drought in california: entering a new water future

6
www.thesolutionsjournal.org | September-October 2015 | Solutions  | 71 Solutions in History C alifornia’s hydraulic infrastruc- ture has vaulted the state’s  development forward, creating a  thriving agricultural economy and  supporting a population that now  exceeds 38 million. But this entire  infrastructure—a vast system of  dams, reservoirs, and canals designed  to transport water around the state— has been based on the assumption  that historical precipitation levels  were the norm in California and not  the exception. We now know that  this assumption was false. California,  like much of the U.S. West, is facing  the prospect of a water future char- acterized by longer and more severe  droughts. In order for California to  adapt to what appears to be a new  climate regime, a systemic change to  a century-old way of thinking about  how the state stores and manages its  water will be required. There will be  no simple solution for California to  engineer its way out of long-term or  perhaps permanent drought, but first  steps include recognizing the state’s  true long-term climate patterns,  identifying problems with the ways  in which water has historically been  allocated, adopting new conservation  methods, and introducing substan- tive structural changes to the state’s  economy, most notably in its agri- cultural sector, which consumes the  overwhelming majority of the state’s  developed water supply. The creation of modern California  has taken place during a relatively  benign, and wetter than average, cli- matic period. Paleoclimatologists have  uncovered evidence of past droughts  in California that dwarf the scope of  those in the written record. Upright tree  stumps preserved in Lake Tahoe, the  Drought in California: Entering a New Water Future by Philip Garone Philip Garone The Friant-Kern Canal, a 152-mile-long federal irrigation canal that delivers up to 5,000 cubic feet per second of San Joaquin River water to agricultural lands in the southern San Joaquin Valley, essentially dewatering the river below the canal’s diversion point at the river’s Friant Dam. Garone, P. (2015). Drought in California: Entering a New Water Future. Solutions 6(5): 71–76. https://thesolutionsjournal.com/2015/5/drought-in-california-entering-a-new-water-future

Upload: thesolutionsjournal

Post on 27-Jul-2016

217 views

Category:

Documents


1 download

DESCRIPTION

Solutions in History, Volume 6, Issue 5

TRANSCRIPT

Page 1: Drought in California: Entering a New Water Future

www.thesolutionsjournal.org  |  September-October 2015  |  Solutions  |  71

Solutions in History

California’s hydraulic infrastruc-ture has vaulted the state’s 

development forward, creating a thriving agricultural economy and supporting a population that now exceeds 38 million. But this entire infrastructure—a vast system of dams, reservoirs, and canals designed to transport water around the state—has been based on the assumption that historical precipitation levels were the norm in California and not the exception. We now know that this assumption was false. California, like much of the U.S. West, is facing 

the prospect of a water future char-acterized by longer and more severe droughts. In order for California to adapt to what appears to be a new climate regime, a systemic change to a century-old way of thinking about how the state stores and manages its water will be required. There will be no simple solution for California to engineer its way out of long-term or perhaps permanent drought, but first steps include recognizing the state’s true long-term climate patterns, identifying problems with the ways in which water has historically been 

allocated, adopting new conservation methods, and introducing substan-tive structural changes to the state’s economy, most notably in its agri-cultural sector, which consumes the overwhelming majority of the state’s developed water supply.

The creation of modern California has taken place during a relatively benign, and wetter than average, cli-matic period. Paleoclimatologists have uncovered evidence of past droughts in California that dwarf the scope of those in the written record. Upright tree stumps preserved in Lake Tahoe, the 

Drought in California: Entering a New Water Futureby Philip Garone

Philip Garone The Friant-Kern Canal, a 152-mile-long federal irrigation canal that delivers up to 5,000 cubic feet per second of San Joaquin River water to agricultural lands in the southern San Joaquin Valley, essentially dewatering the river below the canal’s diversion point at the river’s Friant Dam.

Garone, P. (2015). Drought in California: Entering a New Water Future. Solutions 6(5): 71–76.https://thesolutionsjournal.com/2015/5/drought-in-california-entering-a-new-water-future

Page 2: Drought in California: Entering a New Water Future

72  |  Solutions  |  September-October 2015  |  www.thesolutionsjournal.org

Solutions in History

Philip Garone A portion of the Stanislaus River in the Sierra Nevada foothills that is usually submerged under the New Melones Reservoir. As reservoir levels drop, archeological sites and old structures, such as the Old Parrotts Ferry Bridge, pictured here, are exposed. This photo was taken in July 2015, with the reservoir at only 13 percent of capacity. Note the “bathtub ring” high up on the canyon walls.

