Transcript
Page 1: Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P

Ultrafast Spectroscopy of Quantum Dots (QDs)

Experimentelle Physik IIb

FB Physik, Universität Dortmund

Ulrike Woggon

With thanks to: M.V. Artemyev, P. Borri, W. Langbein, B. Möller, S. Schneider

Fruitful cooperations: calculations: R. Wannemacher, Leipzig, samples:D. Bimberg and coworkers, Berlin

D. Hommel and coworkers, Bremen A. Forchel and coworkers, Würzburg

Page 2: Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P

• 1. Types of QDs and Techniques of Ultrafast Spectroscopy

Outline:

Page 3: Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P

• 2. Application Aspects: Dynamics of Amplification in QD-Lasers

Outline:

D. Bimberg and coworkers, TU Berlin

predicted advantages of QD-lasers:

• low threshold current density • high characteristic temperature• high differential gain • large spectral tunability, from NIR to UV

Monitoring of high-frequency optical operation in semiconductor nanostructures by

ULTRAFAST SPECTROSCOPY

Page 4: Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P

• 3. Fundamental aspects: Semiconductor QDs as artificial atoms

Outline:

L.Banyai, S.W. Koch, Semiconductor Quantum Dots

Monitoring of the „discrete-level“ - structure of semiconductor nanostructures by

ULTRAFAST SPECTROSCOPY

size energy

Page 5: Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P

Quantum Dots: Nanocrystals and epitaxially grown Islands

Part 1: Types of QDs and Techniques...

Lattice-mismatch inducedisland growth

Precipitation of spherical nanocrystals in colloidal solutionor glass, polymer etc. matrix

Page 6: Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P

CdSe QDs emitting in the visible (nanocrystals)

500 550 600 650 7000

0.5

1.0

1.5

CdSe QDsR = 1.5 nmT = 300 K

PL In

tensity (a

rb. u

nits)

Optic

al D

ensi

ty

Wavelength (nm)

2.4 2.2 2 1.8

Photon Energy (eV)

500 550 600 650 700

0.2

0.4CdSe QDsR = 2 nmT = 300 K

Opt

ical

Den

sity

Wavelength (nm)

PL Intensity (arb. units)

2.4 2.2 2 1.8

CdSe in glass

5 nm

Page 7: Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P

InGaAs self-assembled islands emitting in the NIR

Grundmann, Bimberg et al., TU Berlin

D. Gerthsen et al., Karlsruhe

Calculated confined eh-pair energiesfor InAs assuming pyramidal shape

Page 8: Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P

Femtosecond Heterodyne Technique

2 probe

22-1 four-wavemixing (FWM)

waveguidepumpprobe

12 signal

t

Part 1: Types of QDs and Techniques...

Ti:Sa + OPO, 80 fs ... 2 ps

Page 9: Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P

Femtosecond Ultrafast Spectroscopy

Usually:

J. Shah, Ultrafast Spectroscopy

Page 10: Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P

Femtosecond Heterodyne FWM- and PP-Spectroscopy

Usually:

Here:

Page 11: Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P

AOM1

AOM2

pump beam

probebeam

+

_

HF-Lock-in

delay

delay

sample

reference beam 76MHz

laser

4MHz3MHz

probe pumpFWM

2MHz

79MHz

80MHz

Idet refsignal

electric field

150fs76MHz

AOM-Acousto-Optical Modulator

Page 12: Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P

Gain Dynamics in Quantum Dots

InAs/InGaAs QDs3 x stack,20nm GaAs barrier

Part 2: Applied aspects: QD-laser...

Page 13: Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P

Gain Dynamics of InGaAs QDs

1.1 1.2 1.3 1.4 1.5

+

_

n-GaAs

n-AlGaAs GaAs GaAs

p-AlGaAsp-GaAs

InGaAs QDs

ES

GS

laser

65meV

A

SE

(a.

u.)

