Transcript
Page 1: PHYSIO&LYMPICS+&+Physiology+of+Sprin7ng:+Comparing+UNBC ... · PHYSIO&LYMPICS+&+Physiology+of+Sprin7ng:+Comparing+UNBC+Students,+ Olympic+Sprinters+and+the+Cheetah! +Hannah!Bjorndal!and!Vikas!Sharma,

PHYSI-­‐O-­‐LYMPICS  -­‐  Physiology  of  Sprin7ng:  Comparing  UNBC  Students,  Olympic  Sprinters  and  the  Cheetah  

 Hannah  Bjorndal  and  Vikas  Sharma,  Biol  321  Animal  Physiology,  Ecosystem  Sciences  and  Management  Program,  UNBC  

DISCUSSION/CONCLUSION  

 Sprin'ng  is  the  act  of  running  forward  at  maximum  speed            -­‐  Sprin7ng  7mes  differ  between  individuals            -­‐  This  is  due  to  level  of  training  and  gene7c  makeup,                  and  the  resul7ng  metabolic  and  muscle  adapta7ons:  Metabolic  adapta-ons  to  sprin7ng  ↑  (increase)  ATP  synthesis  by  increasing  ac7vity  of  various  enzymes  =  more  rapid  contrac7on  and  relaxa7on  of  muscles1  (Figure  1)                                              

   Muscle  adapta-ons  1.   Fiber  Composi'on1  •  ↑  percentage  of  fast  twitch  (FT)  muscle  fibers  (type  Iib)3    •  ↑  force  development  and  quicker  contrac7on  and  

relaxa7on  in  FT  fibers  =  quicker  movement1  2.  Sarcoplasmic  Re'culum  (SR)1  •  SR  in  muscles  more  developed  in  FT  fibers1  =  ↑  [SR]4  •  ↑  rate  of  Ca2+  release  and  uptake  by  SR1,4                =  ↑  rate  of  muscle  contrac7on  and  relaxa7on  3.  Muscle  size1  •  ↑  in  cross-­‐sec7onal  area  of  type  I  and  II  muscle  fibers1  •  Hypertrophy  (↑muscle  cell  size)=↑power  output1  

OBJECTIVES/PREDICTION  a.  To  examine  how  100  meter  sprint  7mes  differ  between  UNBC  

students  and  how  they  relate  to  Olympic  sprint  7mes  b.  To  compare  human  and  cheetah  sprint  7mes              Hypothesis:  Higher  trained  individuals  would  be  faster  than                    untrained  individuals;  cheetah  would  be  the  fastest  

METHODS  a.  Measured  100m  sprint  7mes  for  18  random  UNBC  students  (15            males  and  3  females)  on  an  indoor  Tartan  track  b.  Collected  male  Olympic  100m  sprint  7mes  from  online  database  

The  cheetah  has  a  recorded  short  distance  speed  of  29m/s6  •  nearly  triple  that  of  top  Olympic  sprinters  Why  is  the  cheetah  so  fast?  •  FT  fiber  composi7on  ↑  but  similar  to  

that  of  healthy  human  males.  •  High  anaerobic  and  low  aerobic  enzyme  

capaci7es  in  muscle  cells  =  sprin7ng  at  high  speeds  compared  to  humans7  

                           -­‐  ↑  levels  of  enzymes  of  the                                              glycoly7c  pathway  =  ↑  glycogen                                      u7liza7on  rate    =  ↑ATP  synthesis7  

1Ross  A.,  and  Michael,  L.  Long-­‐term  metabolic  and  skeletal  muscle  adapta7on  to  short-­‐sprint  training.  Sports  Med  2001;  31:  1063-­‐1082      2Thorstensson  A.,  Sjodin  B.,  and  Karlsson  J.  Enzyme  ac7vi7es  and  muscle  strength  aker  ‘sprint  training’  in  man.  Acta  Physiol  Scand  1975;  94:  313-­‐8    3Cos7ll  D.L.,  Daniels  J.,  Evans  W.,  Fink,  W.,  Krahenbuhl,  G.,  and  B.  Sal7n.  Skeletal  muscle  enzymes  and  fiber  composi7on  in  male  and  female  track  athletes.  J  Appl  Physiol  40:  149-­‐154.  4Ortenblad,  N.,  Lunde,  P.K.,  Levin,  K.,  Andersen,  J.L.,  and  P.K.  Pedersen.  2000.  Enhanced  sarcoplasmic  re7culum  Ca2+  following  intermipent  sprint  training.  Am  J  Physiol  279:  R152-­‐R160.    5Daily  Record.  hpp://www.dailyrecord.co.uk/sport/other-­‐sports/athle7cs/usain-­‐bolt-­‐beaten-­‐cheetah-­‐study-­‐1949124.  (accessed  Mar.  7,  2014).  6  Sharp,  N.C.C.  1997.  Timed  running  speed  of  a  cheetah  (Acinonyx  jubatus).  J  Zool  241:  493-­‐494.    7  Williams,  T.M.,  Dobson,  G.P.,  Mathieu-­‐Costello,  O.,  Morsbach,  D.,  Worley,  M.B.,  and  J.A.  Phillips.  1997.  Skeletal  muscle  histology  and  biochemistry  of  an  elite  sprinter,  the  African  cheetah.  J  Comp  Physiol  B  167:  527-­‐535.    8Olympic.org.  Olympic  Games.  hpp://www.olympic.org/olympic-­‐results/london-­‐2012/athle7cs/100m-­‐m.  (accessed  Feb.  18,  2014).  9Sadoyama,  T.,  Masuda,  T.,  Miyata,  H.,  and  S.  Katsuta.  1988.  Fibre  conduc7on  velocity  and  fibre  composi7on  in  human  vastus  lateralis.  Eur  J  Appl  Physiol  57:  767-­‐771.  10Dubowitz,  V.  1985.  Muscle  biopsy:  a  prac7cal  approach.  Bailliere  Tindall,  London.  11Catholic  News  Agency  hpp://www.catholicnewsagency.com/news/va7can-­‐invites-­‐usain-­‐bolt-­‐to-­‐address-­‐religious-­‐liberty-­‐conference/.  (accessed  Mar.  7,  2014).  

