dqg wkh&hqwuh1dwlrqdoghod5hfkhufkh6flhqwliltxh › suppdata › c6 › nj › c6nj02196d ›...

13
1 Supporting Information Biginelli-based Organic Nanoprobe for Simultaneous Estimation of Tyramine and 1, 2- Diaminopropane: application in real samples. Gaganpreet Kaur, a Tilak Raj, b Navneet Kaur a,c* and Narinder Singh b* a Centre for Nanoscience & Nanotechnology (UIEAST), Panjab University, Chandigarh, 160014, India. E-mail: [email protected]; Tel: +91-1722534464 b Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, India, 140001. E-mail: [email protected]; Fax: +91-1881223395; Tel: +91-1881242176. c Department of Chemistry, Panjab University, Chandigarh, 160014, India. E-mail: [email protected] Table of contents Figure S1. 1 H NMR spectrum of compound 1 and its expansion. Figure S2. 13 C NMR spectrum of compound 1. Figure S3. ESI Mass spectrum of compound 1. Figure S4. Plot of variation in size of nanoparticles as a function of concentration of compound 1 in water. Figure S5. Linear regression graph for Ag (I) titration. Figure S6. Linear regression graphs for Tyramine titration (A) and linear regression graph for 1,2-Diaminopropane titration (B). Figure S7. Non-linear regression graphs between Fluorescence Intensity vs. Concentrations of amines (at higher concentrations). Figure S8. Fluorescence spectra of nano-aggregates N1 at different concentrations of TBA perchlorate to evaluate the salt effect. Figure S9. Fluorescence spectra of nano-aggregates N1 at different pH values. Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Upload: others

Post on 29-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: DQG WKH&HQWUH1DWLRQDOGHOD5HFKHUFKH6FLHQWLILTXH › suppdata › c6 › nj › c6nj02196d › c6nj02196d1.pdf · Gaganpreet Kaur,a Tilak Raj,b Navneet Kaura,c* and Narinder Singhb*

1

Supporting Information

Biginelli-based Organic Nanoprobe for Simultaneous Estimation of Tyramine and 1, 2-

Diaminopropane: application in real samples.

Gaganpreet Kaur,a Tilak Raj,b Navneet Kaura,c* and Narinder Singhb*

aCentre for Nanoscience & Nanotechnology (UIEAST), Panjab University, Chandigarh, 160014,

India. E-mail: [email protected]; Tel: +91-1722534464

bDepartment of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, India,

140001. E-mail: [email protected]; Fax: +91-1881223395; Tel: +91-1881242176.

cDepartment of Chemistry, Panjab University, Chandigarh, 160014, India. E-mail:

[email protected]

Table of contents

Figure S1. 1H NMR spectrum of compound 1 and its expansion.

Figure S2. 13

C NMR spectrum of compound 1.

Figure S3. ESI Mass spectrum of compound 1.

Figure S4. Plot of variation in size of nanoparticles as a function of concentration of compound

1 in water.

Figure S5. Linear regression graph for Ag (I) titration.

Figure S6. Linear regression graphs for Tyramine titration (A) and linear regression graph for

1,2-Diaminopropane titration (B).

Figure S7. Non-linear regression graphs between Fluorescence Intensity vs. Concentrations of

amines (at higher concentrations).

Figure S8. Fluorescence spectra of nano-aggregates N1 at different concentrations of TBA

perchlorate to evaluate the salt effect.

Figure S9. Fluorescence spectra of nano-aggregates N1 at different pH values.

Electronic Supplementary Material (ESI) for New Journal of Chemistry.This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Page 2: DQG WKH&HQWUH1DWLRQDOGHOD5HFKHUFKH6FLHQWLILTXH › suppdata › c6 › nj › c6nj02196d › c6nj02196d1.pdf · Gaganpreet Kaur,a Tilak Raj,b Navneet Kaura,c* and Narinder Singhb*

2

Figure S10. Fluorescence intensity v/s pH graphs of A) N1.Ag(I) complex with 50 µM

Tyramine and B) N1.Ag(I) complex with 50 µM 1,2-Diaminopropane.

