dépôt neg, élaboration, caractérisation et...

34
Dépôt NEG, élaboration, caractérisation et application. Pedro Costa Pinto Technology Department Vacuum Surfaces and Coatings group

Upload: others

Post on 16-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Dépôt NEG, élaboration, caractérisation et application.rtvide.cnrs.fr/IMG/pdf/RTVide2016_Pedro_Costa_Pinto.pdf · Vacuum, Surfaces & Coatings Group Technology Department Evaluate

Dépôt NEG, élaboration,

caractérisation et application.

Pedro Costa Pinto

Technology Department

Vacuum Surfaces and Coatings group

Page 2: Dépôt NEG, élaboration, caractérisation et application.rtvide.cnrs.fr/IMG/pdf/RTVide2016_Pedro_Costa_Pinto.pdf · Vacuum, Surfaces & Coatings Group Technology Department Evaluate

Vacuum, Surfaces & Coatings Group

Technology Department

1 Introduction

2 Élaboration

3 Caractérisation

4 Application

5 Sommaire

OUTLOOK

2 Rencontres Nationales du Réseau des Technologies du Vide 2016

Page 3: Dépôt NEG, élaboration, caractérisation et application.rtvide.cnrs.fr/IMG/pdf/RTVide2016_Pedro_Costa_Pinto.pdf · Vacuum, Surfaces & Coatings Group Technology Department Evaluate

Vacuum, Surfaces & Coatings Group

Technology Department 3 Rencontres Nationales du Réseau des Technologies du Vide 2016

1 Introduction

Getters are materials capable of chemically adsorbing gas molecules (by

chemisorption).

Getter

Limited to 1 monolayer(~5x1014 molecules/cm2)

Getter

Very large capacity!

Reactive gases are pumped:

CO, O2, H2O, N2, H2, CO2

noble gases and methane are not pumped.

Chemisorption

(surface pumping) Diffusion

(bulk pumping)

At room temperature only H2 diffuses

Other reactive gases require higher

temperature

To do so, their surface must be clean.

Page 4: Dépôt NEG, élaboration, caractérisation et application.rtvide.cnrs.fr/IMG/pdf/RTVide2016_Pedro_Costa_Pinto.pdf · Vacuum, Surfaces & Coatings Group Technology Department Evaluate

Vacuum, Surfaces & Coatings Group

Technology Department 4 Rencontres Nationales du Réseau des Technologies du Vide 2016

1 Introduction

The pumping speed of a getter, Sgetter:

𝑆𝑔𝑒𝑡𝑡𝑒𝑟 = 𝐴 ∙𝑘∙𝑇

2∙𝜋∙𝑚 ∙ 𝑠

surface A Molecular

impingement rate

sticking probability

sH2 0.005 ~ 0.05

sN2 0.003 ~ 0.03

sCO, O2 H2O 0.4 ~ 0.9

Page 5: Dépôt NEG, élaboration, caractérisation et application.rtvide.cnrs.fr/IMG/pdf/RTVide2016_Pedro_Costa_Pinto.pdf · Vacuum, Surfaces & Coatings Group Technology Department Evaluate

Vacuum, Surfaces & Coatings Group

Technology Department 5 Rencontres Nationales du Réseau des Technologies du Vide 2016

1 Introduction

The pumping speed of a getter, Sgetter: depends on the amount of gas pumped.

James M. Lafferty, Foundations of Vacuum Science and Technology, ISBN: 978-0-471-17593-3.

