 X0 could be certain

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    More definitions and the first properties

  • 7/24/2019 Dtmc Basic

    105/185

    We have defined rules for the behaviour from one value

    and onwards

    Boundary conditions specify e.g. behaviour ofX0 X0 could be certainX0 =a

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    More definitions and the first properties

  • 7/24/2019 Dtmc Basic

    106/185

    We have defined rules for the behaviour from one value

    and onwards

    Boundary conditions specify e.g. behaviour ofX0 X0 could be certainX0 =a or random

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    More definitions and the first properties

  • 7/24/2019 Dtmc Basic

    107/185

    We have defined rules for the behaviour from one value

    and onwards

    Boundary conditions specify e.g. behaviour ofX0 X0 could be certainX0 =a or random P (X0 =i) =pi

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    More definitions and the first properties

  • 7/24/2019 Dtmc Basic

    108/185

    We have defined rules for the behaviour from one value

    and onwards

    Boundary conditions specify e.g. behaviour ofX0 X0 could be certainX0 =a or random P (X0 =i) =pi Once again we collect the possibly infinite many

    parameters in a vectorp

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    nstep transition probabilities

  • 7/24/2019 Dtmc Basic

    109/185

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    nstep transition probabilities

  • 7/24/2019 Dtmc Basic

    110/185

    P (Xn=j|X0=i)

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    nstep transition probabilities

    (n)

  • 7/24/2019 Dtmc Basic

    111/185

    P (Xn=j|X0=i) =P(n)ij

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    nstep transition probabilities

    (n)

  • 7/24/2019 Dtmc Basic

    112/185

    P (Xn=j|X0=i) =P(n)ij

    the probability of being in jat thenth transition having

    started ini

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    nstep transition probabilities

    (n)

  • 7/24/2019 Dtmc Basic

    113/185

    P (Xn=j|X0=i) =P(n)ij

    the probability of being in jat thenth transition having

    started ini

    Once again collected in a matrix

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    nstep transition probabilities

    (n)

  • 7/24/2019 Dtmc Basic

    114/185

    P (Xn=j|X0=i) =P(n)ij

    the probability of being in jat thenth transition having

    started ini

    Once again collected in a matrix P(n) ={P(n)ij }

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    nstep transition probabilities

    (n)

  • 7/24/2019 Dtmc Basic

    115/185

    P (Xn=j|X0=i) =P(n)ij

    the probability of being in jat thenth transition having

    started ini

    Once again collected in a matrix P(n) ={P(n)ij }

    The rows ofP(n) can be interpreted like the rows ofP

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    nstep transition probabilities

    (n)

  • 7/24/2019 Dtmc Basic

    116/185

    P (Xn=j|X0=i) =P(n)ij

    the probability of being in jat thenth transition having

    started ini

    Once again collected in a matrix P(n) ={P(n)ij }

    The rows ofP(n) can be interpreted like the rows ofP

    We can define a new Markov chain on a larger time scale

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    nstep transition probabilities

    (n)

  • 7/24/2019 Dtmc Basic

    117/185

    P (Xn=j|X0=i) =P( )ij

    the probability of being in jat thenth transition having

    started ini

    Once again collected in a matrix P(n) ={P(n)ij }

    The rows ofP(n) can be interpreted like the rows ofP

    We can define a new Markov chain on a larger time scale

    (Pn)

