droplet retention and velocity field in a steam generator...

17
ANS meeting, Anaheim, CA (2008) Laboratory for Thermal Hydraulics Nuclear Energy and Safety Droplet retention and Velocity Field in a Steam Generator Ralf Kapulla, Steffen Danner, Salih Güntay, Abdel Dehbi 2008 ANS Annual Meeting Disneyland Hotel Anaheim, California, June 8-12, 2008

Upload: truongkhue

Post on 19-Mar-2018

229 views

Category:

Documents


2 download

TRANSCRIPT

ANS meeting, Anaheim, CA (2008)

Laboratory for Thermal HydraulicsNuclear Energy and Safety

Droplet retention and Velocity Field in a Steam Generator

Ralf Kapulla, Steffen Danner, Salih Güntay, Abdel Dehbi

2008 ANS Annual MeetingDisneyland Hotel

Anaheim, California, June 8-12, 2008

ANS meeting, Anaheim, CA (2008)

Laboratory for Thermal HydraulicsNuclear Energy and Safety

Overview

Phase VI: Droplet retention in separator and dryer

Test section

Droplet retention

Test A: Collected mass retained

Test B: Local droplet size

Velocity field

Summary

ANS meeting, Anaheim, CA (2008)

Laboratory for Thermal HydraulicsNuclear Energy and Safety

Test section & Measurement positions

Air in

Dryer

8 m

1.4 m

Upper sectionof separator

uv

r

Lower sectionof separator: Swirl vane unit

Dropletgeneration

MP1

MP2A

MP3A

MP4AMP4B

MP5

MP6

MP2B

MP3B

ANS meeting, Anaheim, CA (2008)

Laboratory for Thermal HydraulicsNuclear Energy and Safety

Drain positions & test matrix

8 m

1.4 m

ANS meeting, Anaheim, CA (2008)

Laboratory for Thermal HydraulicsNuclear Energy and Safety

Retention calculation

8 m

1.4 m

For a decontamination system inwhich one injects a certain amountof droplets (in) and another amountof droplets (out) leave the system,the amount of droplets retained canbe quantified with the retention coefficient (RET)

– For negligible retention it follows RET = 0,– if 90 % of the droplets are retained it follows RET = 0.9– and if all the droplets are retain RET = 1.

ANS meeting, Anaheim, CA (2008)

Laboratory for Thermal HydraulicsNuclear Energy and Safety

Whole test section retention

8 m

1.4 m

20 40 600.0

0.2

0.4

0.6

0.8

1.0

1.2

BF050

BF400 BF800 BF050

BF400BF800

BF100

BF010

path: D:\kapulla\SWP55\ARTIST\PRC5\origin\Ret_Calculation\RET_Calculations_Results_DEHS.OPJName: RGIntegralRET02Sing

inte

gral

RET

[-]

AMMD [μm]– Retention increases with increasing AMMD – for all gas mass flow rates.

– Lower retention as gas mass flow rates increases. Reason: Gravitational settling.

ANS meeting, Anaheim, CA (2008)

Laboratory for Thermal HydraulicsNuclear Energy and Safety

Swirl vane retention

8 m

1.4 m

– Retention of swirl vane similar to whole test section.

– Retention characteristic dominated by swirl vane.

20 40 600.0

0.2

0.4

0.6

0.8

1.0

1.2

BF400 BF800 BF050

BF050

BF400BF800

BF100

BF10

path: D:\kapulla\SWP55\ARTIST\PRC5\origin\Ret_Calculation\RET_Calculations_Results_DEHS.OPJName: RGSVRET02

swir

l van

e RE

T [-

]

AMMD [μm]

ANS meeting, Anaheim, CA (2008)

Laboratory for Thermal HydraulicsNuclear Energy and Safety

Droplet separator upper part retention

8 m

1.4 m

– Retention of droplet sep. upper part is weak.

– No clear correlation between RET and AMMD.

20 40 600.0

0.2

0.4

0.6

0.8

1.0

1.2

( )

BF10 BF050 BF100 BF400 BF800

path: D:\kapulla\SWP55\ARTIST\PRC5\origin\Ret_Calculation\RET_Calculations_Results_DEHS.OPJName: RGDropletSRET02

ds u

pper

par

t RET

[-]

AMMD [μm]

Please note: x-axis scale (AMMD) according to test section inlet. Not according droplet separator upper part inlet.

ANS meeting, Anaheim, CA (2008)

Laboratory for Thermal HydraulicsNuclear Energy and Safety

20 40 600.0

0.2

0.4

0.6

0.8

1.0

1.2

BF10 BF050 BF100 BF400 BF800

path: D:\kapulla\SWP55\ARTIST\PRC5\origin\Ret_Calculation\RET_Calculations_Results_DEHS.OPJName: RGDryerRET02

drye

r RET

[-]

AMMD [μm]

Dryer section retention

8 m

1.4 m

– Dryer is weakest component in retention chain.