Page 3: Drought in California: Entering a New Water Future

www.thesolutionsjournal.org  |  September-October 2015  |  Solutions  |  73

Solutions in History

second deepest lake in the United States, point to a prolonged drought period that lasted for more than a thousand years during the mid-Holocene epoch (approximately 5,000 to 6,000 years ago), when the lake level had dropped by more than 20 feet.1 Tree stumps discovered in Tenaya Lake in Yosemite National Park, Mono Lake and the Walker River on the eastern side of the Sierra Nevada, and other locations point to two megadroughts that spanned most of the medieval period—during the so-called Medieval Climate Anomaly—in California, from approxi-mately AD 900 to 1100 and AD 1200 to 1350. Annual growth rings prove that many of these trees lived upward of 140 years and as long as 220 years.2

Megadroughts are not necessary to expose the fault lines in California’s water management, however. Far shorter droughts, none longer than six to seven years, have already demonstrated the inadequacies of California’s current water policy. The most significant California droughts of the past century include those of 1928–34, 1976–77, 1987–92, 2007–09, and the current drought that began in 2012. The brief but severe drought during 1976–77 was the driest on record for the past 500 years, as determined by paleoclimate data, and prompted the state’s first real efforts toward water conservation, which included widespread urban water conservation and mandatory rationing.3 During the drought of 2007–09, a statewide proclamation of emergency was issued for the first time.4 This was also the first drought to take place during a time of unprec-edented environmental restrictions on agricultural water exports to the south of the Sacramento–San Joaquin Delta—the eastern portion of the estu-ary that extends from San Francisco Bay inland to the heart of California’s Central Valley at the confluence of the 

Sacramento and San Joaquin rivers. Decades of water exports delivered by federal and state projects had reduced freshwater flows through the Delta, resulting in deteriorating water quality, severe decline of endangered native fish species, and the near-collapse of the Delta ecosystem.5

California entered its current drought during a time of record warmth in the state. Higher tempera-tures are particularly problematic for water supply in California because the state’s hydraulic infrastructure was designed in large part to store snowmelt in reservoirs located in the foothills of the Sierra Nevada. Climate models, predicated upon higher temperature regimes, show pro-nounced impacts on the Sierra Nevada snowpack—the primary source of the state’s freshwater supply—with a loss of half or more by the end of the cen-tury.6 On April 1, 2015, the California Department of Water Resources measured the content of the Sierra snowpack at 5 percent of average for that date, the lowest percentage in any year in records dating back to 1950.7 By that time, reservoir levels throughout the state had already fallen to record or near-record lows.

In addition to surface storage, California relies heavily on ground-water, which accounts for close to 40 percent of the state’s agricultural and urban water needs. During drought periods, that percentage rises. Deprived of their full allocations of federal and state water, farmers increasingly mine groundwater from the state’s aquifers, hastening their depletion and leading to widespread land subsidence as the drained aquifers collapse. By 2014, the third consecutive year of drought, ground-water levels in many parts of the largely agricultural San Joaquin Valley (the southern half of the Central Valley) had fallen to more than 100 

Philip Garone A portion of the Stanislaus River in the Sierra Nevada foothills that is usually submerged under the New Melones Reservoir. As reservoir levels drop, archeological sites and old structures, such as the Old Parrotts Ferry Bridge, pictured here, are exposed. This photo was taken in July 2015, with the reservoir at only 13 percent of capacity. Note the “bathtub ring” high up on the canyon walls.

Page 4: Drought in California: Entering a New Water Future

74  |  Solutions  |  September-October 2015  |  www.thesolutionsjournal.org

Solutions in History

feet below previous historical levels, resulting in declining water quality, wells running dry—especially in eco-nomically disadvantaged small rural communities—and land subsidence and consequent damage to the state’s water delivery system and other infra-structure components.8 According to a NASA report, between May 2014 and January 2015 land in some parts of the San Joaquin Valley was sinking faster than ever before, at a rate of approxi-mately 2 inches per month.9 Despite these severe problems, until the pas-sage of the Sustainable Groundwater Management Act in September 2014, California was the only western state that had not enacted groundwater monitoring. Under the act, groundwa-ter sustainability is to be achieved by 2040, but many argue that this is too little, too late, as groundwater levels are expected to continue to decline during the interim.10

The water challenges that the state faces are numerous and daunting: predicted longer and more severe droughts; greater risk of major wildfires, which will be particularly dangerous when they occur in densely populated areas at the wildland–urban interface; destruction of millions of drought-stressed trees from insect infestation; possible extinction of native fish species; deteriorating overall water quality and continu-ing decline of the Sacramento–San Joaquin Delta; and, somewhat ironi-cally in an era of more severe drought conditions, greater risk of catastrophic floods as more precipitation falls as rain rather than snow and the pace of winter and early spring runoff accelerates.11

Adaptation to and amelioration of these conditions is both necessary and possible, and solutions will require efforts on a variety of scales from the hyperlocal to the regional. In April 2015, Governor Jerry Brown mandated 

a 25 percent reduction in urban potable water usage.12 Household con-servation, including reduced watering of lawns—which accounts for the majority of urban water use—has already proven capable of meeting this target in much of the state.13 State regulations now limit the percentage of new housing lots that can contain lawns, but stronger incentives for xeriscaping—the planting of drought-tolerant vegetation—will be necessary. 

