dry removal inflections in advanced memory devices...march 5, 2013 applied materials confidential r...

14
SILICON SYSTEMS GROUP Dry Removal Inflections in Advanced Memory Devices Ajay Bhatnagar, Ph.D. Global Product Management Selective Removal Products March 5, 2013

Upload: others

Post on 24-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Dry Removal Inflections in Advanced Memory Devices...March 5, 2013 Applied Materials Confidential R 140 G 140 B 140 R 220 G 220 B 220 R 69 G 153 B 195 R 254 G 203 B 0 R 255 G 121 B

SILICON SYSTEMS GROUP

Dry Removal Inflections in Advanced

Memory Devices

Ajay Bhatnagar, Ph.D.

Global Product Management

Selective Removal Products

March 5, 2013

Page 2: Dry Removal Inflections in Advanced Memory Devices...March 5, 2013 Applied Materials Confidential R 140 G 140 B 140 R 220 G 220 B 220 R 69 G 153 B 195 R 254 G 203 B 0 R 255 G 121 B

Applied Materials Confidential

R 140

G 140

B 140

R 220

G 220

B 220

R 69

G 153

B 195

R 254

G 203

B 0

R 255

G 121

B 1

R 234

G 40

B 57

R 155

G 238

B 255

R 146

G 212

B 0

R 75

G 75

B 75

R 6

G 30

B 60

SILICON SYSTEMS GROUP

Outline

The Need for dry removal technologies in memory

What is causing pattern collapse

Parameters governing isotropic removal

Remote plasma sublimative removal technology

What’s next?

Summary

2

Page 3: Dry Removal Inflections in Advanced Memory Devices...March 5, 2013 Applied Materials Confidential R 140 G 140 B 140 R 220 G 220 B 220 R 69 G 153 B 195 R 254 G 203 B 0 R 255 G 121 B

Applied Materials Confidential

R 140

G 140

B 140

R 220

G 220

B 220

R 69

G 153

B 195

R 254

G 203

B 0

R 255

G 121

B 1

R 234

G 40

B 57

R 155

G 238

B 255

R 146

G 212

B 0

R 75

G 75

B 75

R 6

G 30

B 60

SILICON SYSTEMS GROUP

Pattern Collapse in Flash Memory

3

Aspect Ratios increasing at

exponential rate beyond 2x

Stiction Forces after wet/dry are

sufficient to cause STI Si Floating

Gate Structures to collapse

Ogawa Yoshihiro, TSB, Sept. 18, 2012 UCPSS

Ogawa Yoshihiro, TSB, Sept. 18, 2012 UCPSS

Before RIE post Wet Clean After Wet Cleaning

Ability to clean STI structures without pattern collapse is critical for F<2x

and D<2x technology nodes

Page 4: Dry Removal Inflections in Advanced Memory Devices...March 5, 2013 Applied Materials Confidential R 140 G 140 B 140 R 220 G 220 B 220 R 69 G 153 B 195 R 254 G 203 B 0 R 255 G 121 B

Applied Materials Confidential

R 140

G 140

B 140

R 220

G 220

B 220

R 69

G 153

B 195

R 254

G 203

B 0

R 255

G 121

B 1

R 234

G 40

B 57

R 155

G 238

B 255

R 146

G 212

B 0

R 75

G 75

B 75

R 6

G 30

B 60

SILICON SYSTEMS GROUP

What is Causing Pattern Collapse?

d is the deformation

s = surface tension

q = contact angle between the liquid & pattern

d = distance between the patterns,

H = height of the pattern,

E = elastic modulus

L =width of the pattern lines.

As feature sizes shrink: d, L ↓, H↑

As customers adopt lower k dielectrics, E ↓

Wets working to lower surface tension, s and contact angle, q

Page 5: Dry Removal Inflections in Advanced Memory Devices...March 5, 2013 Applied Materials Confidential R 140 G 140 B 140 R 220 G 220 B 220 R 69 G 153 B 195 R 254 G 203 B 0 R 255 G 121 B

Applied Materials Confidential

R 140

G 140

B 140

R 220

G 220

B 220

R 69

G 153

B 195

R 254

G 203

B 0

R 255

G 121

B 1

R 234

G 40

B 57

R 155

G 238

B 255

R 146

G 212

B 0

R 75

G 75

B 75

R 6

G 30

B 60

SILICON SYSTEMS GROUP

The Need for Dry Removal Being driven by

– 1) Pattern Collapse

– 2) Defectivity with existing wet benches

3) Inadequate selectivity/removal control with wet solutions

Aspect Ratios↑ Thermal Budgets ↓ driven by gate oxidation

STI: HDP (90) HARP (6x-4x) FCVD/SOD (3x…)