Figure S11. Plot of fluorescence intensity ratios of N1 and Ag (I) at different concentrations, as

a function of time.

Figure S12. Stability of organic nanoparticles, N1 and the N1.Ag(I) complex over a period of

two weeks.

Figure S13. Fluorescence intensity variation of A) N1 on addition of different metal ions and B)

N1.Ag(I) on addition of different Biogenic amines using five different batches of sensors to

check the reproducibility.

Figure S14. Fluorescence intensity variation of A) N1 on addition of different metal ions and B)

N1.Ag(I) on addition of different Biogenic amines in presence of HEPES buffer, pH 7.4.

Figure S15. Fluorescence intensity v/s wavelength graph of N1.Ag(I) complex with 50 µM each of Tyramine and 50 µM 1, 2-Diaminopropane mixed together.

Table S1: Comparison of current sensor with existing literature.

Page 3: DQG WKH&HQWUH1DWLRQDOGHOD5HFKHUFKH6FLHQWLILTXH › suppdata › c6 › nj › c6nj02196d › c6nj02196d1.pdf · Gaganpreet Kaur,a Tilak Raj,b Navneet Kaura,c* and Narinder Singhb*

3

1H-NMR(DMSO, 400MHz)

13 12 11 10 9 8 7 6 5 4 3 2 1 0 ppm

0.00

01

2.46

322.

5088

2.51

292.

5174

2.52

182.

5261

3.36

653.

5812

6.49

336.

8982

6.89

986.

9180

6.93

596.

9379

6.99

536.

9971

7.01

587.

0331

7.03

527.

1388

7.14

097.

1511

7.15

307.

1574

7.15

977.

1695

7.17

177.

2238

7.24

337.

3120

7.33

167.

5589

7.57

837.

6865

7.69

097.

7056

7.71

007.

7248

7.72

918.

2326

8.36

408.

3741

10.7

895

3.03

3.20

1.10

1.36

1.25

1.20

1.33

1.23

1.21

1.18

1.06

1.07

Current Data ParametersNAME Aug28-2015EXPNO 80PROCNO 1

F2 - Acquisition ParametersDate_ 20150828Time 12.16INSTRUM spectPROBHD 5 mm PABBO BB-PULPROG zg30TD 65536SOLVENT DMSONS 8DS 2SWH 12019.230 HzFIDRES 0.183399 HzAQ 2.7263477 secRG 456DW 41.600 usecDE 6.00 usecTE 296.9 KD1 1.00000000 secTD0 1

======== CHANNEL f1 ========NUC1 1HP1 10.90 usecPL1 -3.00 dBSFO1 400.1324710 MHz

F2 - Processing parametersSI 32768SF 400.1299966 MHzWDW EMSSB 0LB 0.30 HzGB 0PC 1.00

GK-14BRUKERAVANCE II 400 NMRSpectrometerSAIFPanjab UniversityChandigarh

[email protected]

Page 4: DQG WKH&HQWUH1DWLRQDOGHOD5HFKHUFKH6FLHQWLILTXH › suppdata › c6 › nj › c6nj02196d › c6nj02196d1.pdf · Gaganpreet Kaur,a Tilak Raj,b Navneet Kaura,c* and Narinder Singhb*

4

Figure S1. 1H NMR spectrum of compound 1 and its expansion.

6.46.56.66.76.86.97.07.17.27.37.47.57.67.77.87.98.08.18.28.38.48.5 ppm

6.49

33

6.89

826.

8998

6.91

806.

9359

6.93

796.

9953

6.99

717.

0158

7.03

317.

0352

7.13

887.

1409

7.15

117.

1530

7.15

747.

1597

7.16

957.

1717

7.22

387.

2433

7.31

207.

