Transcript
Page 1: Poisson 核,熱核の情報幾何学 - Nagoya Institute of Technologymatsuzoe.web.nitech.ac.jp/infogeo/OCAMI2009/Sato.pdfPoisson 核,熱核の情報幾何学 Information geometry

Poisson核,熱核の情報幾何学Information geometry of Poisson kernels and heat kernels

佐藤弘康(筑波大学大学院数理物質科学研究科)Hiroyasu Satoh (University of Tsukuba)

(伊藤光弘氏(筑波大)との共同研究に基づく)Joint work with M. Itoh (University of Tsukuba)

大阪市立大学数学研究所情報幾何学研究集会 2009

平成 21 年 1 月 25 日

Page 2: Poisson 核,熱核の情報幾何学 - Nagoya Institute of Technologymatsuzoe.web.nitech.ac.jp/infogeo/OCAMI2009/Sato.pdfPoisson 核,熱核の情報幾何学 Information geometry

はじめに

(X, g)に関連した空間 M 上のRiemann多様体 正値確率測度全体のなす空間

(X, g) φ−−−−−−−−−−−−−−−−→(計量 gが誘導)

P(M)...

GFisher情報計量

• 計量 gと写像 φの性質(部分多様体としての)の関係.• (Itoh-Shishido ’08) Poisson核写像 ϕ : X → P(∂X)

(X, g) : 階数 1非コンパクト型対称空間 =⇒ϕは相似的,極小埋め込み.

(1)

Page 3: Poisson 核,熱核の情報幾何学 - Nagoya Institute of Technologymatsuzoe.web.nitech.ac.jp/infogeo/OCAMI2009/Sato.pdfPoisson 核,熱核の情報幾何学 Information geometry

1.1 統計モデルと Fisher計量• (Ω,F , λ):測度集合• P(U,Ω):U ⊂ Rn(開集合)で径数付けられた正値確率密度関数の族

P(U,Ω) =

p(x, ξ)

∣∣∣∣∣∣ p(x, ξ) > 0,∫ξ∈Ω

p(x, ξ) dλ(ξ) = 1, x ∈ U

Fisher計量 G = (gi j(x))x∈U

gi j(x) =∫ξ∈Ω

∂xi log p(x, ξ) · ∂

∂x j log p(x, ξ) · p(x, ξ) dλ(ξ)

=Epx

[∂i log px · ∂ j log px

]

分布 px による期待値

(2)

Page 4: Poisson 核,熱核の情報幾何学 - Nagoya Institute of Technologymatsuzoe.web.nitech.ac.jp/infogeo/OCAMI2009/Sato.pdfPoisson 核,熱核の情報幾何学 Information geometry

1.2 正値確率測度のなす空間と Fisher情報計量• M:向き付けられた多様体• dvM:M 上の体積要素• P(M):M 上の正値確率測度全体のなす集合

P(M) :=µ = p dvM

∣∣∣∣∣ p : M → R, p > 0,∫

Mµ = 1

• 接空間は TµP(M) 'τ = q dvM

∣∣∣∣ q : M → R,∫

Mq2

p dvM < ∞,∫

M τ = 0.

Fisher情報計量 G = Gµ

Gµ(τ1, τ2) =∫

M

q1

pq2

pp dvM ,

(τi = qi dvM ∈ TµP(M), µ = p dvM

).

(3)

Page 5: Poisson 核,熱核の情報幾何学 - Nagoya Institute of Technologymatsuzoe.web.nitech.ac.jp/infogeo/OCAMI2009/Sato.pdfPoisson 核,熱核の情報幾何学 Information geometry

1.2 正値確率測度のなす空間と Fisher情報計量• X:多様体• ϕ : X 3 x 7−→ p(x, ξ) dvM(ξ) ∈ P(M):単射• v1, v2 ∈ TxX にたいし,Gの引き戻し ϕ∗Gは

ϕ∗G(v1, v2) =∫ξ∈M

v1 p(x, ξ) · v2 p(x, ξ)p(x, ξ)

dvM(ξ)

=

∫ξ∈M

v1 log p(x, ξ) · v2 log p(x, ξ) · p(x, ξ) dvM(ξ)

=Eµ[v1 log p(x, ξ) · v2 log p(x, ξ)

].