Substantial payments to homeowners to remove their lawns, such as those offered in other water-stressed western states, will facilitate a permanent reduction of urban water use, with minimal economic pain to residents.14

Agricultural priorities will need to change significantly as well, calling into question the future of California agriculture as it presently exists. The greatest demand for water in California comes from the agricultural 

California Department of Water Resources Total water use met by groundwater for each of California’s ten hydrologic regions. Note the especially heavy reliance on groundwater, by volume, throughout the Central Valley.

Page 5: Drought in California: Entering a New Water Future

www.thesolutionsjournal.org  |  September-October 2015  |  Solutions  |  75

Solutions in History

sector, which accounts for approxi-mately 77 percent of human water use in the state. Despite this dispropor-tionate consumption, in recent years agriculture has accounted for just over one percent of the state’s gross domes-tic product (GDP) and about three percent of GDP if agricultural sup-port industries are included as well. Agriculture and all related industries account for only about five percent of the state’s employment.15 For a transi-tion to limited and more efficient agriculture to take place, crops that have the highest water demand must face the greatest scrutiny. Alfalfa, for example, consumes more than 15 percent of the state’s water, and approximately half of it is grown for export. Furthermore, almost all the state’s alfalfa crop is still grown using flood irrigation, rather than more efficient drip irrigation.16 Almonds, 80 percent of which are grown for export, require approximately another nine percent of the state’s water.17 From the perspective of natural resource economics, by exporting these water-intensive crops, California is actually exporting a significant amount of its limited water supply and is doing so for the benefit of a relatively small number of farmers, many of whom are wealthy absentee landowners or corporations.

Despite such evidence pointing to the need to restructure California agriculture, the political power of large agribusiness enterprises, along with willing cooperation from high-level elected officials, is driving the state toward an increased reliance on unsustainable engineering solu-tions, most notably in the case of the so-called Delta Tunnels. Under this latest multibillion-dollar plan to export water from Northern to Southern California, current methods of transferring water southward through Delta channels would be 

superseded by twin tunnels 40 feet in diameter and approximately 35 miles in length that would transport up to 9,000 cubic feet per second of Sacramento River water south of the Delta, bypassing the Delta’s channels entirely and further threatening the Delta’s endangered ecosystem. Meanwhile, even in the face of drought, farmers continue to increase acreage devoted to permanent plant-ing of orchards and vineyard crops that require reliable year-to-year water supplies that the tunnels could provide, albeit at the expense of other parts of the state.18 The tunnels have become the most contested issue in California water politics in recent years, and the outcome remains uncertain, even as Northern California and Delta interests fiercely contest the plan.19, 20

California has previously dem-onstrated the ability to dramatically reassess priorities for water use and is capable of doing so again, despite resistance from entrenched interests. During the 1870s and 1880s, Californians rapidly came to the realization that the state’s economic future would be better served by agriculture than by the highly water consumptive and environmentally destructive practice of hydraulic mining, debris from which was burying fertile farmlands and caus-ing widespread flooding. Nearly a century and a half later, it is time for another reassessment. Questionable patterns of water consumption can best be addressed by treating water as a public commodity. Under such a legal and regulatory framework, which is already well under way in California, the public benefits of water are balanced with its value as an economic input. This can be accomplished, for example, by regulat-ing groundwater more stringently and strengthening environmental 

review of water transfers, both of which can encourage a shift away from low-value and water-intensive crops. Integrating the management of groundwater and surface water, as well as the complex system of water rights that apply to them, will facilitate groundwater bank-ing—the recharging of aquifers during wet periods for future use during drought—and thus improve water storage efficiency.21 Groundwater stor-age is both essential and more efficient than constructing expensive new surface storage (reservoirs), and can partially offset the shrinking Sierra Nevada snowpack. The water supply itself can be increased by constructing seawater desalination plants, such as the 50 million gallon per day Carlsbad Desalination Plant in Southern California, scheduled to come online in late 2015.22 As the experiences of Israel and other water-stressed nations have demonstrated, desalination plants have become cost-effective means of enhancing water supply, as has the recycling of gray water and sewage water.23

It has taken California more than a century to create its present hydraulic regime, and the climate for which it was designed no longer exists. It will take time to change course, but a multifaceted approach that includes revised priorities for water consump-tion, a stronger regulatory regime, groundwater banking, desalination, and conservation will go a long way toward avoiding escalating conflict over increasingly limited water alloca-tions between urban residents, farmers, and fish and wildlife, many species of which are now protected under state and federal law. A livable and prosper-ous future is entirely possible for California, even under the challenge of climate change, but only if its people recognize that this future will be quite unlike California’s past. 