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Small example

  • 7/24/2019 Dtmc Basic

    118/185

    P=

    1 p p 0 0q 0 p 0

    0 q 0 p

    0 0 q 1 q

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Small example

  • 7/24/2019 Dtmc Basic

    119/185

    P=

    1 p p 0 0q 0 p 0

    0 q 0 p

    0 0 q 1 q

    P(2) =

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Small example

  • 7/24/2019 Dtmc Basic

    120/185

    P=

    1 p p 0 0q 0 p 0

    0 q 0 p

    0 0 q 1 q

    P(2) =

    (1 p)2

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Small example

  • 7/24/2019 Dtmc Basic

    121/185

    P=

    1 p p 0 0q 0 p 0

    0 q 0 p

    0 0 q 1 q

    P(2) =

    (1 p)2

    +pq

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Small example

  • 7/24/2019 Dtmc Basic

    122/185

    P=

    1 p p 0 0q 0 p 0

    0 q 0 p

    0 0 q 1 q

    P(2) =

    (1 p)2

    +pq (1 p)p

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Small example

  • 7/24/2019 Dtmc Basic

    123/185

    P=

    1 p p 0 0q 0 p 0

    0 q 0 p

    0 0 q 1 q

    P(2) =

    (1 p)2

    +pq (1 p)p p2

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Small example

    1 0 0

  • 7/24/2019 Dtmc Basic

    124/185

    P=

    1 p p 0 0q 0 p 0

    0 q 0 p

    0 0 q 1 q

    P(2) =

    (1 p)2

    +pq (1 p)p p2

    0

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Small example

    1 0 0

  • 7/24/2019 Dtmc Basic

    125/185

    P=

    1 p p 0 0q 0 p 0

    0 q 0 p

    0 0 q 1 q

    P(2) =

    (1 p)2

    +pq (1 p)p p2

    0q(1 p)

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Small example

    1 0 0

  • 7/24/2019 Dtmc Basic

    126/185

    P=

    1 p p 0 0q 0 p 0

    0 q 0 p

    0 0 q 1 q

    P(2) =

    (1 p)2

    +pq (1 p)p p2

    0q(1 p) 2qp

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Small example

    1 p p 0 0

  • 7/24/2019 Dtmc Basic

    127/185

    P=

    1 p p 0 0q 0 p 0

    0 q 0 p

    0 0 q 1 q

    P(2) =

    (1 p)2

    +pq (1 p)p p2

    0q(1 p) 2qp 0

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Small example

    1 p p 0 0

  • 7/24/2019 Dtmc Basic

    128/185

    P=

    1 p p 0 0q 0 p 0

    0 q 0 p

    0 0 q 1 q

    P(2) =

    (1 p)2

    +pq (1 p)p p2

    0q(1 p) 2qp 0 p2

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Small example

    1 p p 0 0

  • 7/24/2019 Dtmc Basic

    129/185

    P=

    1 p p 0 0q 0 p 0

    0 q 0 p

    0 0 q 1 q

    P(2) =

    (1 p)2

    +pq (1 p)p p2

    0q(1 p) 2qp 0 p2

    q2 0 2qp p(1 q)

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Small example

    1 p p 0 0

  • 7/24/2019 Dtmc Basic

    130/185

    P=

    1 p p 0 0q 0 p 0

    0 q 0 p

    0 0 q 1 q

    P(2) =

    (1 p)2

    +pq (1 p)p p2

    0q(1 p) 2qp 0 p2

    q2 0 2qp p(1 q)0 q2 (1 q)q (1 q)2 +qp

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Chapmann Kolmogorov equations

  • 7/24/2019 Dtmc Basic

    131/185

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Chapmann Kolmogorov equations

    There is a generalisation of the example above

  • 7/24/2019 Dtmc Basic

    132/185

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Chapmann Kolmogorov equations

    There is a generalisation of the example above

    Suppose we start in iat time 0 and wants to get to jat time

    n + m

  • 7/24/2019 Dtmc Basic

    133/185

    n+m

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Chapmann Kolmogorov equations

    There is a generalisation of the example above

    Suppose we start in iat time 0 and wants to get to jat time

    n + m

  • 7/24/2019 Dtmc Basic

    134/185

    n+m

    At some intermediate timenwe must be in some state k

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Chapmann Kolmogorov equations

    There is a generalisation of the example above

    Suppose we start in iat time 0 and wants to get to jat time

    n + m

  • 7/24/2019 Dtmc Basic

    135/185

    n+m

    At some intermediate timenwe must be in some state k

    We apply the law of total probability

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Chapmann Kolmogorov equations