ThermalOxide

HDPOxide

HARPOxide

EternaFCVD(PMD)

Remote Plasma(Removal Rate/TOX) 1 1.03 1.05 1.03

Wet (WERR) 1 1.2 5.4 7

012345678

WER

R o

r R

R/T

OX

Page 6: Dry Removal Inflections in Advanced Memory Devices...March 5, 2013 Applied Materials Confidential R 140 G 140 B 140 R 220 G 220 B 220 R 69 G 153 B 195 R 254 G 203 B 0 R 255 G 121 B

Applied Materials Confidential

R 140

G 140

B 140

R 220

G 220

B 220

R 69

G 153

B 195

R 254

G 203

B 0

R 255

G 121

B 1

R 234

G 40

B 57

R 155

G 238

B 255

R 146

G 212

B 0

R 75

G 75

B 75

R 6

G 30

B 60

Remote Plasma Process

1. Echant Generation (Remote Plasma)

For Oxide

For Nitride

NF3+NH3 → NH4F + NH4F.HF

NF3 + H2 → HF + NH4F

NH4F + SiO2 → (NH4)2SiF6 + H2O

NH4F.HF + Si3N4 → (NH4)2SiF6 + H2O

2. Reaction to form By-Product

HF + Si3N4 → (NH4)2SiF6

NH4F + SiO2 → (NH4)2SiF6 + H2O RMS: 8.8nm

(NH4)2SiF6 (solid) → SiF4(g) + NH3(g) +HF(g)

3. Byproduct Sublimation

RMS: 0.3nm

Page 7: Dry Removal Inflections in Advanced Memory Devices...March 5, 2013 Applied Materials Confidential R 140 G 140 B 140 R 220 G 220 B 220 R 69 G 153 B 195 R 254 G 203 B 0 R 255 G 121 B

Applied Materials Confidential

R 140

G 140

B 140

R 220

G 220

B 220

R 69

G 153

B 195

R 254

G 203

B 0

R 255

G 121

B 1

R 234

G 40

B 57

R 155

G 238

B 255

R 146

G 212

B 0

R 75

G 75

B 75

R 6

G 30

B 60

SILICON SYSTEMS GROUP

Remote Plasma Mechanism

Solid By-products

Oxide

Si

(NH4)2SiF6.H2O

NH4F NH4+ + F-

NH4FHF NH4+ + HF2

- Diffusion through solid

of ionic species

Adsorption

Desorption/Sublimation Reactants and

Dissociated Species

SiO2 + F-/ HF2- SiF62- + H2O

Etching Reaction

at Interface

Removal Rate = Function of 3 Factors

Adsorption – Desorption ; Diffusivity in Solid (HF2-, F-, SiF6--) ;

Surface Reaction Rate

7

Page 8: Dry Removal Inflections in Advanced Memory Devices...March 5, 2013 Applied Materials Confidential R 140 G 140 B 140 R 220 G 220 B 220 R 69 G 153 B 195 R 254 G 203 B 0 R 255 G 121 B

Applied Materials Confidential

R 140

G 140

B 140

R 220

G 220

B 220

R 69

G 153

B 195

R 254

G 203

B 0

R 255

G 121

B 1

R 234

G 40

B 57

R 155

G 238

B 255

R 146

G 212

B 0

R 75

G 75

B 75

R 6

G 30

B 60

SILICON SYSTEMS GROUP 8

Remote Plasma Removal Applications Floating Gate STI/ ILD Recess

Surface Post CMP Oxide Recess

Si

FG Ox

Uniform precision recess of ILD oxide in Flash

without opening ILD air gap

ST

I R

ecess

ILD

Recess

Page 9: Dry Removal Inflections in Advanced Memory Devices...March 5, 2013 Applied Materials Confidential R 140 G 140 B 140 R 220 G 220 B 220 R 69 G 153 B 195 R 254 G 203 B 0 R 255 G 121 B

Applied Materials Confidential

R 140

G 140

B 140

R 220

G 220

B 220

R 69

G 153

B 195

R 254

G 203

B 0

R 255

G 121

B 1

R 234

G 40

B 57

R 155

G 238

B 255

R 146

G 212

B 0

R 75

G 75

B 75

R 6

G 30

B 60

SILICON SYSTEMS GROUP

What’s Next? Can we use this concept for other material systems?

