dsd-int 2016 groundwater model visp - christe

25
Groundwater Model Visp: An iMOD application in an alpine setting Dr Pierre Christe Environmental Protection Agency (SPE) Head Groundwater Group Delft Software Days Tuesday, 1st November 2016 Département des transports, de l'équipement et de l'environnement Departement für Verkehr, Bau und Umwelt

Upload: delftsoftwaredays

Post on 14-Apr-2017

141 views

Category:

Software


1 download

TRANSCRIPT

  • Groundwater Model Visp: An iMOD application in an alpine setting

    Dr Pierre Christe Environmental Protection Agency (SPE)

    Head Groundwater Group

    Delft Software Days Tuesday, 1st November 2016

    Dpartement des transports, de l'quipement et de l'environnement Departement fr Verkehr, Bau und Umwelt

  • Oversight by FOEV Protection of Surface and

    Groundwater (quantitative +

    qualitative)

    Facilitate access to quality

    geological and hydrogeological

    information / data

    Collaboration with FOEN

    swisstopo

    2

  • Walliser Bote, February 2013

    3

    Walliser Bote, June 2013

    GW-Model Visp: It all started with a little political and ideological controversy.

    Climate change

  • 4

    Switzerland, Valais and the hotspot Visp

    weinwanderungen.ch

    Earthquake model 2015

  • 5

    mammut.ch

    Groundwater recharge in the Rhone valley influenced by groundwater circulations at different depths through highly heterogeneous (hard) rock masses

    Rhone-Valley

    Southern Alps

    Northern Alps

    Visp is surrounded by steep mountains

    Ground elevation model: swissAlti3D

  • 6

    Visp belongs to the geothermal system Oberwallis

    Geothermal systems locally influence groundwater temperatures in the Rhone Valley (thermal anomalies)

  • 7

    Geographical extent and structure of the Rhone Valley aquifer

    Lower Valais Central Valais

    Upper Valais

    Low permeable deposits

    High permeable deposits

    ~400 m

    Max.100 m Average 40 m

    Glacial + torrential + slope deposits Rhone alluvium (unconsolidated, water-bearing) vs. Flood

    deposits (consolidated, low permeability) Multi-layered aquifer system

    1 2

    3

  • B B

    A

    A

    Visp hydrogeological setting

    8

    Data: 1994-2003

    Data: 2004 - 2013

  • Mountain water inflow

    Juli

    Rhone

    Janu

    ar F

    ebru

    ar

    Direct GW-recharge

    Juli

    Vispa

    Juni

    Juli

    GW-Recording

    Juli

    Evaluating groundwater recharge in the Rhone-Valley: summer and winter peaks

    Geotechnisches Institut, 2016

    9

    Supra-regional considerations REGIONAL MODELLING! Climatic vs. Hydrogeological processes Snow Water Equivalent (SWE)

    Area of interest Mountain water inflow

  • + 1.8 m

    + 2.5 m

    + 5 m

    Particular geometrical relationships Stronger apparent differences in GW-amplitudes in Vispertal doesnt necessarily mean that the cause of the observed phenomenon has its origin there.

    Visp hydrological years 2012-2013: What has been exactly observed?

    Geotechnisches Institut, 2016

    Differences (2013) (2012)

    10

    Aquifer sections

  • Inflow profiles in Visp: where does the groundwater come from?

    Total budget: 400 l/s = 24000 l/min

    (35000 m3/day)

    Outflow in %

    Geotechnisches Institut, 2016

    Inflow in %

    11

    ~ 15000 m3/day (10500 l/min)

  • Data: SPE

    12

    Realized and projected major underground infrastructures and construction in the area of interest Confronting cumulative impacts of :

    1. Permanent ground foundations2. Temporary groundwater retentions

    Visp: questionning land use practice and planning, ensure proper coordination

  • Water bearing layers

    North

    South

    North South

    Low permeable layers

    Lonza extraction

    Underground infrastructures

    Direction of groundwater flow

    Hard-rock

    13

    Deltares, 2015

    Visp: using iMOD to simulate different scenarios

    Parameter Min. Average Max. Parameter Min. Average Max. KF 382.0 432.0 487.0 SF 0.181 0.300 1.122 KV 25.0 45.0 60.0 BF 0.073 1.300 15.321 LF 0.18 0.2 0.22 P 0.040 0.050 0.070

    SS 4.32E-6 6.2E-5 6.23E-4 Computed parameter confidence intervals (96%).

    LF Leakage Factor [d] P Porosity [-] SS Specific Storage [-] KV Permeability Vispertal [m/d] KF Permeability Rhone Valley [m/d] SF Sideflow [-] BF Bottom flow [mm/d]

    Small uncertainty

    Larger uncertainty

    Large variability

  • Results: causes of the strong GW-level rise in the years 2012 /2013 in Visp

    First approach with the methodological concept.

    Expected model-improvements:

    Introduction of the respective GW-contributions from distinct geological andhydrogeological units;

    Introduction of a weighting factor forsnowmelt rates to differentiate betweenwinter and spring times;

    Introduction of better rain and snowmeltmodels both at the local and regionallevels;

    Model-construction of channels andagricultural drainage;

    Inventory of all existing constructionsreaching or below GW-level;

    Better knowledge of the undergroundand groundwater structure below

  • What can regional groundwater models help us solve.

    15

  • Area of interest

    Current iMOD model (1. Feb. 2011 to 31. Dec. 2012)

    16

    Transient 3D-model for GW-fluctuation

  • Area of interest New area of

    interest

    Extended iMOD model (summer 2015 to summer 2016)

    17

  • Conflict prevention and management

    18

    No, I hate YOU!!

    I hate you!

    How can we actually still love them?!

  • Excavation below piezometric level

    Public safety: construction sites

    Modification of hydrological relationships

    19

  • Combined effects from industrial and agricultural activities on groundwater over decades!

    20

    Public safety: site remediation

    Grossgrund-channel

    Industrial site Lonza

    Waste disposal Gamsenried

  • mysafetysigns.com

    21

    Public health: drinking water ressource

  • High damage susceptibility Site effects, non-linear phenomena in liquefiable soils, related pore pressure effects

    Burjanek et al. (2012)

    22

    Public security: example of the 1855 Visp M6.2 earthquake

    Ground velocity NS component

    COupled seismogenic GEohazards in Alpine Regions (COGEAR)

  • Drawing Hands, M.C. Escher, 1948

    23

    Responsible decision, responsible actions

    Prediction

    Model

    Uncertainties

    Effective measures

  • Many thanks to..

    24

  • See you soon in Visp?

    25

    Dianummer 1Dianummer 2Dianummer 3Dianummer 4Dianummer 5Dianummer 6Dianummer 7Dianummer 8Dianummer 9Dianummer 10Dianummer 11Dianummer 12Dianummer 13Dianummer 14Dianummer 15Dianummer 16Dianummer 17Dianummer 18Dianummer 19Dianummer 20Dianummer 21Dianummer 22Dianummer 23Dianummer 24Dianummer 25