=⇒

ϕ∗Gは X で径数付けられた統計モデルの Fisher計量

(4)

Page 6: Poisson 核,熱核の情報幾何学 - Nagoya Institute of Technologymatsuzoe.web.nitech.ac.jp/infogeo/OCAMI2009/Sato.pdfPoisson 核,熱核の情報幾何学 Information geometry

1.2 (P(M),G)の性質定理(T. Friedrich, Math. Nachr. 153, 1991)¶ ³• Gの Levi-Civita接続 ∇G は

∇Gτ1τ = −1

2

(qp· q1

p−

∫M

qp· q1

)µ.

ここで,τ = q dvM , τ1 = q1 dvM ∈ TµP(M),µ = p dvM.ただし,τは各点 µ ∈ P(M)で τとなるベクトル場と見ている.• Gの断面曲率は一定で,その値は 1/4.• Diff+(M)は (P(M),G)に引き戻しとして等長的に作用する(特に,

M がコンパクトのとき,この作用は推移的).• 測地的に完備ではない.µ ´

(5)

Page 7: Poisson 核,熱核の情報幾何学 - Nagoya Institute of Technologymatsuzoe.web.nitech.ac.jp/infogeo/OCAMI2009/Sato.pdfPoisson 核,熱核の情報幾何学 Information geometry

1.2 (P(M),G)の性質定理(T. Friedrich, Math. Nachr. 153, 1991)¶ ³• c(t) = ft dvM : P(M)上の曲線

• Gc(t)(c′(t), c′(t)) =∫

M

(f ′tft

)2

ft dvM = 1

c(t)が測地線 ⇐⇒ ft = ( f0)2 + ( f ′0)2

f0

cos2(arctan

(f ′0f0

)− t

2

).

µ ´ξ ∈ M を固定.arctan

(f ′0(ξ)/ f0(ξ)

)∈ (−π/2, π/2)より

arctan(

f ′0(ξ)f0(ξ)

)− T

2= −π

2

を満たす T ∈ Rが存在する.つまり c(T ) < P(M).(6)

Page 8: Poisson 核,熱核の情報幾何学 - Nagoya Institute of Technologymatsuzoe.web.nitech.ac.jp/infogeo/OCAMI2009/Sato.pdfPoisson 核,熱核の情報幾何学 Information geometry

1.2 例:離散型確率分布の場合• P =

p = (p1, p2, p3)

∣∣∣ pi ∈ R, pi > 0 (i = 1, 2, 3),∑3

i=1 pi = 1

• TpP 'v = (v1, v2, v3)

∣∣∣ vi ∈ R (i = 1, 2, 3),∑3

i=1 vi = 0

• Gp(v, v′) =3∑

i=1

viv′i

pi, v = (v1, v2, v3), v′ = (v′1, v

′2, v′3).

• Gp =(

1p1+ 1

p3

)(dp1)2 + 2

p3dp1dp2 +

(1p2+ 1

p3

)(dp2)2 (p3 = 1− p1 − p2)

p1 = r2 cos2 θ, p2 = r2 sin2 θ (0 < r < 1, 0 < θ < π/2)と変数変換すると

G =4

1 − r2 (dr)2 + 4r2(dθ)2.⇐=

(P,G)は半径 2の球面の一部(ガウス曲率 1/4).

(7)

Page 9: Poisson 核,熱核の情報幾何学 - Nagoya Institute of Technologymatsuzoe.web.nitech.ac.jp/infogeo/OCAMI2009/Sato.pdfPoisson 核,熱核の情報幾何学 Information geometry

1.3 Poisson核写像Itoh–Shishido

• (X, g):n次元 Hadamard多様体(単連結,完備,非正曲率)• ∂X : X の理想境界((n − 1)次元球面と同相)• Poisson 核とよばれる X × ∂X 上の関数 P(x, θ) を用いて,写像 ϕ :

(X, g)→ (P(∂X),G)を定義.