Page 6: Dépôt NEG, élaboration, caractérisation et application.rtvide.cnrs.fr/IMG/pdf/RTVide2016_Pedro_Costa_Pinto.pdf · Vacuum, Surfaces & Coatings Group Technology Department Evaluate

Vacuum, Surfaces & Coatings Group

Technology Department 6 Rencontres Nationales du Réseau des Technologies du Vide 2016

1 Introduction

Getters can be classified by the way the clean surface is obtained:

In situ deposition of a fresh getter

film (under vacuum) Evaporable Getters

Ti filaments

Page 7: Dépôt NEG, élaboration, caractérisation et application.rtvide.cnrs.fr/IMG/pdf/RTVide2016_Pedro_Costa_Pinto.pdf · Vacuum, Surfaces & Coatings Group Technology Department Evaluate

Vacuum, Surfaces & Coatings Group

Technology Department 7 Rencontres Nationales du Réseau des Technologies du Vide 2016

1 Introduction

Getters can be classified by the way the clean surface is obtained:

Diffusion of the oxide layer into the

bulk (usually by heating in vacuum

to the activation temperature)

Non Evaporable Getters

(NEG)

In situ deposition of a fresh getter

film (under vacuum) Evaporable Getters

Page 8: Dépôt NEG, élaboration, caractérisation et application.rtvide.cnrs.fr/IMG/pdf/RTVide2016_Pedro_Costa_Pinto.pdf · Vacuum, Surfaces & Coatings Group Technology Department Evaluate

Vacuum, Surfaces & Coatings Group

Technology Department 8 Rencontres Nationales du Réseau des Technologies du Vide 2016

1 Introduction

Getters can be classified by the way the clean surface is obtained:

Diffusion of the oxide layer into the

bulk (usually by heating in vacuum

to the activation temperature)

Non Evaporable Getters

(NEG)

In situ deposition of a fresh getter

film (under vacuum) Evaporable Getters

Before coating after coating

Page 9: Dépôt NEG, élaboration, caractérisation et application.rtvide.cnrs.fr/IMG/pdf/RTVide2016_Pedro_Costa_Pinto.pdf · Vacuum, Surfaces & Coatings Group Technology Department Evaluate

Vacuum, Surfaces & Coatings Group

Technology Department 9

NEG coatings have been produced by Magnetron Sputtering of elements and

alloys from the IV and V group of the periodic table.

high oxygen

Solubility and diffusivity

2 Élaboration

Rencontres Nationales du Réseau des Technologies du Vide 2016

More than 20 materials were investigated by combining 2 or 3 of this elements

in the form of thin films.

Page 10: Dépôt NEG, élaboration, caractérisation et application.rtvide.cnrs.fr/IMG/pdf/RTVide2016_Pedro_Costa_Pinto.pdf · Vacuum, Surfaces & Coatings Group Technology Department Evaluate

Vacuum, Surfaces & Coatings Group

Technology Department 10

NEG coatings have been produced by Magnetron Sputtering of elements and

alloys from the IV and V group of the periodic table.

More than 20 materials were investigated by combining 2 or 3 of this elements

in the form of thin films.

In 2002, Ti-Zr-V was retained for large scale production for the LHC.

Activation: 24 hours at 180oC.

ZrV

Ti

30 40 50 60

TiZrV

Substrate

(degrees)

30 40 50 60

TiZrV Nanocrystalline

grain size 3~5 nm

Well crystallised

grain size ≥ 100 nm

good

bad

Rencontres Nationales du Réseau des Technologies du Vide 2016

2 Élaboration

Page 11: Dépôt NEG, élaboration, caractérisation et application.rtvide.cnrs.fr/IMG/pdf/RTVide2016_Pedro_Costa_Pinto.pdf · Vacuum, Surfaces & Coatings Group Technology Department Evaluate

Vacuum, Surfaces & Coatings Group

Technology Department 11

More than 1300 beampipes, with different shapes and lengths, were coated at

CERN for the LHC.

3mm wires

of Ti, Zr

and V

8 m

ete

r so

len

oid

Rencontres Nationales du Réseau des Technologies du Vide 2016

2 Élaboration

Page 12: Dépôt NEG, élaboration, caractérisation et application.rtvide.cnrs.fr/IMG/pdf/RTVide2016_Pedro_Costa_Pinto.pdf · Vacuum, Surfaces & Coatings Group Technology Department Evaluate

Vacuum, Surfaces & Coatings Group

Technology Department 12

At CERN, many other accelerators and experiments use NEG coatings.