3316

7.55

897.

5783

7.68

657.

6909

7.70

567.

7100

7.72

487.

7291

8.23

26

8.36

408.

3741

1.10

1.36

1.25

1.20

1.33

1.23

1.21

1.18

1.06

Current Data ParametersNAME Aug28-2015EXPNO 80PROCNO 1

F2 - Acquisition ParametersDate_ 20150828Time 12.16INSTRUM spectPROBHD 5 mm PABBO BB-PULPROG zg30TD 65536SOLVENT DMSONS 8DS 2SWH 12019.230 HzFIDRES 0.183399 HzAQ 2.7263477 secRG 456DW 41.600 usecDE 6.00 usecTE 296.9 KD1 1.00000000 secTD0 1

======== CHANNEL f1 ========NUC1 1HP1 10.90 usecPL1 -3.00 dBSFO1 400.1324710 MHz

F2 - Processing parametersSI 32768SF 400.1299966 MHzWDW EMSSB 0LB 0.30 HzGB 0PC 1.00

GK-14BRUKERAVANCE II 400 NMRSpectrometerSAIFPanjab UniversityChandigarh

[email protected]

Page 5: DQG WKH&HQWUH1DWLRQDOGHOD5HFKHUFKH6FLHQWLILTXH › suppdata › c6 › nj › c6nj02196d › c6nj02196d1.pdf · Gaganpreet Kaur,a Tilak Raj,b Navneet Kaura,c* and Narinder Singhb*

5

Figure S2. 13

C NMR spectrum of compound 1.

13C-NMR, CDCl3, 100 MHz

Page 6: DQG WKH&HQWUH1DWLRQDOGHOD5HFKHUFKH6FLHQWLILTXH › suppdata › c6 › nj › c6nj02196d › c6nj02196d1.pdf · Gaganpreet Kaur,a Tilak Raj,b Navneet Kaura,c* and Narinder Singhb*

6

Figure S3. ESI Mass spectrum of compound 1.

Figure S4. Plot of variation in size of nanoparticles as a function of concentration of compound

1 in water.

Page 7: DQG WKH&HQWUH1DWLRQDOGHOD5HFKHUFKH6FLHQWLILTXH › suppdata › c6 › nj › c6nj02196d › c6nj02196d1.pdf · Gaganpreet Kaur,a Tilak Raj,b Navneet Kaura,c* and Narinder Singhb*

7

Figure S5. Linear regression graph for Ag (I) titration.

Figure S6. Linear regression graphs for Tyramine titration (A) and linear regression graph for

1,2-Diaminopropane titration (B).

y = -3.7078x + 384.39 R² = 0.995

050

100150200250300350400450

0 10 20 30 40 50 60 70 80Fluo

resc

ence

Inte

nsity

(a.u

.)

Ag (I) concentration (µM)

y = 6.5157x + 122.64 R² = 0.9961

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70Fluo

resc

ence

Inte

nsity

(a.u

.)

Tyr concentration (µM)

A y = 7.5381x + 0.4139

R² = 0.9947

0

100

200

300

400

500

600

0 20 40 60 80Fluo

resc

ence

Inte

nsity

(a.u

.)

1, 2-Dap concentration (µM)

B

Page 8: DQG WKH&HQWUH1DWLRQDOGHOD5HFKHUFKH6FLHQWLILTXH › suppdata › c6 › nj › c6nj02196d › c6nj02196d1.pdf · Gaganpreet Kaur,a Tilak Raj,b Navneet Kaura,c* and Narinder Singhb*

8

Figure S7. Non-linear regression graphs between Fluorescence Intensity vs. Concentrations of

amines (at higher concentrations).

Figure S8. Fluorescence spectra of nano-aggregates N1 at different concentrations of (A) TBA

perchlorate to evaluate the salt effect and (B) in presence of NaCl.

0

100

200

300

400

500

600

700

0 20 40 60 80 100 120

Fluo

resc

ence

Inte

nsity

(a.u

.)