定理 (Itoh–Shishido, Diff. Geom. Appl. 26, 2008)¶ ³(X, g):階数 1,非コンパクト型対称空間

=⇒ Poisson核写像は相似的かつ極小的埋め込み; ϕ∗G =ρ2

ng.

ここで,ρは (X, g)の体積エントロピー:ρ = limr→∞

1r

log Vol (B(x; r)).µ ´(8)

Page 10: Poisson 核,熱核の情報幾何学 - Nagoya Institute of Technologymatsuzoe.web.nitech.ac.jp/infogeo/OCAMI2009/Sato.pdfPoisson 核,熱核の情報幾何学 Information geometry

1.3 問題と結果• Poisson核写像 ϕ : X → P(∂X)が相似的かつ極小 =⇒空間 X?階数 1非コンパクト型対称空間の場合:P(x, θ) = exp(−ρ B(x, θ)).

Busemann 関数

– P(x, θ) = exp (−c B(x, θ))かつ X は等質的⇒ ϕ は相似的(§2),かつ極小(極小性の証明には調和写像の議論が必要 §3).

– Poisson核写像 ϕが相似的,極小⇒ P(x, θ) = exp (−c B(x, θ)).(§3)– exp (−c B(x, θ))が Poisson核になる必要十分条件:X の漸近的調和性と可視性,

∫θ∈∂X exp (−B(x, θ)) dθが xに依らない.(§2)

– Damek-Ricci空間は上の 3条件を満たす.(§4)• 熱核でも,同様の議論ができないか?(§5)

– 熱核写像 ϕt : X 3 x 7→ H(t, x, y) dv(y) ∈ P(X)

– Xが調和的等質 Hadamard多様体 =⇒ ϕt は相似的(極小ではない).

(9)

Page 11: Poisson 核,熱核の情報幾何学 - Nagoya Institute of Technologymatsuzoe.web.nitech.ac.jp/infogeo/OCAMI2009/Sato.pdfPoisson 核,熱核の情報幾何学 Information geometry

• §1) イントロダクション• §2) Poisson核と Busemann関数• §3) φ : (X, g)→ (P(M),G)の調和性• §4) Damek-Ricci空間• §5) 熱核の場合

(10)

Page 12: Poisson 核,熱核の情報幾何学 - Nagoya Institute of Technologymatsuzoe.web.nitech.ac.jp/infogeo/OCAMI2009/Sato.pdfPoisson 核,熱核の情報幾何学 Information geometry

2.1 Poisson核• (X, g):n次元 Hadamard多様体(完備,単連結,非正曲率多様体)• ∂X = γ : [0,∞)→ X : 半開測地線, |γ′| = 1/ ∼ (' S n−1(1) ⊂ Tx0 X)

:Xの理想境界(γ1 ∼ γ2 ⇐⇒ d(γ1(t), γ2(t))が tに関して上に有界)

(x0 を基点とする)Poisson核 P(x, θ) =無限遠 Dirichlet問題の基本解;与えられた f ∈ C0(∂X)(境界条件)にたいして,方程式 ∆u = 0, u|∂X = f

の解は積分表示u(x) =

∫θ∈∂X

P(x, θ) f (θ) dθ

で与えられる.ただし,dθは同一視 ∂X ' S n−1(1) ⊂ Tx0 X の下,S n−1(1)の標準的な単位体積要素.

Poisson核写像 ϕ : X 3 x 7−→ P(x, θ) dθ ∈ P(∂X)

(11)

Page 13: Poisson 核,熱核の情報幾何学 - Nagoya Institute of Technologymatsuzoe.web.nitech.ac.jp/infogeo/OCAMI2009/Sato.pdfPoisson 核,熱核の情報幾何学 Information geometry

2.1 Poisson核の存在定理(負曲率の場合)定理(Schoen-Yau, Lect. Diff. Geom., 1994)¶ ³(X, g)を曲率条件 −b2 ≤ KX ≤ −a2 < 0を満たす Hadamard多様体とする.このとき,基点 x0 にたいして次を満たす関数 Pが一意的に存在する;

• θ ∈ ∂X にたいし,P(·, θ) ∈ C0(X ∪ ∂X\θ),• P(·, θ)は X 上の正値調和関数,

• P(x0, θ) = 1,

• limx→θ′

P(x, θ) = 0 (θ′ , θ).