Energy (eV)

Ground State Emission (GS): 1070nm @ 25K, 1170nm @ 300K

Sample from TU Berlin,Prof. Bimberg

ridge waveguide 5x500m, 3 stacked QD layers

areal dot density ~2x1010cm-2

optical density ~ 1.5 (~30cm-1)

Carrier injectionelectrically (0...20 mA)0.5 mA

20 mA

Page 14: Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P

Gain Dynamics of InGaAs QDs

P. Borri et al., J. Sel. Topics Q. El. 6, p. 544 (2000); Appl. Phys. Lett. 76, p.1380 (2000).

Pump-inducedgain change in a heterodyne pump-probe experiment at maximum gain(20 mA) and without electricalinjection (0 mA)

Gain recovery in< 100 fs at 300 K !

Page 15: Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P

Gain Dynamics of CdSe QDs

Ground State Emission (1): 605 nm @ 6K

CdSe nanocrystalsin glass matrixR ~ 2.5 nm

1.9 2.0 2.1 2.2 2.3 2.4

PL

Inte

nsity

(ar

b. u

nits

)

Photon Energy (eV)

0.03 I0

I0

(4)

(3)(2)

(1)

0

2

d

T=6KR~2.5 nmI0=5 mJ/cm

2

Woggon et al., Phys. Rev. B 54, 17681 (1996), J. Lum. 70, 269 (1996).

...

.....

onepair

twopairs

1se1sh

1se2sh

1pe1ph...

1se1sh 1se1sh

1se1sh 2se1sh

1pe1ph 1pe1ph...

(1),(2)

(4)

(3)

Page 16: Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P

Gain Dynamics of CdSe QDs

Optics Lett. 21, 1043 (1996).

Gain recovery time spectrally varying, <1...100ps

Excitonic and biexcitonic contributions to optical gain

Page 17: Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P

Gain Dynamics of CdSe QDs

Chem. Phys. 210, 71 (1996)

Gain spectrum inhomogeneously broadened:Spectral hole burning in gain spectrum with two fs-pump and one fs-probe beam

Spectral hole widthof a single

gain process ~20 meV

Intrinsic limitof gain recoverybelow 100 fs !

Page 18: Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P

Quantum dots as active media in optical microcavities

5 m

CdSe QDs linked to microspheres

Picture: M.V.Artemyev, I. Nabiev

Part 2: Applied aspects: QD-laser...

Page 19: Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P

„Dot - in - a - Dot“ - Structure

=619.22nm

R=2.77m

CdSenanodot

136 TM

R=2.5m

R=2.2 nmGlassmicrosphere

R=3.1 m

Artemyev et al., APL 78, p.1032 (2001), Nano Lett. 1, 309 (2001).

Page 20: Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P

Cavity Modes of a CdSe-doped Microsphere

RPD = 2.5 m RQD = 2.5 nm

Nano Lett. 1, p. 309 (2001), Appl. Phys. Lett. 80, p.3253 (2002)

WGM

TM, =36, n=1

TM, =36, n=2

Page 21: Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P

Optical Pumping of a CdSe-doped Microsphere

RPD ~ 15 m

Excitation spot size40 m2

cw-Ar laser, 488 nm

10 mW

14 mW

T = 300 K520 nm < em < 640 nm

CdSe nanocrystals(not on microsphere)

See also: Artemyev, Woggon et al. Nano Letters 1, 309 (2001)

Page 22: Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P

Rabi Oscillations in Quantum Dots

Part 3: Fundamental aspects: Artficial atoms...

Bloch-sphere:population oscillation

Page 23: Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P

Rabi-Oscillations in Atoms

Simple model: two coupled oscillators

R

|g>|e>

|g>|e>

|3>|2>|1>|0>

|3>|2>|1>|0>

photon field

0

RE

Rabi frequency

Ea

Eb

atom states

Two-level system in resonance with photon field

E0 == Eb - Ea

: transition dipole moment

: transition energy

E0 : electromagn. field vector

...

...

Page 24: Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P

Rabi Oscillations versus Pulse Area

Pulse area: time-integrated Rabi frequency

Here pulsed excitation !

dtE

0

0 2 4 6 8 100

1

2

3

4

t0=1ps (E

HWHM=0.75meV)

pulse area ()

detu

ning

(m

eV)

Population oscillationblue = -1red = +1

No dephasing!