Rencontres Nationales du Réseau des Technologies du Vide 2016

2 Élaboration

LEIR - Low Energy Ion Ring Paverage ~ 10-12 mbar

Page 13: Dépôt NEG, élaboration, caractérisation et application.rtvide.cnrs.fr/IMG/pdf/RTVide2016_Pedro_Costa_Pinto.pdf · Vacuum, Surfaces & Coatings Group Technology Department Evaluate

Vacuum, Surfaces & Coatings Group

Technology Department 13

At CERN, many other accelerators and experiments use NEG coatings.

Rencontres Nationales du Réseau des Technologies du Vide 2016

2 Élaboration

Plates for ALICE

Page 14: Dépôt NEG, élaboration, caractérisation et application.rtvide.cnrs.fr/IMG/pdf/RTVide2016_Pedro_Costa_Pinto.pdf · Vacuum, Surfaces & Coatings Group Technology Department Evaluate

Vacuum, Surfaces & Coatings Group

Technology Department 14

At CERN, many other accelerators and experiments use NEG coatings.

Rencontres Nationales du Réseau des Technologies du Vide 2016

2 Élaboration

ELENA - Extra Low Energy Antiproton Ring

Page 15: Dépôt NEG, élaboration, caractérisation et application.rtvide.cnrs.fr/IMG/pdf/RTVide2016_Pedro_Costa_Pinto.pdf · Vacuum, Surfaces & Coatings Group Technology Department Evaluate

Vacuum, Surfaces & Coatings Group

Technology Department 15

Also in collaboration with other institutes: the MAX IV project, Sweeden.

Rencontres Nationales du Réseau des Technologies du Vide 2016

2 Élaboration

VC2a

Page 16: Dépôt NEG, élaboration, caractérisation et application.rtvide.cnrs.fr/IMG/pdf/RTVide2016_Pedro_Costa_Pinto.pdf · Vacuum, Surfaces & Coatings Group Technology Department Evaluate

Vacuum, Surfaces & Coatings Group

Technology Department 16

At CERN, many other accelerators and experiments use NEG coatings.

Rencontres Nationales du Réseau des Technologies du Vide 2016

2 Élaboration

Page 17: Dépôt NEG, élaboration, caractérisation et application.rtvide.cnrs.fr/IMG/pdf/RTVide2016_Pedro_Costa_Pinto.pdf · Vacuum, Surfaces & Coatings Group Technology Department Evaluate

Vacuum, Surfaces & Coatings Group

Technology Department 17

ESRF (France) SAES getters

(Italy)

LNLS (Brazil)

GSI (Germany)

Rencontres Nationales du Réseau des Technologies du Vide 2016

FMB Berlin (Germany)

Several producers worldwide (industry and research institutes)

2 Élaboration

Page 18: Dépôt NEG, élaboration, caractérisation et application.rtvide.cnrs.fr/IMG/pdf/RTVide2016_Pedro_Costa_Pinto.pdf · Vacuum, Surfaces & Coatings Group Technology Department Evaluate

Vacuum, Surfaces & Coatings Group

Technology Department 18

The users community is still growing:

Rencontres Nationales du Réseau des Technologies du Vide 2016

CERN

ESRF ELECTRA

SOLEIL DESY DIAMOND

MaxLab

BNL

LNLS

KEK

NSRRC

AS

ISA

ALBA

SESAME

ILSF

ANL

2 Élaboration

Page 19: Dépôt NEG, élaboration, caractérisation et application.rtvide.cnrs.fr/IMG/pdf/RTVide2016_Pedro_Costa_Pinto.pdf · Vacuum, Surfaces & Coatings Group Technology Department Evaluate

Vacuum, Surfaces & Coatings Group

Technology Department

Evaluate NEG activation by X-ray Photoelectron Spectroscopy (XPS)

3 Caractérisation

0

20000

40000

60000

80000

100000

120000

140000

0 50 100 150 200 250 300 350

Activation temperature (ºC) - 1h heating

O 1

s p

eak a

rea (

a.u

.)