さらに,無限遠 Dirichlet問題の解は P(x, θ)の積分表示で与えられる.µ ´階数 1非コンパクト型対称空間の場合,exp(−ρB(x, θ))は上の条件を満たす.

(12)

Page 14: Poisson 核,熱核の情報幾何学 - Nagoya Institute of Technologymatsuzoe.web.nitech.ac.jp/infogeo/OCAMI2009/Sato.pdfPoisson 核,熱核の情報幾何学 Information geometry

2.2 Busemann関数(x0 を基点とする)Busemann関数 B(x, θ)

θ ∈ ∂X にたいし,x0 を始点とし θ に漸近収束する半開測地線を γθ とする.このとき,

B(x, θ) = limt→∞d(x, γθ(t)) − t .

Busemann関数の性質

• B( · , θ)は X上の C2 級の凸関数.• B(x0, ·) = 0

• v ∈ TxX にたいし,vB(x, θ) = −g(v, u).ただし,uは xを始点とし,θに漸近収束する半開測地線の速度ベクトル.特に,| gradX B(x, θ)| = 1.• Bp(x, θ) = Bq(x, θ) + Bp(q, θ).

(13)

Page 15: Poisson 核,熱核の情報幾何学 - Nagoya Institute of Technologymatsuzoe.web.nitech.ac.jp/infogeo/OCAMI2009/Sato.pdfPoisson 核,熱核の情報幾何学 Information geometry

2.3 P(x, θ) = exp(−cB(x, θ))となる場合定理 1¶ ³(X, g)を n次元等質 Hadamard多様体とする.Poisson核が Busemann関数を用いて P(x, θ) = exp(−cB(x, θ))と書けるとき,Poisson核写像は相似的埋め込みである ; ϕ∗G = c2

n g.さらに極小埋め込みである.µ ´(証明)等長変換群 Isom+(X, g)は理想境界 ∂X に自然に作用.P(∂X)にも引き戻しとして作用.ψ ∈ Isom+(X, g)にたいし

• Busemann関数の変換公式 : B(ψx, θ) = B(x, ψ−1θ) + B(ψx0, θ)

P(ψx, θ) = P(x, ψ−1θ) P(ψx0, θ).

• 無限遠 Dirichlet問題の解の Poisson積分表示,解の一意性 (ψ−1)∗(dθ) = P(ψ(x0), θ) dθ.

(14)

Page 16: Poisson 核,熱核の情報幾何学 - Nagoya Institute of Technologymatsuzoe.web.nitech.ac.jp/infogeo/OCAMI2009/Sato.pdfPoisson 核,熱核の情報幾何学 Information geometry

2.3 P(x, θ) = exp(−cB(x, θ))となる場合• 上の 2つの条件から等長変換 ψと Poisson核写像 ϕは次の意味で可換;

(ψ−1)∗ ϕ = ϕ ψ.

• X の等質性から,基点 x0 でのみ考えればよい;

単位ベクトル v ∈ Tx0 X にたいし

ϕ∗G(v, v) =∫∂X

(v log P(·, θ))2 P(x0, θ) dθ = c2

∫∂X

(vB(·, θ))2 dθ

=c2∫

u∈S n−1(1)〈v, u〉2dµS n−1(1) =

c2

n.

•(極小性の証明は次節)

(15)

Page 17: Poisson 核,熱核の情報幾何学 - Nagoya Institute of Technologymatsuzoe.web.nitech.ac.jp/infogeo/OCAMI2009/Sato.pdfPoisson 核,熱核の情報幾何学 Information geometry

2.3 P(x, θ) = exp(−cB(x, θ))となる場合Poisson核が exp(−cB(x, θ))の形で書けるための条件;

1. ∆X exp(−cB(x, θ)) = 0

⇐⇒ ∆X B = −c

⇐⇒ Busemann関数 B(·, θ)の等位超曲面は平均曲率一定(漸近的調和)