Tyr concentration (µM)

A

0

100

200

300

400

500

600

700

0 20 40 60 80 100 120

Fluo

resc

ence

Inte

nsity

(a.u

.)

1, 2-Dap concentration (µM)

B

0

100

200

300

400

500

600

350 450 550 650Flu

ore

sc

en

ce

In

ten

sit

y (a

.u.)

Wavelength (nm)

A

N15 eq.10 eq.50 eq.100 eq.200 eq.

0

100

200

300

400

500

600

350 450 550 650Flu

ore

sc

en

ce

In

ten

sit

y (a

.u.)

Wavelength (nm)

B

N15 eq.10 eq.50 eq.100 eq.200 eq.

Page 9: DQG WKH&HQWUH1DWLRQDOGHOD5HFKHUFKH6FLHQWLILTXH › suppdata › c6 › nj › c6nj02196d › c6nj02196d1.pdf · Gaganpreet Kaur,a Tilak Raj,b Navneet Kaura,c* and Narinder Singhb*

9

Figure S9. Fluorescence spectra of nano-aggregates N1 at different pH values.

Figure S10. Fluorescence intensity v/s pH graphs of A) N1.Ag(I) complex with 50 µM Tyramine and B) N1.Ag(I) complex with 50 µM 1,2-Diaminopropane.

200

250

300

350

400

450

500

2 4 6 8 10 12 14Fluo

resc

ence

Inte

nsity

(a.u

.)

pH

A

200

250

300

350

400

450

500

2 4 6 8 10 12 14Fluo

resc

ence

Inte

nsity

(a.u

.)

pH

B

Page 10: DQG WKH&HQWUH1DWLRQDOGHOD5HFKHUFKH6FLHQWLILTXH › suppdata › c6 › nj › c6nj02196d › c6nj02196d1.pdf · Gaganpreet Kaur,a Tilak Raj,b Navneet Kaura,c* and Narinder Singhb*

10

Figure S11. Plot of fluorescence intensity ratios of N1 and Ag (I) at different concentrations, as

a function of time.

Figure S12. Stability of organic nanoparticles, N1 and the N1.Ag(I) complex over a period of

two weeks.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12

Inte

nsity

Rat

io (a

.u.)

Time (minutes)

N1+10 µM Ag(I)N1+20µM Ag(I)N1+40 µM Ag(I)N1+70 µM Ag(I)

050100150200250300350400450

0 2 4 6 8 10 12 14

Fluo

resc

ence

Inte

nsity

(a.u

.)

Time (in days)

N1N1.Ag(I)

Page 11: DQG WKH&HQWUH1DWLRQDOGHOD5HFKHUFKH6FLHQWLILTXH › suppdata › c6 › nj › c6nj02196d › c6nj02196d1.pdf · Gaganpreet Kaur,a Tilak Raj,b Navneet Kaura,c* and Narinder Singhb*

11

Figure S13. Fluorescence intensity variation of A) N1 on addition of different metal ions and B)

N1.Ag(I) on addition of different Biogenic amines using five different batches of sensors to

check the reproducibility.

Figure S14. Fluorescence intensity variation of A) N1 on addition of different metal ions and B)

N1.Ag(I) on addition of different Biogenic amines in presence of HEPES buffer, pH 7.4.

050

100150200250300350400450

N1

Li (I

)N

a (I)

K (I)

Cs

(I)M

g (II

)C

a (II

)Sr

(II)

Ba (I

I)C

r (III

)M

n (II

)Fe

(III)

Co

(II)

Cu

(II)

Zn (I

I)C

d (II

)Pb

(II)

Ag (I

)Fluo

resc

ence

Inte

nsity

(a.u

.) A

050

100150200250300350400450500

N1.

Ag(I)

Spd

Spm Tyr

2,2-

Dpe His

1,2-

Dap

1,4-

Dab

u

1,5-

Dap

e

Fluo

resc

ence

Inte

nsity

(a.u

.)