old reference on stst

preseries HCVCD__001-

CR000002

protptype series/Cu

prototype series/ stst

Ti

Zr

V

Good activation if reduction of O 1s

peak area > 66%

Monitoring the evolution of the surface oxygen in

function of the temperature. (in steps of 1 hour)

Rencontres Nationales du Réseau des Technologies

du Vide 2016 19

Page 20: Dépôt NEG, élaboration, caractérisation et application.rtvide.cnrs.fr/IMG/pdf/RTVide2016_Pedro_Costa_Pinto.pdf · Vacuum, Surfaces & Coatings Group Technology Department Evaluate

Vacuum, Surfaces & Coatings Group

Technology Department 20

Measure the pumping speed of a thin film: aperture method

c

P1 P2

RGA

Pumping

group

Getter disk

(flange)

Gas injection

(H2, CO, ..)

𝑆𝑔𝑒𝑡𝑡𝑒𝑟 = 𝑆𝑎 =𝑃1 − 𝑃2

𝑃2𝑐

𝑆𝑎

𝑆𝑔𝑒𝑡𝑡𝑒𝑟 = 𝐴𝑘𝑇

2𝜋𝑚 𝑠

𝑠 =𝑃1 − 𝑃2

𝑃2𝑐

1

𝐴

2𝜋𝑚

𝑘𝑇

Rencontres Nationales du Réseau des Technologies du Vide 2016

Pumping speed dome

3 Caractérisation

Page 21: Dépôt NEG, élaboration, caractérisation et application.rtvide.cnrs.fr/IMG/pdf/RTVide2016_Pedro_Costa_Pinto.pdf · Vacuum, Surfaces & Coatings Group Technology Department Evaluate

Vacuum, Surfaces & Coatings Group

Technology Department 21

Measure the pumping speed of a thin film: aperture method

c

P1 P2

RGA

Pumping

group

Getter disk

(flange)

Gas injection

(H2, CO, ..)

𝑆𝑎

𝑆𝑔𝑒𝑡𝑡𝑒𝑟 = 𝑆𝑎 =𝑃1 − 𝑃2

𝑃2𝑐

𝑆𝑔𝑒𝑡𝑡𝑒𝑟 = 𝐴𝑘𝑇

2𝜋𝑚 𝑠

𝑠 =𝑃1 − 𝑃2

𝑃2𝑐

1

𝐴

2𝜋𝑚

𝑘𝑇

Rencontres Nationales du Réseau des Technologies du Vide 2016

Pumping speed dome

3 Caractérisation

Page 22: Dépôt NEG, élaboration, caractérisation et application.rtvide.cnrs.fr/IMG/pdf/RTVide2016_Pedro_Costa_Pinto.pdf · Vacuum, Surfaces & Coatings Group Technology Department Evaluate

Vacuum, Surfaces & Coatings Group

Technology Department 22

Measure the pumping speed of a thin film: aperture method

c

P1 P2

RGA

Pumping

group

Gas injection

(H2, CO, ..)

𝑆𝑎

Getter tube

L/R

L

R

𝑆𝑎 =𝑃1 − 𝑃2

𝑃2𝑐

𝑆𝑎 = 𝐴𝑘𝑇

2𝜋𝑚 𝛼

𝛼 → 𝑐𝑎𝑝𝑡𝑢𝑟𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

Monte Carlo

simulation

Rencontres Nationales du Réseau des Technologies du Vide 2016

Pumping speed dome

1

5

10 20

50 100 200

500

3 Caractérisation

Page 23: Dépôt NEG, élaboration, caractérisation et application.rtvide.cnrs.fr/IMG/pdf/RTVide2016_Pedro_Costa_Pinto.pdf · Vacuum, Surfaces & Coatings Group Technology Department Evaluate

Vacuum, Surfaces & Coatings Group

Technology Department 23

Measure the pumping speed of a thin film: aperture method

Rencontres Nationales du Réseau des Technologies du Vide 2016

3 Caractérisation

Smooth (coated at 100oC) Rough (coated at 300oC)

Page 24: Dépôt NEG, élaboration, caractérisation et application.rtvide.cnrs.fr/IMG/pdf/RTVide2016_Pedro_Costa_Pinto.pdf · Vacuum, Surfaces & Coatings Group Technology Department Evaluate

Vacuum, Surfaces & Coatings Group

Technology Department 24

Measure the pumping speed of a thin film:

c

P1 P2

RGA

Pumping

group

Gas injection

(H2, CO, ..)