2. limx→θ′

exp(−cB(x, θ)) dθ = δθ(θ′)

⇐⇒

• limx→θ′,θ

B(x, θ) = ∞

⇔ ∂X の任意の 2点は X 上の測地線で結べる(可視公理)

•任意の x ∈ X にたいして,∫θ∈∂X

exp(−cB(x, θ)) = 1

(16)

Page 18: Poisson 核,熱核の情報幾何学 - Nagoya Institute of Technologymatsuzoe.web.nitech.ac.jp/infogeo/OCAMI2009/Sato.pdfPoisson 核,熱核の情報幾何学 Information geometry

• §1) イントロダクション• §2) Poisson核と Busemann関数• §3) φ : (X, g)→ (P(M),G)の調和性• §4) Damek-Ricci空間• §5) 熱核の場合

(17)

Page 19: Poisson 核,熱核の情報幾何学 - Nagoya Institute of Technologymatsuzoe.web.nitech.ac.jp/infogeo/OCAMI2009/Sato.pdfPoisson 核,熱核の情報幾何学 Information geometry

3.1 φ : (X, g)→ (P(M),G)の調和性• (X, g) : Riemann多様体• (M, dvM) : 向き付けられた多様体と体積要素• M(X,P(M)) := φ : X → P(M) | φ∗G < +∞• E :M(X,P(M))→ R;

E(φ) =12

∫X

traceg (φ∗G) dvg.

• φ ∈ M(X,P(M))が調和写像とはコンパクト台を持つ任意の変形 φs−ε<s<ε (φ0 = φ, φs|X\D = φ)に対し

ddsE(φs)

∣∣∣∣∣s=0= 0.

(18)

Page 20: Poisson 核,熱核の情報幾何学 - Nagoya Institute of Technologymatsuzoe.web.nitech.ac.jp/infogeo/OCAMI2009/Sato.pdfPoisson 核,熱核の情報幾何学 Information geometry

3.1 φ : (X, g)→ (P(M),G)の調和性定理 2¶ ³写像 φ : (X, g) → (P(M),G); x 7−→ Φ(x, ξ) dvM(ξ) が調和写像であるための必要十分条件は

traceg φ∗G(x) = 2∆X logΦ(x, ξ) − | gradX logΦ(x, ξ)|2. (∗)µ ´• 上の条件は (∗)の右辺が ξ ∈ M に依らない関数になることと同値.• Poisson核写像 ϕに対して,

((∗)の右辺) = | gradX log P(x, θ)|2.

• さらに P(x, θ) = exp (−cB(x, θ)) と書けるとき,ϕ : X → P(∂X) は調和写像.

(19)

Page 21: Poisson 核,熱核の情報幾何学 - Nagoya Institute of Technologymatsuzoe.web.nitech.ac.jp/infogeo/OCAMI2009/Sato.pdfPoisson 核,熱核の情報幾何学 Information geometry

3.3 Poisson核写像が相似的かつ調和のとき“ φが調和⇐⇒ traceg φ∗G(x) = 2∆X logΦ(x, ξ) − | gradX logΦ(x, ξ)|2 ”

Poisson核写像 ϕが相似的 (ϕ∗G = c2/n g)かつ調和=⇒ | gradX log P(x, θ)| = c

=⇒ u(x, θ) = 1c log p(x, θ)とおくと | gradX u( · , θ)| = 1

=⇒ u( · , θ)の勾配流 σθ(t)は測地線.(T. Sakai, Kodai Math. J. 19, 1996)

=⇒ limt→∞

σθ(t) = θとなり,d (u( · , θ) − B( · , θ)) = 0.=⇒ u(x, θ) = B(x, θ).

