dr. alexei a. pevtsov

30
Dr. Alexei A. Pevtsov Helicity on the Sun. If you worry about publicity Do not speak of Current Helicity Jan Stenflo

Upload: howe

Post on 21-Jan-2016

65 views

Category:

Documents


0 download

DESCRIPTION

Helicity on the Sun. If you worry about publicity Do not speak of Current Helicity Jan Stenflo. Dr. Alexei A. Pevtsov. Helicity on the Sun:. What is it good for anyway?. Dr. Alexei A. Pevtsov. Outline. Definition of helicity (incl. graphic repr.) - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Dr. Alexei A. Pevtsov

Dr. Alexei A. Pevtsov

Helicity on the Sun.

If you worry about publicityDo not speak of Current Helicity

Jan Stenflo

Page 3: Dr. Alexei A. Pevtsov

Helicity on the Sun:

What is it good for anyway?

Dr. Alexei A. Pevtsov

Page 4: Dr. Alexei A. Pevtsov

Outline

• Definition of helicity (incl. graphic repr.)

• Hemispheric helicity rule (observations, origin, cycle variation)

• Helicity transport

• Fitting pieces of puzzle together???

Page 5: Dr. Alexei A. Pevtsov

Knots and BoltsH = 0

Page 6: Dr. Alexei A. Pevtsov

Knots and BoltsH = 0 H= -1

Page 7: Dr. Alexei A. Pevtsov

Writhe and Twist

H = W+T

W = -1; T=0

T = -1; W=0

Page 8: Dr. Alexei A. Pevtsov

Helicities BABA ,)()2( 21

)(WTdDH

tubefluxthinm

Eμα H

n BψBdVdVBα

ψ)BdVB(αB dVA H

ψ,B αA αB, B

-m

-m

-

1

21

1

1

2

0;

A – vector potential, B – magnetic induction.

For liner force-free field (constant)

where is arbitrary scalar function

, where E is magnetic energy

-topological invariant-conserves better than energy (Woltjer, 1958; Taylor 1974; Ji et al, 1995)-dynamo, reconnection, stability energy decay – 4-10.5% helicity dissipation – 1.3-5.1%

dDH c BB dDH k VV

Magnetic Helicity

Current Helicity

Kinetic Helicity

Page 9: Dr. Alexei A. Pevtsov

What We Observe

zbest ;

V

m BdVAH Observations: zyx BBBB ,,

Force-free field(1): BB mm EH 12

Current helicity density(2):

zzyyxxc JBJBJBJBBBh

WL, H-alpha, X-ray Morphology:

sinLc

%/; ccc hhh Abramenko et al, 1996Bao and Zhang, 1998

Pevtsov et al, 1995, Longcope et al, 1998

Page 10: Dr. Alexei A. Pevtsov

What We Observe

Relative helicity:

Nx

nx

Ny

ny yx

yx

r kkl

nnBdVBAdVBAH

1 1)22

2~

00 (

,2

dxdyBvAdxdyvBAdt

dHzpzp

R )(2)(2(e.g. Chae, 2001)

(Berger, 1985)

Page 11: Dr. Alexei A. Pevtsov

466 active regions observed 1988-2000 by Haleakala Stokes Polarimeter= -0.23, Likelihood of no correlation is 2.5x10-7

N/(-) S/(+)

69% 75% (cycle 22, Pevtsov et al, 1995)63% 70% (cycle 23, Pevtsov et al, 2001)

Seehafer, 1990Pevtsov et al, 1995, Abramenko et al, 1996Longcope et al, 1998, Bao and Zhang, 1998,Pevtsov et al. 2001,Hagino and Sakurai, 2002

60-80%, hemispheric helicity rule

Page 12: Dr. Alexei A. Pevtsov
Page 13: Dr. Alexei A. Pevtsov

Cycle variation?

Pevtsov et al 2001

Bao et al, 1999, reverse sign for hc at the beginning Cycle 23Hagino & Sakurai, 2002, some periods disobey the ruleNandi & Choudhuri 2004 – cycle variation of helicity rule

Lat

best

LATbest

Page 14: Dr. Alexei A. Pevtsov
Page 15: Dr. Alexei A. Pevtsov

Zhang, 2006

Page 16: Dr. Alexei A. Pevtsov

Observations Rad/Mm Ref.

AR ~0.01 Pevtsov et al 1995

substructures ~0.2 Pevtsov etal 1994, Leka et al, 1996

Sources of Twist

Joy’s Law 0.001 Longcope & Klapper 1997

Diff’l rotation 0.002 Longcope et al 1999

- effect ~0.02 Longcope et al 1998

Created in dynamo 4 x 10-5 Charbonneau & Gilman 1998

Holder et al, 2003;Tian et al., 2001

Chae 2001, Green et al 2003Demoulin et al 2003

– direct action of Coriolis force and differential rotation produce insufficient amount of helicity and cannot explain significant scatter in latitudinal dependency– dynamo does not produce enough helicity.-effect can do it all?

