Transcript

Timber Structures

• Sawn Lumber

• Glulam

• Plywood

Sawn Lumber

• Highly variable

• Classified by grade

• Visually or Mechanically graded

• Grade depends on number and location of defects

• Defects – shakes, checks, splits and knots

Sawn Lumber is available in lengths up to 20’ to 25’ with the following cross sectional dimensions:

Nominal Size Actual Size

Boards 1 x (2→12) ¾” x 1 ½ →11 ½

Dimension

Lumber

2 x 2 1 ½ x 1 ½

2 x 4 1 ½ x 3 ½

2 x 6 1 ½ x 5 ½

2 x 8 1 ½ x 7 ¼

2 x 10 1 ½ x 9 ¼

2 x 12 1 ½ x 11 ¼

4 x 4 3 ½ x 3 ½

Glulam

• Composed of strips of sawn lumber glued together

• Can form larger sections than can be obtained from trees

• Can optimize placement of wood

GlulamMember can be any length that can be shipped in the following cross-sections:

Western Species

1 ½” thick laminations

Southern Pine

1 3/8” laminations

Width, in. Laminations Width, in. Laminations

2 ½

3 1/8

5 1/8

6 ¾

8 ¾

10 ¾

6 to 18

4 to 16

4 to 24

5 to 32

6 to 42

7 to 54

3

5

6 ¾

8 ½

10 ½

4 to 18

4 to 26

5 to 35

6 to 46

7 to 56

Plywood

• Made from sheets of wood peeled from logs

• Glued together to from large panels

• Typically 4’ by 8’

• Available in ¼” to 1 1/8” thicknesses

• Use American Plywood Association literature for strengths

Allowable Stress Design of Timber

• ASD design still in use in timber• Service load stress ≤ allowable stress

The allowable stress depends on the species and grade. The following table gives allowable stress values in psi:

Allowable Stress Adjustment FactorsAdjustment Factors are used to modify the allowable stress for various use conditions.

The following table lists the adjustment factors and their applicability:

Timber Beam Design Example p. 7 notes

Consider a wood frame house with dimensions shown. The first floor will be supported by joists 16” c.c., which, in turn, will be supported on wood sills on basement walls at the exterior, and on spine beams on the interior. The spine beams, in turn, will be supported on columns placed 20’ c.c. in order to leave maximum clear space in the basement. Service live load will be assumed as 40 psf, and service dead load, 15 psf. We will assume plywood structural flooring, and No. 2 Southern Pine for the joists and spine beam. The self weight of the joists and spine beams will be assumed to be included in the dead load.

Floor Plan

joists@16”c.c

Spine beam

60’-0 c.c.20’-0 c.c.

20’-0 c.c.

20’-0 c.c. 20’-0 c.c.

Allowable Stress Values, psi

Adjustment Factors

CM

Ct

CD = Load Duration Factor = 1.0 for maximum intensity live load for 10 years, p. 3 notes

Adjustment FactorsCL – Beam Stability Factor – for sawn lumber only,

CL = 1.0 for the following conditions (d and b are nominal dimensions):

• d ≤ 2b → no lateral support required (2x4)• d ≤ 4b → both ends held in position to prevent

overturning (2x8) • d ≤ 5b → one edge of beam laterally supported

for entire length. (2x10)• d ≤ 6b → compression edge laterally supported

for entire length… (2x12)• d ≤ 7b → both edges continously laterally supported

(2x14)

If these conditions are not met CL must be calculated (eq. p. 6 notes).

Adjustment FactorsCF - Size Factor

CV – Volume Factor – Only applies to Glulam, p. 3 notes

Cfu – Flat use Factor – allowable stress factors are based on loading the narrow edge. Flat use factor modifies the allowable stress when the load is applied to the wide face.

Typ.

Flat use

Adjustment Factors

• Cr – Repetitive use factor – For sawn lumber whenever three or more beams in contact or not more than 24” c.c. share a load

Cr = 1.15

• Cc – Curvature factor – applies only to glulam

• Cf – Form factor – For circular or diamond shape cross-sections

• CH –Shear Stress Factor – Can increase allowable shear stress of beam if location and extent of defects is known

Detail of Beam Resting on Sill

• Critical shear for design is a distance d from face of support

basement wall

2 x 6 wood sill

2 x 12 joist

d

d

20’-0

Can consider composite section when calculating deflection if sub- floor is properly connected to joists 2 x 12 joist

plywood flange

Floor Plan

joists@16”c.c

Spine beam

60’-0 c.c.

20’-0 c.c.20’-0 c.c.

20’-0 c.c. 20’-0 c.c.

Spine beam showing loading from joists

Available GlulamWestern Species

1 ½” thick laminations

Southern Pine

1 3/8” laminations

Width, in. Laminations Width, in. Laminations

2 ½

3 1/8

5 1/8

6 ¾

8 ¾

10 ¾

6 to 18

4 to 16

4 to 24

5 to 32

6 to 42

7 to 54

3

5

6 ¾

8 ½

10 ½

4 to 18

4 to 26

5 to 35

6 to 46

7 to 56

Allowable Stress Values, psi

Adjustment Factors

Cp = Column stability factor

• CD = 1.0 for continuous lateral support

• CD ≤ 1.0 no intermediate lateral supportequation p. 6 notes

Southern Pine Span Tables

1. What is the maximum span for Grade 2, 2 x 10 floor joists, spaced 16” c.c., carrying 40 psf live load?

2. Choose a ceiling joist to carry a live load of 20 psf for a span of 15 ft. The joist will be spaced at 24” c.c.

3. An existing floor system is composed of Grade 1, 2 x 12’s, spaced 12” c.c. The joists span 14 ½’. What is the maximum allowable live load based on the Southern Pine Span Tables?

Biaxial Bending of Beams Example• Choose a W-shape beam for the factored

loading shown using grade 36 steel. The simple beam span is 25 feet and it is continuously braced against instability. It is not necessary to check shear and deflection for this problem.

3 k/ft2 k/ft 3

45


Top Related