– Retention small independent of gas mass flow rate and AMMD.

Please note: x-axis scale (AMMD) according to test section inlet. Not according droplet separator upper part inlet.

ANS meeting, Anaheim, CA (2008)

Laboratory for Thermal HydraulicsNuclear Energy and Safety

Inertial impaction

8 m

1.4 m

Stokes number approach for the dryer section:

– For the highest flow rate (BF800) inertial impaction starts at pd 10 m≈ μ

ANS meeting, Anaheim, CA (2008)

Laboratory for Thermal HydraulicsNuclear Energy and Safety

Local measurement positions & test matrix

8 m

1.4 m

To generate different droplet size spectra the DEHS mass flow rate was kept constant (1 l/h) and the nozzle gas mass flow rate was varied.

Higher air flow rates -> smaller droplets

ANS meeting, Anaheim, CA (2008)

Laboratory for Thermal HydraulicsNuclear Energy and Safety

0 20 40 60 80 1000

20

40

60

80

100

0 20 40 60 80 1000

20

40

60

80

100cw = 2 μm

x = 100 mm x = 160 mm x = 200 mm x = 220 mm

path: D:\kapulla\SWP55\ARTIST\PRC6\origin\.Droplets\MP3A_Tropfen_PDA_A_01.OPJName: PRC6_GBF100VCA10

BF100, A10

cum

mul

ativ

e vo

lum

e, %

diameter, μm

cw = 2 μm

x = 100 mm x = 160 mm x = 200 mm x = 220 mm

BF400, A10

cum

mul

ativ

e vo

lum

e, %

diameter, μm

Radial position dependence

8 m

1.4 m

Carrier gas mass flow rate 100 kg/h and 400 kg/h.

– Larger droplet content shows radial dependence. Larger large-droplet content as one moves radialy towards the wall.

– Radial dependence caused by rotational component of the flow field.

MP3A

ANS meeting, Anaheim, CA (2008)

Laboratory for Thermal HydraulicsNuclear Energy and Safety

Comparison: inlet & after swirl vane & after lid

8 m

1.4 m

0 20 40 60 80 100 120 1400

20

40

60

80

100cw = 2 μm

x = 250 mm (MP4A) x = 400 mm (MP4A) x = 450 mm (MP4A) x = 500 mm (MP4A)

---------------------------------------------- (MP2A) (MP3A)

path: D:\kapulla\SWP55\ARTIST\PRC6\origin\.Droplets\MP4A_Tropfen_PDA_A_01.OPJName: MP4ABF100VCA10

BF100, A10

cum

mul

ativ

e vo

lum

e, %

diameter, μm

Carrier gas mass flow rate 100 kg/h.

– Large droplet content is dramatically reduced.

– Weakly increasing larger droplet content for increasing radial position at after lid (MP4A)

ANS meeting, Anaheim, CA (2008)

Laboratory for Thermal HydraulicsNuclear Energy and Safety

Mean axial velocities: after swirl vane

8 m

1.4 m

-200 -100 0 100 2000.0

0.4

0.8

1.2

M12 BF800 BF600 BF400 BF200 BF100 BF050

MP3Apath: D:\kapulla\SWP55\ARTIST\PRC6\origin\.Velocities\MP3_Velocities_Vers_E_A_01.OPJName: M12_Axial_Vel

u [

m/s

]

radial distance [mm]– Low velocities in the core region (-100 < r < 100 mm) due to blockage by swirl vane.

– Increasing velocities outside the core flow for increasing carrier gas mass flow rates.

ANS meeting, Anaheim, CA (2008)

Laboratory for Thermal HydraulicsNuclear Energy and Safety

-200 -100 0 100 200-4

-3-2

-1

0

12

3

4 M12 BF800 BF600 BF400 BF200 BF100 BF050

MP3Apath: D:\kapulla\SWP55\ARTIST\PRC6\origin\.Velocities\MP3_Velocities_Vers_E_A_01.OPJName: M12_Radial_Vel

v [

m/s]

radial distance [mm]

Mean radial velocities: after swirl vane

8 m

1.4 m

– Swirl vane introduces strong transverse velocity component.

– Magnitude of transverse velocity above magnitude of axial velocity.

ANS meeting, Anaheim, CA (2008)

Laboratory for Thermal HydraulicsNuclear Energy and Safety

Centrifugal force after the swirl vane

8 m

1.4 m

ANS meeting, Anaheim, CA (2008)

Laboratory for Thermal HydraulicsNuclear Energy and Safety

Summary

8 m

1.4 m

- Retention increases with increasing AMMD.

- Due to gravitational settling low carrier mass flow rates have higher retention than high mass flow rates.

- Velocity field database is (i) available and ready for the (ii)comparison with CFD-calculations.

- Very promising, high quality droplet distribution database is (i) available and ready for the (ii) comparison with CFD-calculations.