Page 6: Drought in California: Entering a New Water Future

76  |  Solutions  |  September-October 2015  |  www.thesolutionsjournal.org

Solutions in History

References1.  Lindström, S. Submerged tree stumps as indicators 

of mid-Holocene aridity in the Lake Tahoe basin. 

Journal of California and Great Basin Anthropology 12 

(2), 146–157 (1990).

2.  Stine, S. Extreme and persistent drought in 

California and Patagonia during mediaeval time. 

Nature 369, 546–549 (1994).

3.  Ingram, B.L. and F. Malamud-Roam. The West

without Water: What Past Floods, Droughts, and Other

Climatic Clues Tell Us About Tomorrow (University of 

California Press, Berkeley, 2013) 21–24.

4.  California Department of Water Resources. State 

of emergency—water shortage proclamation, 

February 27, 2009. California’s most significant 

droughts: comparing historical and recent 

conditions (Appendix 101–106) (2015).

5.  Garone, P. The Fall and Rise of the Wetlands of

California’s Great Central Valley (University of 

California Press, Berkeley, 2011) 240–245.

6.  California Department of Water Resources. 

California’s most significant droughts: comparing 

historical and recent conditions (2015) 24–25.

7.  U.S. Geological Survey, California Water Science 

Center. The California drought [online] (2015) 

http://ca.water.usgs.gov/data/drought/.

8.  California Department of Water Resources. 

California’s most significant droughts: comparing 

historical and recent conditions (2015) 15, 37.

9.  Farr, T.G., C. Jones, and Z. Liu. Progress report: 

subsidence in the Central Valley, California. NASA 

Jet Propulsion Laboratory, California Institute of 

Technology [online] (2015) http://water.ca.gov/

groundwater/docs/NASA_REPORT.pdf.

10. Miller, J. California’s sweeping new groundwater 

regulations. High Country News [online] (November 

10, 2014) https://www.hcn.org/issues/46.19/

californias-sweeping-new-groundwater-regulations.

11. Hanak, E. et al. Managing California’s Water: From

Conflict to Reconciliation (Public Policy Institute of 

California, San Francisco, 2011) 412–413.

12. Executive Order B-29-15 [online] (2015) http://www.

waterboards.ca.gov/waterrights/water_issues/

programs/drought/docs/040115_executive_order.

pdf.

13. California State Water Resources Control Board. 

Media release: California water use drops 

31.3 percent, exceeds 25 percent mandate for 

July [online] (2015) http://www.swrcb.ca.gov/

press_room/press_releases/2015/pr082715_july_

conservation.pdf.

14. Water Smart Landscapes Rebate [online] http://

www.snwa.com/rebates/wsl.html.

15. Hanak, E. et al. Managing California’s Water: From

Conflict to Reconciliation (Public Policy Institute of 

California, San Francisco, 2011) 88, 91.

16. Holland, J. Dairy farms look at drip irrigation. The

Modesto Bee (August 28, 2015).

17. Slater, D. California brownout. Sierra (July/August 

2015) 26–28.

18. California Department of Water Resources. 

California’s most significant droughts: comparing 

historical and recent conditions (2015) 69.

19. Bay Delta Conservation Plan [online] http://

baydeltaconservationplan.com/Home.aspx.

20. Restore the Delta [online] http://restorethedelta.org/.

21. Hanak, E. et al. Managing California’s Water: From

Conflict to Reconciliation (Public Policy Institute of 

California, San Francisco, 2011) 315–348.

22. The Carlsbad Desalination Project [online] http://

carlsbaddesal.com/.

23. Harris, E. Israel bringing its years of desalination 

experience to California. National Public Radio 

[online] (2015) http://www.npr.org/sections/

parallels/2015/06/14/413981435/israel-bringing-its-

years-of-desalination-experience-to-california.

Philip Garone The San Luis Reservoir, a two million acre storage reservoir for both the federal and state water projects in the Central Valley, at less than 20 percent of capacity in August 2015. At full capacity, the water level would approach the top of the earthen dam.