定理 3¶ ³X 上の Poisson核写像 ϕが相似的埋め込みで調和ならば,X の Poisson核は Busemann関数を用いて指数関数表示できる.さらに X は漸近的調和かつ可視公理を満たす.µ ´

(20)

Page 22: Poisson 核,熱核の情報幾何学 - Nagoya Institute of Technologymatsuzoe.web.nitech.ac.jp/infogeo/OCAMI2009/Sato.pdfPoisson 核,熱核の情報幾何学 Information geometry

3.3 関連する結果定理 (酒井, Riemann幾何学, 1992)¶ ³

12∆|∇u|2 = 〈∇u,∇∆u〉 − Ric(∇u,∇u) − |Hess(u)|2µ ´

u(x, θ) = 1c log P(x, θ)にたいして,Ric(∇u,∇u) = −|Hess(u)|2

定理 (J. Heber, Geom. Funct. Anal. 16, 2006)¶ ³X を非コンパクト,単連結,等質空間とする.このとき,以下は同値;

• X は漸近的調和,Einstein多様体.• X は平坦空間,階数 1非コンパクト型対称空間,(対称空間でない)

Damek-Ricci空間のいずれか.µ ´(21)

Page 23: Poisson 核,熱核の情報幾何学 - Nagoya Institute of Technologymatsuzoe.web.nitech.ac.jp/infogeo/OCAMI2009/Sato.pdfPoisson 核,熱核の情報幾何学 Information geometry

• §1) イントロダクション• §2) Poisson核と Busemann関数• §3) φ : (X, g)→ (P(M),G)の調和性• §4) Damek-Ricci空間• §5) 熱核の場合

(22)

Page 24: Poisson 核,熱核の情報幾何学 - Nagoya Institute of Technologymatsuzoe.web.nitech.ac.jp/infogeo/OCAMI2009/Sato.pdfPoisson 核,熱核の情報幾何学 Information geometry

4.1 一般 Heisenberg群一般 Heisenberg代数

• (n, [·, ·]n, 〈·, ·〉n) : 2-step冪零 Lie環とその内積.• n = v ⊕ z(zは nの中心,vは zの直交補空間).• Z ∈ zにたいし,JZ : v→ v; 〈JZV,V ′〉n = 〈Z, [V,V ′]n〉n.• (JZ)2 = −|Z|2 idv (∀Z ∈ z)のとき,nを一般 Heisenberg代数とよぶ.

一般 Heisenberg群

• 一般 Heisenberg代数 nを Lie環とし,〈·, ·〉n から定まる左不変計量を備えた単連結冪零 Lie群 N.• N ' v × zと同一視したときの群構造 ;

(V,Z) · (V ′,Z′) =(V + V ′, Z + Z′ +

12

[V,V ′]n

).

(23)

Page 25: Poisson 核,熱核の情報幾何学 - Nagoya Institute of Technologymatsuzoe.web.nitech.ac.jp/infogeo/OCAMI2009/Sato.pdfPoisson 核,熱核の情報幾何学 Information geometry

4.2 Damek-Ricci空間• s = n ⊕ R (n : 一般 Heisenberg代数).

• ブラケット積 [·, ·]s ;

[(V,Z, l), (V ′,Z′, l′)]s =(

l2

V ′ − l′

2V, lZ′ − l′Z + [V,V ′]n, 0

).

• 内積 〈·, ·〉s ; 〈(V, Z, l), (V ′,Z′, l′)〉s = 〈V,V ′〉n + 〈Z,Z′〉n + ll′.

Damek-Ricci空間

• sを Lie環とし,〈·, ·〉s から定まる左不変計量を備えた単連結 Lie群 S.• S ' v × z × R+ と同一視したときの群構造;

(V,Z, a) · (V ′,Z′, a′) =(V +

√aV ′, Z + aZ′ +

√a

2[V,V ′]n, aa′

).

(24)

Page 26: Poisson 核,熱核の情報幾何学 - Nagoya Institute of Technologymatsuzoe.web.nitech.ac.jp/infogeo/OCAMI2009/Sato.pdfPoisson 核,熱核の情報幾何学 Information geometry

4.2 Damek-Ricci空間 S の性質• Hadamard 多様体.KS < 0 ならば,S は階数 1 非コンパクト型対称空間のいずれか(I. Dotti, Proc. Amer. Math. Soc. 125, 1997).• CHN ,HHN ,OH2(dim z = 1).特別な場合として,RHN(dim z = 0).• γ(0) = (0v,0z, 1),γ′(0) = (U,W, l) ∈ s(|U |2 + |W |2 + l2 = 1)の測地線は

γ(t) = 1χ

(2r(1 − lr)U + 2r2JWU, 2rW, 1 − r2

).