Initial conditions:for t << -t0 in ground state

0 2pulse area (

4 6 8 10

detu

ning

(m

eV)

Occupation probability of the ground (excited) state

(~ input field intensity)

Page 25: Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P

Effect of Dephasing T2 on Rabi oscillations

The effect of a damping =1/T2 of polarization:

0 2 4 60.0

0.5

1.0

R=1

R=1/9

|b|2

Rt/2

=0

Population flopping over many periods is possible in systems with long dephasing times and large transition dipole moments: / R<<1.

Page 26: Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P

Dephasing time T2 of InGaAs quantum dots

P. Borri et al., Phys. Rev. Lett. 87, 157401 (2001)

From 300K to 100K the FWMdecay is dominated by a short dephasing time < 1ps

Below T=10 K a slow dephasing time > 500 ps is observed (suppression of LO-phonon scattering!)

-1 0 1 2 3 200 400

500ps

T=10K

TI F

WM

fiel

d am

plitu

de (

a.u.

)

Delay time (ps)

Is the observed dephasing time T2 large enough to observe population flopping, i.e. Rabioscillation in QDs ?????

InGaAs - QDs

Page 27: Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P

Rabi Oscillations in InGaAs Quantum Dots

Use of spectrally shaped ps-pulses

a sharpened distribution of the spectral intensity improves the visibility of the oscillations.

Rabi oscillation: two oscillation maxima can be clearly distinguished

0 4 8

1.146 1.149 1.152

T = 10 K

DT

fiel

d am

plitu

de (

a.u.

)

Pulse area (a.u.)

Inte

nsity

(a.

u.)

Energy(eV)

Experiment

Borri et al., Phys. Rev. B (Rapid Comm.), in press

Page 28: Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P

Distribution in Transition Dipole Moments

2

20

22

2

1

eP

dfEdPdrrEdT

TpumpTEprobe ,,,,

0

22

0

0 2 4 60

T2

=0.25

0.2

0.15

0

T/T

(ar

b. u

nits

)

Pulse area ()0 2 4 6

T2=1.5ps

Pulse area ()

in average = 35 D = 20%

Borri et al., Phys. Rev. B (Rapid Comm.), in press

Page 29: Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P

Quantum Beats in Quantum Dots

0 500 1000

tbeat

= 168 fs

E = 25 meV

Delay Time (fs)

FW

M-I

nten

sity

(lo

g. u

nits

)

Part 3: Fundamental aspects: Artficial atoms...

E

|0>

|1>|2>

Discrete Level-System E can be derived from beat period

Page 30: Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P

Exciton-Biexciton Quantum Beats in QDs

|2x>|xx> Ebin

|x+> |x_>

|G>

|G>

|x> |xx>

|G>

|1e,1h>

Quantum Beats betweentwo optical transitions:

|G> |x> with EX

|x> |xx> with EXX

EX - EXX = Ebin (biexciton binding)

|G>

uncorr.electronand hole Coulomb interaction

exciton |x>biexciton |xx>formation

Page 31: Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P

Exciton-Biexciton Quantum Beats in QDs

0 500 1000 1500

ExxFW

M In

tens

ity (

log.

u.)

B=208 fs

Delay Time t12 (fs)

2.45 2.5

FW

M (

log.

)

E (eV)

Exx Ex

20meV

Gindele, Woggon et al., Phys. Rev. B 60, p. 8773 (1999).

Determination of biexciton bindingenergy in CdSe/ZnSe QDs byfemtosecond quantum beat spectroscopy

Biexciton bindingenergy E = 21 meV

Page 32: Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P

CdSe QDs in microspheres

InGaAs QDs in waveguides

2m

Summary

Fundamental aspects: Semiconductor Quantum Dots as Artficial Atoms

Application Aspects: Dynamics of Amplification in Quantum Dot Lasers

Types of Quantum Dots and Techniques of Ultrafast Spectroscopy


Top Related