Oxid

e

POLY

Oxid

e

POLY

Oxid

e

400A Poly Removal

Oxid

e

POLY

Oxid

e

Elimination of Physical Etch leads to Pure Isotropic Removal

Page 10: Dry Removal Inflections in Advanced Memory Devices...March 5, 2013 Applied Materials Confidential R 140 G 140 B 140 R 220 G 220 B 220 R 69 G 153 B 195 R 254 G 203 B 0 R 255 G 121 B

Applied Materials Confidential

R 140

G 140

B 140

R 220

G 220

B 220

R 69

G 153

B 195

R 254

G 203

B 0

R 255

G 121

B 1

R 234

G 40

B 57

R 155

G 238

B 255

R 146

G 212

B 0

R 75

G 75

B 75

R 6

G 30

B 60

SILICON SYSTEMS GROUP 10

Remote Plasma Removal Applications Floating Gate Direct Trimming

Surface Post CMP Oxide Recess Direct Trim of Silicon

FG shaping can enable IPD and

CG insertion and reduce IPD

scaling requirements

Floating Gate Shaping improves control-gate coupling

ratio by enabling control-gate-poly wrap-around

At 2X node, Inter-FG space is

insufficient for 13nm thick IPD +

8nm CG insertion

Tox

FG

Tox

FG

Tox

FG

Tox

FG

Tox

FG

Tox

FG

Tox

FG24nm

24nm

13nm

12nm

11nm

CG poly

Tox

FG

Tox

FG

Tox

FG

Tox

FG

Tox

FG

Tox

FG

Tox

FG

24nm 24nm

CG poly

Page 11: Dry Removal Inflections in Advanced Memory Devices...March 5, 2013 Applied Materials Confidential R 140 G 140 B 140 R 220 G 220 B 220 R 69 G 153 B 195 R 254 G 203 B 0 R 255 G 121 B

Applied Materials Confidential

R 140

G 140

B 140

R 220

G 220

B 220

R 69

G 153

B 195

R 254

G 203

B 0

R 255

G 121

B 1

R 234

G 40

B 57

R 155

G 238

B 255

R 146

G 212

B 0

R 75

G 75

B 75

R 6

G 30

B 60

SILICON SYSTEMS GROUP

Mesh SiN

Anchoring SiN

TiN Cylinder

Remote Plasma Removal Application Advanced DRAM Mold Silicon Removal

11

Pre-Structure Desired Result

Removal of large amount of silicon through small access holes on the

mesh SiN in a multi-selective environment

Peri

Oxide

Mold

Si

1.5

mm

Page 12: Dry Removal Inflections in Advanced Memory Devices...March 5, 2013 Applied Materials Confidential R 140 G 140 B 140 R 220 G 220 B 220 R 69 G 153 B 195 R 254 G 203 B 0 R 255 G 121 B

Applied Materials Confidential

R 140

G 140

B 140

R 220

G 220

B 220

R 69

G 153

B 195

R 254

G 203

B 0

R 255

G 121

B 1

R 234

G 40

B 57

R 155

G 238

B 255

R 146

G 212

B 0

R 75

G 75

B 75

R 6

G 30

B 60

SILICON SYSTEMS GROUP

Remote Plasma Removal Application Nitride Removal

0

100

200

300

400

500

600

PE Nitride PR Oxide

Re

mo

va

l A

mo

un

ts (

A)

Replacement of Hot Phos in

Patterning Applications

Increased interest in demos

with PR

Selectivity to Oxide and PR

demonstrated

Nitride Hardmask removal

High selectivity to STI and

Pad Oxide

Removed Material Binary System Best Selectivity

Nitride

(LP SiN: 200A)

LPCVD SiN : HDP Oxide 195:1 to 1:1

Tensile Nitride : HDP

Oxide

560:1

Comp. Nitride : HDP Oxide 430:1

Page 13: Dry Removal Inflections in Advanced Memory Devices...March 5, 2013 Applied Materials Confidential R 140 G 140 B 140 R 220 G 220 B 220 R 69 G 153 B 195 R 254 G 203 B 0 R 255 G 121 B

Applied Materials Confidential

R 140

G 140

B 140

R 220

G 220

B 220

R 69

G 153

B 195

R 254

G 203

B 0

R 255

G 121

B 1

R 234

G 40

B 57

R 155

G 238

B 255

R 146

G 212

B 0

R 75

G 75

B 75

R 6

G 30

B 60

SILICON SYSTEMS GROUP

Summary

13

Pattern collapse with wet chemistries will become a critical issue in

advanced memory devices with increasing aspect ratios and softer

dielectrics

The transition to dry removal technologies has already occurred with

remote plasma chemical etch replacing several DHF steps in FEOL

memory flows

– Driven by precision removal capabilities and control of dry techniques

Dry removal reactors that can simulate wet chemistries to etch with

similar selectivities and without pattern collapse will be critical for

advanced memory devices

Page 14: Dry Removal Inflections in Advanced Memory Devices...March 5, 2013 Applied Materials Confidential R 140 G 140 B 140 R 220 G 220 B 220 R 69 G 153 B 195 R 254 G 203 B 0 R 255 G 121 B