    There is a generalisation of the example above

    Suppose we start in iat time 0 and wants to get to jat time

    n + m

  • 7/24/2019 Dtmc Basic

    136/185

    n+m

    At some intermediate timenwe must be in some state k

    We apply the law of total probability

    P (B) =

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Chapmann Kolmogorov equations

    There is a generalisation of the example above

    Suppose we start in iat time 0 and wants to get to jat time

    n + m

  • 7/24/2019 Dtmc Basic

    137/185

    n+m At some intermediate timenwe must be in some state k

    We apply the law of total probability

    P (B) = kP (B|Ak)

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Chapmann Kolmogorov equations

    There is a generalisation of the example above

    Suppose we start in iat time 0 and wants to get to jat time

    n + m

  • 7/24/2019 Dtmc Basic

    138/185

    n+m At some intermediate timenwe must be in some state k

    We apply the law of total probability

    P (B) = kP (B|Ak)P (Ak)P (Xn+m=j|X0 =i)

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Chapmann Kolmogorov equations

    There is a generalisation of the example above

    Suppose we start in iat time 0 and wants to get to jat time

    n+m

  • 7/24/2019 Dtmc Basic

    139/185

    + At some intermediate timenwe must be in some state k

    We apply the law of total probability

    P (B) = kP (B|Ak)P (Ak)P (Xn+m=j|X0 =i)

    = k

    P (Xn+m=j|X0 =i, Xn=k)

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Chapmann Kolmogorov equations

    There is a generalisation of the example above

    Suppose we start in iat time 0 and wants to get to jat time

    n+m

  • 7/24/2019 Dtmc Basic

    140/185

    + At some intermediate timenwe must be in some state k

    We apply the law of total probability

    P (B) = kP (B|Ak)P (Ak)P (Xn+m=j|X0 =i)

    = k

    P (Xn+m=j|X0 =i, Xn=k)P (Xn=k|X0 =i)

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    k

    P (Xn+m=j|X0 =i, Xn=k)

  • 7/24/2019 Dtmc Basic

    141/185

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    k

    P (Xn+m=j|X0 =i, Xn=k)P (Xn=k|X0 =i)

  • 7/24/2019 Dtmc Basic

    142/185

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    k

    P (Xn+m=j|X0 =i, Xn=k)P (Xn=k|X0 =i)

    by the Markov property we get

  • 7/24/2019 Dtmc Basic

    143/185

    k

    P (Xn+m=j|Xn=k)

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    k

    P (Xn+m=j|X0 =i, Xn=k)P (Xn=k|X0 =i)

    by the Markov property we get(X j|X k ) (X k |X i)

  • 7/24/2019 Dtmc Basic

    144/185

    k

    P (Xn+m=j|Xn=k)P (Xn=k|X0=i)

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    k

    P (Xn+m=j|X0 =i, Xn=k)P (Xn=k|X0 =i)

    by the Markov property we getP (X j|X k )P (X k |X i)

  • 7/24/2019 Dtmc Basic

    145/185

    k

    P (Xn+m=j|Xn=k)P (Xn=k|X0=i)

    = k

    P(m)

    kj

    P(n)

    ik

    =

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    k

    P (Xn+m=j|X0 =i, Xn=k)P (Xn=k|X0 =i)

    by the Markov property we getP (X j|X k )P (X k |X i)

  • 7/24/2019 Dtmc Basic

    146/185

    k

    P (Xn+m=j|Xn=k)P (Xn=k|X0=i)

    = k

    P(m)

    kj

    P(n)

    ik

    = k

    P(n)

    ik

    P(m)

    kj

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    k

    P (Xn+m=j|X0 =i, Xn=k)P (Xn=k|X0 =i)

    by the Markov property we getP (X j|X k )P (X k |X i)

  • 7/24/2019 Dtmc Basic

    147/185

    k

    P (Xn+m=j|Xn=k)P (Xn=k|X0=i)