𝑆𝑎

Getter tube

L/R

L

R P3

=𝑃3

𝑃2 Pressure ratio

Monte Carlo

simulation

If pressure ratio too low:

very high P2 is necessary to get signal in P3

Cool down

with Liquid N2

transmission method

Rencontres Nationales du Réseau des Technologies du Vide 2016

Pre

ssu

re r

atio

If using CO => fast saturation at the entrance

If using H2 => dissociation of H2 in hot filament => methane

3 Caractérisation

Page 25: Dépôt NEG, élaboration, caractérisation et application.rtvide.cnrs.fr/IMG/pdf/RTVide2016_Pedro_Costa_Pinto.pdf · Vacuum, Surfaces & Coatings Group Technology Department Evaluate

Vacuum, Surfaces & Coatings Group

Technology Department

Pre

ssu

re r

ati

o

25

Measure the pumping speed of a thin film: transmission method

Example: H2 transmission in NEG coated tube with L/R=95

𝐿

𝑅=

1000

10.5

Pend Pin

H2 injection

Pressure ratio sticking

5x10-3 5.5x10-3

9x10-4 1.5x10-2

Cool with

Liquid N2

to pump CH4

LN2

𝒑𝒓𝒆𝒔𝒔𝒖𝒓𝒆 𝒓𝒂𝒕𝒊𝒐 =𝑷𝒆𝒏𝒅

𝑷𝒊𝒏

LN2

Expected value for a first activation

Rencontres Nationales du Réseau des Technologies du Vide 2016

3 Caractérisation

Page 26: Dépôt NEG, élaboration, caractérisation et application.rtvide.cnrs.fr/IMG/pdf/RTVide2016_Pedro_Costa_Pinto.pdf · Vacuum, Surfaces & Coatings Group Technology Department Evaluate

Vacuum, Surfaces & Coatings Group

Technology Department 26

Measure the pumping speed of a thin film: transmission method

Rencontres Nationales du Réseau des Technologies du Vide 2016

3 Caractérisation

101

102

103

0 10 20 30 40 50 60

10-4

10-3

10-2

H2 p

um

pin

g s

peed [

l s

-1 m

-1]

Number of heating/venting cycles

200°C 250°C 300°C 350°C

200°C

250°C

300°C

48 h48 h

250°C

300°C

Heating duration 24 hours

unless otherwise indicated

beam pipe diameter = 80 mm

H2 s

tickin

g p

robability

TiZrV/St. Steel5 m thick

Page 27: Dépôt NEG, élaboration, caractérisation et application.rtvide.cnrs.fr/IMG/pdf/RTVide2016_Pedro_Costa_Pinto.pdf · Vacuum, Surfaces & Coatings Group Technology Department Evaluate

Vacuum, Surfaces & Coatings Group

Technology Department

3 Caractérisation

Evaluate NEG Secondary Electron Yield (SEY)

B. Henrist, N. Hilleret, C. Scheuerlein, M. Taborelli,

App. Surf. Sci. 172 (2001) 95.

SEY after saturation with CO

27 Rencontres Nationales du Réseau des Technologies du Vide 2016

Page 28: Dépôt NEG, élaboration, caractérisation et application.rtvide.cnrs.fr/IMG/pdf/RTVide2016_Pedro_Costa_Pinto.pdf · Vacuum, Surfaces & Coatings Group Technology Department Evaluate

Vacuum, Surfaces & Coatings Group

Technology Department

3 Caractérisation

Evaluate NEG Photon Desorption Yield (PSD)