Seehafer et al, 2003

Longcope et al, 1999

Page 17: Dr. Alexei A. Pevtsov

Nandy, 2006~ -0.69

Scatter is latitude-independentTrend, scatter agree with -effect

Page 18: Dr. Alexei A. Pevtsov

Helicity Transport

dxdyByBxBEEμα H

B nψBdVdVBα

ψ)BdVB(αB dVA H

ψ,B αA αB, B

zyx-

m

-m

-

)(,2

0;11

21

1

1

For liner force-free field (constant)

where is arbitrary scalar function

Lepping et al (1990) fitted 18 MCs, =10-10 m-1, B0=0.0002 G, =1021 Mx.HMC=(L/2) 2= 5 x 1042 Mx2 Larson et al (1995), HMC= 4 x 1042 Mx2

Demoulin et al, 2002, AR797852 x 1042 Mx2 (26 CMEs, 1 rotation)5 rotations - ?Total helicity ejected by MCs often exceeds coronal helicity (diff. rotation cannot replenish).

Page 19: Dr. Alexei A. Pevtsov

Helicity Transport via Reconnection)0( BnifconstHm

Independent flux systems: Hm= H1+ H2+ H3; e.g. H1=0.5Hcrit; H2=0.4Hcrit; H3=0.2Hcrit Hm>Hcrit

Canfield & Reardon, 1998Pevtsov et al 1996

Page 20: Dr. Alexei A. Pevtsov

Twist in Emerging Flux TubeLongcope and Welsch, 2000:

- vortical motions responsible for helicity injection cannot be driven by pressure gradient and cannotbe produced by coupling motions of non-mag. plasma-magnetic torque at photosphere-corona transition cannot be countered by pressure gradients.

Page 21: Dr. Alexei A. Pevtsov

Evolution of ARs and their Helicity

- MDI full disk magnetograms-SoHO EIT 195A images- 6 emerging active regions

Maleev et al, 2002

Page 22: Dr. Alexei A. Pevtsov

Modeling Flux Emergence

)(

d

v

d

d

dt

d A

- no twist at emergence- emergence – linear increase in d- d increases in constant rate until t1

0)( 0 t

00 )( dtd

ttdttdd

tttttddtd

11010

1010

)(

)()( {

)(t

1000

}][{ )1()(111

tttvttd

d

v

v

dvvttd

ttvA

A /;)(

exp)( 11

11 ][

dH R 2

2 )(

2

2

ww

dt

dH R

Page 23: Dr. Alexei A. Pevtsov

Fitted Model ParametersNOAA alpha

ramp-up

(days)

d

days

Flux

(1020 Mx)

Helicity

1041Mx2

d0

Mm

VA

m sec-1

8582 1.73 1.20 30 4.0 26.93 71

8738 … 1.79 … … … …

8768 0.93 1.80 13 1.3 25.06 182

8817 1.00 1.20 17 0.9 26.79 84

9139 0.80 1.66 44 12.7 12.24 158

9193 0.87 1.80 2 0.1 23.45 60

Page 24: Dr. Alexei A. Pevtsov

Sunspot Rotation-Kempf, P., Astron. Nachrichten, 1910, Nr. 4429, Bd. 195, 197-Brown, et al, Solar Phys., 2003, 216, 79

-Pevtsov, A. A. and Sattarov, I.S., Soln. Dannye, 1985, No. 3, 65.

dayVR deg/1517

Courtesy R. Nightingale

Page 25: Dr. Alexei A. Pevtsov

Sunspot Rotation(R. Nightingale data)

CCW CW Bi-direct

N 31%

(70%)

13%

(30%)

16%

S 15%

(46%)

17%

(54%)

14%

* Correct sign of twist; “hemispheric preference” is in agreement with the hemispheric helicity rule* No good correlation between sign of current helicity and direction of rotation

Page 26: Dr. Alexei A. Pevtsov

Courtesy R. Nightingale

Page 27: Dr. Alexei A. Pevtsov
Page 28: Dr. Alexei A. Pevtsov

Kinetic Helicity and flares

See poster by F. Hill et al

Page 29: Dr. Alexei A. Pevtsov

How These All Might Fit Together?

• Solar magnetic fields exhibit hemispheric sign asymmetry.Helicity (ARs) is created in upper CZN (-effect explains large scatter and helicity amplitude; solar cycle variations???).

• Helicity is removed from AR as a result of eruption.• Subphotospheric portion of flux tube may serve as

“reservoir” of helicity, supplying helicity between flares/CMEs.

• Sunspot rotation and subphotospheric pattern of kinetic helicity may be indications of helicity transport via torsional waves.

Page 30: Dr. Alexei A. Pevtsov

Open Questions

• Evolution of kinetic helicity (before/after flare/flux emergence).

• Timing of sunspot rotation vs. flare

• Is helicity of active region determined at their emergence, or maybe, significant amount of helicity can be injected later during AR lifetime?