    = k

    P(m)

    kj

    P(n)

    ik

    = k

    P(n)

    ik

    P(m)

    kj

    which in matrix formulation is

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    k

    P (Xn+m=j|X0 =i, Xn=k)P (Xn=k|X0 =i)

    by the Markov property we getP (X j|X k )P (X k |X i)

  • 7/24/2019 Dtmc Basic

    148/185

    k

    P (Xn+m=j|Xn=k)P (Xn=k|X0=i)

    = k

    P(m)

    kj

    P(n)

    ik

    = k

    P(n)

    ik

    P(m)

    kj

    which in matrix formulation is

    P(n+m) =P(n)P(m)

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    k

    P (Xn+m=j|X0 =i, Xn=k)P (Xn=k|X0 =i)

    by the Markov property we getP (X j|X k )P (X k |X i)

  • 7/24/2019 Dtmc Basic

    149/185

    k

    P (Xn+m=j|Xn=k)P (Xn=k|X0=i)

    = k

    P(m)

    kj

    P(n)

    ik

    = k

    P(n)

    ik

    P(m)

    kj

    which in matrix formulation is

    P(n+m) =P(n)P(m) =Pn+m

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    The probability ofXn

  • 7/24/2019 Dtmc Basic

    150/185

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    The probability ofXn

    The behaviour of the process itself - Xn

  • 7/24/2019 Dtmc Basic

    151/185

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    The probability ofXn

    The behaviour of the process itself - Xn

    The behaviour conditional onX0=iis known (P(n)ij )

  • 7/24/2019 Dtmc Basic

    152/185

    j

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    The probability ofXn

    The behaviour of the process itself - Xn

    The behaviour conditional onX0=iis known (P(n)ij )

  • 7/24/2019 Dtmc Basic

    153/185

    j

    Define P (Xn=j)

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    The probability ofXn

    The behaviour of the process itself - Xn

    The behaviour conditional onX0=iis known (P(n)ij )

  • 7/24/2019 Dtmc Basic

    154/185

    j

    Define P (Xn=j) =p(n)

    j

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    The probability ofXn

    The behaviour of the process itself - Xn

    The behaviour conditional onX0=iis known (P(n)ij )

  • 7/24/2019 Dtmc Basic

    155/185

    Define P (Xn=j) =p(n)

    j

    withp(n) ={p(n)

    j }

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    The probability ofXn

    The behaviour of the process itself - Xn

    The behaviour conditional onX0=iis known (P(n)ij )

  • 7/24/2019 Dtmc Basic

    156/185

    Define P (Xn=j) =p(n)

    j

    withp(n) ={p(n)

    j }we find

    p(n)

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    The probability ofXn

    The behaviour of the process itself - Xn

    The behaviour conditional onX0=iis known (P(n)ij )

  • 7/24/2019 Dtmc Basic

    157/185

    Define P (Xn=j) =p(n)

    j

    withp(n) ={p(n)

    j }we find

    p(n) =p

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    The probability ofXn

    The behaviour of the process itself - Xn

    The behaviour conditional onX0=iis known (P(n)ij )

  • 7/24/2019 Dtmc Basic

    158/185

    Define P (Xn=j) =p(n)

    j

    withp(n) ={p(n)

    j }we find

    p(n) =pP(n) =pPn

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Small example - revisited

    P=

    1 p p 0 0q 0 p 0

    0 q 0 p0 0 q 1 q

  • 7/24/2019 Dtmc Basic

    159/185

    q q

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Small example - revisited

    P=

    1 p p 0 0q 0 p 0

    0 q 0 p0 0 q 1 q

  • 7/24/2019 Dtmc Basic

    160/185

    withp=

    13 , 0, 0,

    23

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Small example - revisited

    P=

    1 p p 0 0q 0 p 0

    0 q 0 p0 0 q 1 q

  • 7/24/2019 Dtmc Basic

    161/185

    withp=

    13 , 0, 0,

    23

    we get

    p(1)