B

050

100150200250300350400450

N1

Li (I

)N

a (I)

K (I)

Cs

(I)M

g (II

)C

a (II

)Sr

(II)

Ba (I

I)C

r (III

)M

n (II

)Fe

(III)

Co

(II)

Cu

(II)

Zn (I

I)C

d (II

)Pb

(II)

Ag (I

)Fluo

resc

ence

Inte

nsity

(a.u

.)

A

050

100150200250300350400450500

N1.

Ag(I)

Spd

Spm Tyr

2,2-

Dpe His

1,2-

Dap

1,4-

Dab

u

1,5-

Dap

e

Fluo

resc

ence

Inte

nsity

(a.u

.)

B

Page 12: DQG WKH&HQWUH1DWLRQDOGHOD5HFKHUFKH6FLHQWLILTXH › suppdata › c6 › nj › c6nj02196d › c6nj02196d1.pdf · Gaganpreet Kaur,a Tilak Raj,b Navneet Kaura,c* and Narinder Singhb*

12

Figure S15. Fluorescence intensity v/s wavelength graph of N1.Ag(I) complex with 50 µM each of Tyramine and 50 µM 1,2-Diaminopropane mixed together.

Determination of detection limit.

The detection limit (DL) of nano-aggregates of 1 for Ag (I) was determined from the following

equation:

Where K = 3; Sb1 is the standard deviation of the blank solution; S is the slope of the calibration

curve. The detection limits of biogenic amines were also determined in a similar fashion.

0

100

200

300

400

500

600

350 400 450 500 550 600

Fluo

resc

ence

Inte

nsity

(a.u

.)

Wavelength (nm)

N1.Ag(I)Tyr+1,2-Dap

Page 13: DQG WKH&HQWUH1DWLRQDOGHOD5HFKHUFKH6FLHQWLILTXH › suppdata › c6 › nj › c6nj02196d › c6nj02196d1.pdf · Gaganpreet Kaur,a Tilak Raj,b Navneet Kaura,c* and Narinder Singhb*

13

Table S1: Comparison of current sensor with existing literature.

S. No.

Mode of detection Pretreatment Application to real sample analysis

Detection limit

Reference

1 UV Pretreatment Urine 0.06 µM J. Sep. Sci., 2009, 32, 4143–4147.

2 Matrix -solid -phase-dispersion using HPLC −electrospray−tandemMS

Pretreatment Cheese 0.06 mg/kg

J. Agric. Food Chem. 2005, 53, 3779−3783.

3 UHPLC-MS/MS Pretreatment Anchovy (fish)

Range: 10−750 µg/L

J. Agric. Food Chem. 2012, 60, 5324−5329

4 RP-HPLC coupled with fluorimetry

precolumn dansylation

Wines 0.04 mg/l Food Chem., 2008, 106, 1218–1224

5 Electrochemical sensor based on MWCNT-gold nanoparticle composites

- Yoghurt 57 nM Food Res. Int., 2011, 44, 276–281.

6 Cyclic voltammetry using SWCNT

Pretreatment Fish products

0.62 µM J. Food Eng., 2015, 149, 1–8.

7 Absorption-based Chromogenic Sensing on filter paper

- - 0.02 mM Anal. Chem. 2010, 82, 8402-8405

8 Chameleon dye based, microtitre plate using fluorescence spectroscopy

Pretreatment Fish samples

3.4 µM Analyst, 2011, 136, 4492–4499

9 Micellar liquid chromatography and pulsed amperometric

- Wine 12ng/ml J. Chromatogr. A, 2007, 1156, 288–295.

10 Amperometry Pretreatment Sauerkraut 0.57 µM Sens. Actuators B, 2013, 178, 40– 46

11 Fluorescence Spectroscopy-using easily-engineered nanomaterials

No Milk and Wine

3.91 nM Current study.