Yasunori Tanimoto

KEK

Marton Ady

CERN

@ KEK Photon Factory, Japan

28 Rencontres Nationales du Réseau des Technologies du Vide 2016

Page 29: Dépôt NEG, élaboration, caractérisation et application.rtvide.cnrs.fr/IMG/pdf/RTVide2016_Pedro_Costa_Pinto.pdf · Vacuum, Surfaces & Coatings Group Technology Department Evaluate

Vacuum, Surfaces & Coatings Group

Technology Department

3 Caractérisation

Evaluate NEG Photon Desorption Yield (PSD)

29 Rencontres Nationales du Réseau des Technologies du Vide 2016

Page 30: Dépôt NEG, élaboration, caractérisation et application.rtvide.cnrs.fr/IMG/pdf/RTVide2016_Pedro_Costa_Pinto.pdf · Vacuum, Surfaces & Coatings Group Technology Department Evaluate

Vacuum, Surfaces & Coatings Group

Technology Department

4 Application The Large Hadron Collider beam vacuum system

8 Arcs (superconducting bending

dipoles) ~ 45 km of cryopumping

The Large Hadron Collider beam vacuum system

~ 27 km particle accelerator

30 Rencontres Nationales du Réseau des Technologies du Vide 2016

Page 31: Dépôt NEG, élaboration, caractérisation et application.rtvide.cnrs.fr/IMG/pdf/RTVide2016_Pedro_Costa_Pinto.pdf · Vacuum, Surfaces & Coatings Group Technology Department Evaluate

Vacuum, Surfaces & Coatings Group

Technology Department

4 Application

8 Long Straight Sections (LSS)

at Room Temperature (~6 km)

~5 km NEG coated

4 experiments, also with NEG

coated beampipes

After NEG activation, average

pressure in LSS ~ 10-11 mbar

The Large Hadron Collider beam vacuum system

31 Rencontres Nationales du Réseau des Technologies du Vide 2016

Page 32: Dépôt NEG, élaboration, caractérisation et application.rtvide.cnrs.fr/IMG/pdf/RTVide2016_Pedro_Costa_Pinto.pdf · Vacuum, Surfaces & Coatings Group Technology Department Evaluate

Vacuum, Surfaces & Coatings Group

Technology Department

4 Application Accidental air venting in IP6:

vacuum chamber of beam 1 vented

during technical stop.

Compare dynamic vacuum

of activated and non

activated NEG

32 Rencontres Nationales du Réseau des Technologies du Vide 2016

Page 33: Dépôt NEG, élaboration, caractérisation et application.rtvide.cnrs.fr/IMG/pdf/RTVide2016_Pedro_Costa_Pinto.pdf · Vacuum, Surfaces & Coatings Group Technology Department Evaluate

Vacuum, Surfaces & Coatings Group

Technology Department

4 Application Accidental air venting in IP6:

vacuum chamber of beam 1 vented

during technical stop.

Compare dynamic vacuum

of activated and non

activated NEG

Before accidental venting After accidental venting

33 Rencontres Nationales du Réseau des Technologies du Vide 2016

Page 34: Dépôt NEG, élaboration, caractérisation et application.rtvide.cnrs.fr/IMG/pdf/RTVide2016_Pedro_Costa_Pinto.pdf · Vacuum, Surfaces & Coatings Group Technology Department Evaluate

Vacuum, Surfaces & Coatings Group

Technology Department

5 Sommaire

Ti-Zr-V NEG coatings can be produced by sputtering at “industrial-like” scale.

Grain size appears to play a crucial role in the activation process.

The wide range of geometries of the beam pipes to be coated requires constant

development of sputtering sources.

These coatings are used worldwide in particle accelerators and are produced

by several institutes and companies.

XPS can be used to assess the activation of NEG coatings by evaluating the

decrease of the oxygen peak.

Vacuum performance can be evaluated by measuring the pumping speed by

the aperture method or by the sticking coefficient by the transmission method.

In addition to pumping, NEG coatings provide low SEY and PSD.

More than 8 years of use in particle accelerators, NEG coatings proven to be a

reliable technology.

34 Rencontres Nationales du Réseau des Technologies du Vide 2016