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Small example - revisited

    P=

    1 p p 0 0q 0 p 0

    0 q 0 p0 0 q 1 q

  • 7/24/2019 Dtmc Basic

    162/185

    withp=

    13 , 0, 0,

    23

    we get

    p(1) =

    1

    3, 0, 0,

    2

    3

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Small example - revisited

    P=

    1 p p 0 0q 0 p 0

    0 q 0 p0 0 q 1 q

  • 7/24/2019 Dtmc Basic

    163/185

    withp=

    13 , 0, 0,

    23

    we get

    p(1) =

    1

    3, 0, 0,

    2

    3

    1 p p 0 0q 0 p 00 q 0 p

    0 0 q 1 q

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Small example - revisited

    P=

    1 p p 0 0q 0 p 0

    0 q 0 p0 0 q 1 q

  • 7/24/2019 Dtmc Basic

    164/185

    withp=

    13 , 0, 0,

    23

    we get

    p(1) =

    1

    3, 0, 0,

    2

    3

    1 p p 0 0q 0 p 00 q 0 p

    0 0 q 1 q

    =

    1 p

    3 ,

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Small example - revisited

    P=

    1 p p 0 0q 0 p 0

    0 q 0 p0 0 q 1 q

  • 7/24/2019 Dtmc Basic

    165/185

    withp=

    13 , 0, 0,

    23

    we get

    p(1) =

    1

    3, 0, 0,

    2

    3

    1 p p 0 0q 0 p 00 q 0 p

    0 0 q 1 q

    =

    1 p

    3 ,

    p

    3,

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Small example - revisited

    P=

    1 p p 0 0q 0 p 0

    0 q 0 p0 0 q 1 q

  • 7/24/2019 Dtmc Basic

    166/185

    withp=

    13 , 0, 0,

    23

    we get

    p(1) =

    1

    3, 0, 0,

    2

    3

    1 p p 0 0q 0 p 00 q 0 p

    0 0 q 1 q

    =

    1 p

    3 ,

    p

    3,2q

    3 ,

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Small example - revisited

    P=

    1 p p 0 0q 0 p 0

    0 q 0 p0 0 q 1 q

  • 7/24/2019 Dtmc Basic

    167/185

    withp=

    13 , 0, 0,

    23

    we get

    p(1) =

    1

    3, 0, 0,

    2

    3

    1 p p 0 0q 0 p 00 q 0 p

    0 0 q 1 q

    =

    1 p

    3 ,

    p

    3,2q

    3 ,

    2(1 q)

    3

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    p= 1

    3

    , 0, 0,2

    3 , (1 p)2 +pq (1 p)p p2 0

    2

  • 7/24/2019 Dtmc Basic

    168/185

    P2 =

    q(1 p) 2qp 0 p2

    q2 0 2qp p(1 q)0 q2 (1 q)q (1 q)2 +qp

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    p(2)

  • 7/24/2019 Dtmc Basic

    169/185

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    p(2) =

    1

    3, 0, 0,

    2

    3

  • 7/24/2019 Dtmc Basic

    170/185

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    p(2) =

    1

    3, 0, 0,

    2

    3

    (1 p)2 +pq (1 p)p p2 0q(1 p) 2qp 0 p2

    q2 0 2qp p(1 q)

  • 7/24/2019 Dtmc Basic

    171/185

    q qp p( q)0 q2 (1 q)q (1 q)2 +qp

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    p(2) =

    1

    3, 0, 0,

    2

    3

    (1 p)2 +pq (1 p)p p2 0q(1 p) 2qp 0 p2

    q2 0 2qp p(1 q)

  • 7/24/2019 Dtmc Basic

    172/185

    ( )0 q2 (1 q)q (1 q)2 +qp

    =

    (1 p)2 +pq

    3 ,

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    p(2) =

    1

    3, 0, 0,

    2

    3

    (1 p)2 +pq (1 p)p p2 0q(1 p) 2qp 0 p2

    q2 0 2qp p(1 q)