ただし,r = tanh(

t2

), χ = (1 − lr)2 + |W |2r2.

(Berndt-Tricerri-Vanhecke, Lecture Notes in Math. 1598, 1995)

• 理想境界は ∂S ' N ∪ ∞• 漸近的調和.また可視公理を満たす.• 体積エントロピー ρ = 1

2 dim v + dim z(homogeneous dimension).

(25)

Page 27: Poisson 核,熱核の情報幾何学 - Nagoya Institute of Technologymatsuzoe.web.nitech.ac.jp/infogeo/OCAMI2009/Sato.pdfPoisson 核,熱核の情報幾何学 Information geometry

4.3 Damek-Ricci空間 S の Busemann関数定理 4¶ ³Damek-Ricci 空間 S の Busemann 関数および,∂S ' N 上の標準体積要素は以下で与えられる(x = (V,Z, a) ∈ S).

B(x, θ) =

− log

a((1+ 1

4 |v|2)2+|z|2

)(a+ 1

4 |v−V |2)2+|z−Z− 1

2 [V,v]n|2 if θ = (v, z) ∈ N

− log a if θ = ∞

dθ = c(

1 + 14 |v|2

)2+ |z|2

−ρdvdz ((v, z) ∈ N)

さらに,∫

N exp −ρ B(x, θ) dθ = 1が成り立つ.µ ´=⇒ Damek-Ricci空間 S 上の Poisson核写像は相似的かつ調和.

(26)

Page 28: Poisson 核,熱核の情報幾何学 - Nagoya Institute of Technologymatsuzoe.web.nitech.ac.jp/infogeo/OCAMI2009/Sato.pdfPoisson 核,熱核の情報幾何学 Information geometry

4.4 注意:Damek-Ricci空間 S の Poisson核E. Damek (Colloq. Math. 53, 1987)

• Pa(n) =caρ(

a + 14 |V |2

)2+ |Z|2

ρ (n = (V,Z), a > 0)

ただし,cは∫

n∈N Pa(n) dn = 1となる定数.• ∆P = 0.

• lima→0 f ∗ Pa(n) = f (n) ( f ∈ Lp(N)).ただし

f ∗ Pa(n) =∫

m∈NPa(nm−1) f (m) dm.

これは Pa(n)が S 上の無限遠 Dirichlet問題の基本解を与えることを意味する(∂S ' N).実際に

Pa(nm−1) dm = exp (−ρB((n, a),m)) dθ(m).

(27)

Page 29: Poisson 核,熱核の情報幾何学 - Nagoya Institute of Technologymatsuzoe.web.nitech.ac.jp/infogeo/OCAMI2009/Sato.pdfPoisson 核,熱核の情報幾何学 Information geometry

• §1) イントロダクション• §2) Poisson核と Busemann関数• §3) φ : (X, g)→ (P(M),G)の調和性• §4) Damek-Ricci空間• §5) 熱核の場合

(28)

Page 30: Poisson 核,熱核の情報幾何学 - Nagoya Institute of Technologymatsuzoe.web.nitech.ac.jp/infogeo/OCAMI2009/Sato.pdfPoisson 核,熱核の情報幾何学 Information geometry

5.1 熱核(X, g):完備 Riemann多様体

熱方程式 ;与えられた f ∈ C∞(X)(初期条件)にたいして(∂

∂t+ ∆

)u(t, x) = 0, u(0, x) = f (x).

熱核 H(t, x, y) =熱方程式の基本解 ;

熱方程式(初期条件 f ∈ C∞(X))の解は

u(t, x) =∫y∈X

H(t, x, y) f (y) dv(y)

で与えられる.

(29)

Page 31: Poisson 核,熱核の情報幾何学 - Nagoya Institute of Technologymatsuzoe.web.nitech.ac.jp/infogeo/OCAMI2009/Sato.pdfPoisson 核,熱核の情報幾何学 Information geometry

5.1 熱核写像熱核写像 ϕt : X 3 x 7−→ H(t, x, y) dv(y) ∈ P(X)

定理 5¶ ³(X, g):調和的 Hadamard多様体

=⇒熱核写像は相似的埋め込み:ϕ∗t G = C(t)g.µ ´調和的 :各点 p ∈ X にたいし,p中心とする正規座標系に関する体積密度

関数 ωp =√

det(gi j)が動径関数 ωp(x) = ω(d(p, x))となる.

強調和的 : 熱核が動径的関数; H(t, x, y) = H(t, d(x, y)).

• 強調和的 =⇒調和的.多様体が単連結ならば,強調和的⇐⇒調和的.• 調和 =⇒漸近的調和(共役点をもたない空間において)

(30)

Page 32: Poisson 核,熱核の情報幾何学 - Nagoya Institute of Technologymatsuzoe.web.nitech.ac.jp/infogeo/OCAMI2009/Sato.pdfPoisson 核,熱核の情報幾何学 Information geometry

5.3 定理 5の証明• ϕ∗t G(v, v) =

∫y∈X

(v log H(t, x, y)

)2 H(t, x, y) dv(y) (v ∈ TxX).

• (X, g)は単連結,調和的.よって強調和的.

v log H(t, x, y) = 1H(t,r)

∂H∂r (t, r) · (−〈v, u〉).

dv = Ω(r)dr dµS n−1(1).(Ωは x ∈ X の選び方によらない)

以上のことから

ϕ∗t G(v, v) =∫ ∞

0

1H(t, r)

(∂H∂r

(t, r))2

Ω(r) dr∫

u∈S n−1(1)〈v, u〉2dµS n−1(1)

=

∫ ∞

0

1H(t, r)

(∂H∂r

(t, r))2

Ω(r) dr · Vol(S n−1(1))n

.

右辺は v ∈ TxX に依らないことから,ϕ∗t G = C(t) gと書ける.(証明おわり)

(31)

Page 33: Poisson 核,熱核の情報幾何学 - Nagoya Institute of Technologymatsuzoe.web.nitech.ac.jp/infogeo/OCAMI2009/Sato.pdfPoisson 核,熱核の情報幾何学 Information geometry

5.3 相似定数 C(t)

• n C(t) = traceg(ϕ∗t G

)=

∫y∈X| gradx log H(t, x, y)|2H(t, x, y) dv(y).

• 熱方程式より,| gradx log H(t, x, y)|2 =(∆x +

∂∂t

)log H(t, x, y).

• 強調和性より,| gradx log H(t, x, y)| = | grady log H(t, x, y)|.

traceg(ϕ∗t G

)=

∫y∈X

(∆y +

∂t

)log H(t, x, y) · H(t, x, y) dv(y)

=

∫y∈X∆y log H(t, x, y) · H(t, x, y) dv(y) +

∫y∈X

∂tH(t, x, y) dv(y)

=

∫y∈X

log H(t, x, y) · ∆yH(t, x, y) dv(y) ←Damek-Ricci空間のとき成立

=∂

∂t

(−

∫y∈X

log H(x, t, y) · H(t, x, y) dv(y))

エントロピー(32)

Page 34: Poisson 核,熱核の情報幾何学 - Nagoya Institute of Technologymatsuzoe.web.nitech.ac.jp/infogeo/OCAMI2009/Sato.pdfPoisson 核,熱核の情報幾何学 Information geometry

5.4 例)n次元 Euclid空間の場合

• 熱核 : H(t, x, y) = (4πt)−n/2 exp(−|x − y|

2

4t

)• 相似定数 C(t) =

12t,エントロピーは n

2(log(4πt) + 1

).• ϕt : (Rn, g0)→ (P(Rn),G)は調和写像ではない.

Li-Yau’s gradient estimate

(X, g)を Ricci曲率が非負の完備 Riemann多様体とする.このとき,熱方程式の解 u(t, x)は以下の不等式を満たす;

|∇u|2u2 +

1u∂u∂t≤ n

2t.(

=⇒ 1n

traceg(ϕ∗t G) ≤ 12t

)(33)


Top Related