  • 7/24/2019 Dtmc Basic

    173/185

    0 q2 (1 q)q (1 q)2 +qp

    =

    (1 p)2 +pq

    3 ,

    (1 p)p

    3 ,

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    p(2) =

    1

    3, 0, 0,

    2

    3

    (1 p)2 +pq (1 p)p p2 0q(1 p) 2qp 0 p2

    q2 0 2qp p(1 q)

  • 7/24/2019 Dtmc Basic

    174/185

    0 q2 (1 q)q (1 q)2 +qp

    =

    (1 p)2 +pq

    3 ,

    (1 p)p

    3 ,

    4qp

    3 ,

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    p(2) =

    1

    3, 0, 0,

    2

    3

    (1 p)2 +pq (1 p)p p2 0q(1 p) 2qp 0 p2

    q2 0 2qp p(1 q)2 2

  • 7/24/2019 Dtmc Basic

    175/185

    0 q2 (1 q)q (1 q)2 +qp

    =

    (1 p)2 +pq

    3 ,

    (1 p)p

    3 ,

    4qp

    3 ,

    2p(1 q)

    3

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    First step analysis - setup

    Consider the transition probability matrix

    P=

    1 0 0

    0 0 1

  • 7/24/2019 Dtmc Basic

    176/185

    0 0 1 Define

    T =min {n0:Xn=0 orXn=2}

    and

    u= P(XT =0|X0 =1) v= E(T|X0=1)

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    First step analysis - absorption probability

    u = P(XT =0|X0=1)

    =2

    k=0

    P(X1=k|X0 =1)P(XT =0|X0 =1, X1=k)

  • 7/24/2019 Dtmc Basic

    177/185

    =2

    k=0

    P(X1=k|X0 =1)P(XT =0|X1 =k)

    = P1,0 1 +P1,1 u+P1,2 0.

    And we find

    u= P1,0

    1 P1,1=

    +

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    First step analysis - time to absorption

    v = E(T|X0 =1)

    =2

    k=0

    P(X1=k|X0=1)E(T|X0 =1, X1 =k)

  • 7/24/2019 Dtmc Basic

    178/185

    = 1 +2

    k=0

    P(X1 =k|X0=1)E(T|X0 =k)(NB!

    = 1 +P1,0 0 +P1,1 v+P1,2 0.

    And we find

    v= 1

    1 P1,1=

    1

    1

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    More than one transient state

    P=

    1 0 0 0

    P1,0 P1,1 P1,2 P1,3P2,0 P2,1 P2,2 P2,3

  • 7/24/2019 Dtmc Basic

    179/185

    0 0 0 1

    Here we will need conditional probabilitiesui= P(XT =0|X0=i)

    and conditional expectationsvi= E(T|X0 =i)

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Leading to

    u1 = P1,0+P1,1u1+P1,2u2

    u2 = P2,0+P2,1u1+P2,2u2

  • 7/24/2019 Dtmc Basic

    180/185

    and

    v1 = 1 +P1,1v1+P1,2v2

    v2 = 1 +P2,1v1+P2,2v2

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    General finite state Markov chain

    P

    Q R

  • 7/24/2019 Dtmc Basic

    181/185

    P=

    0 I

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    General absorbing Markov chain

    T =min {n0, Xnr}

    In statejwe accumulate rewardg(j),wiis expected totalreward conditioned on start in state i

  • 7/24/2019 Dtmc Basic

    182/185

    wi= ET1

    n=0

    g(Xn)|X0 =ileading to

    wi=g(i) +

    j

    Pi,jwj

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Special cases of general absorbing Markov chain

  • 7/24/2019 Dtmc Basic

    183/185

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Special cases of general absorbing Markov chain

    g(i) =1 expected time to absorption (vi)

  • 7/24/2019 Dtmc Basic

    184/185

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification

    Special cases of general absorbing Markov chain

    g(i) =1 expected time to absorption (vi)

  • 7/24/2019 Dtmc Basic

    185/185

    g(i) =ikexpected visits to state kbefore absorption

    Bo Friis Nielsen Discrete Time Markov Chains, Definition and classification