•  Sprint  7mes  of  UNBC  students  varied  considerably  (12.97-­‐18.82s)  •  This  can  be  contributed  to  levels  of  fitness  and  engagement  in  

sprint  related  ac7vi7es  •  Individuals  with  faster  7mes  visibly  had  larger  muscle  size,  which  

were  likely  contrac7ng  and  relaxing  at  higher  rates  due  to  increased  metabolic  enzyme  ac7vity1  

o  Olympic  sprinters  were  significantly  faster  (Wilcoxon  test,  W=0,  p=3.205e-­‐07)  than  UNBC  students  (Table  1,2)  as  expected  because  of  sprint  training  by  Olympic  athletes    

o  Students  had  liple  to  no  specific  sprint  training  o  The  higher  level  of  training  of  Olympic  sprinters:  delays  fa7gue,  

↑  ac7vity  of  enzymes  producing  ATP,  ↑  percentage  of  FT  fibers,  ↑  development  of  the  SR,  and  ↑  diameter  of  muscles.1  

q  The  cheetah  can  achieve  higher  sprint  speeds  than  human  sprinters,  owing  to  ↑  glycoly7c  enzymes,  but  not  fiber  composi7on  and  size7,  which  is  similar  in  both  (Table  3)  

ü  Hypothesis  met:  Cheetah  >  Olympic  sprinters  >  UNBC  students  REFERENCES  

Table&1.&Fastest&men’s&100&meter&&sprint&times&in&Olympics.8&

Name% Time%(s)% Name% Time%(s)%

U.&Bolt& 9.63& M.&Greene& 9.87&

U.&Bolt& 9.69& R.&Bailey& 9.88&

Y.&Blake& 9.75& F.&Fredericks& 9.89&

J.&Gatlin& 9.79& R.&Dawson& 9.89&

T.&Gay& 9.80& A.&Boldon& 9.90&

D.&Bailey& 9.84& W.&Dix& 9.91&

J.&Gatlin& 9.85& C.&Lewis& 9.92&

F.&Obikwelu& 9.86& C.&Martina& 9.93&

M.&Greene& 9.87& C.&Martina& 9.94&

Mean:%9.84&±&0.08&s&!!

Table&2.&UNBC&student&100m&sprint&times,&&arranged&from&fastest&to&slowest.&Student' Time'(s)' Student' Time'(s)'

1& 12.97& 10& 14.50&

2& 13.28& 11& 14.84&

3& 13.68& 12& 15.02&4& 13.68& 13& 15.10&

5& 13.69& 14& 15.17&

6& 14.27& 15& 15.18&

7& 14.31& 16& 16.03&

8& 14.43& 17& 16.03&

9& 14.45& 18& 18.82&Mean:&14.74&±&1.32&s&!

RESULTS  

Table&3.&Diameter&and&%&of&muscle&fibers&&in&human&males&and&the&cheetah.7,9,10&! Healthy!

Human!Males!Cheetah!!

%!FT!fibers!in!vastus!lateralis!

~70%& 83%&

Muscle!fiber!diameter!

82?85µm&& 40?80µm&

&

↑ATP  

Glycolysis  degrades  

carbohydrates  to  generate  

ATP  ↑  Glycoly7c  

enzyme  ac7vity  =↑  rate  of  glycolysis1,3    

Crea7ne  phosphokinase  (CPK)  converts  phosphocrea7ne  (PCr)  to  ATP2  ↑  CPK  ac7vity  depletes  PCr  quicker2    

Myokinase  resynthesizes  ATP  from  ADP  in  muscles2  

↑  Myokinase  ac7vity2    

Citric  Acid  Cycle  (CAC)  =  ATP  synthesis  in  oxida7ve  

phosphoryla7on                                                                  ↑  CAC  enzyme  ac7vity            

=  ↑  rate  of  CAC1,3                                          

Figure  1.  Increase  in  ac7vity  of  metabolic  enzymes  increases    ATP  produc7on.  

Contact  informa7on:  [email protected],  [email protected]    

INTRODUCTION  

Figure  2.  A  cheetah  and  Olympic  sprinter,  Usain  Bolt.5  

Figure  3.  Men’s  4x100m  relay  at  Olympic  Games  London  2012.11  

We  would  like  to  thank  Dr.  Nikolaus  Gantner  for  his  guidance  throughout  the  project.  We  are  also  apprecia7ve  of  the  Northern  Sports  Center  for  allowing  us  to  use  their  indoor  track,  and  the  BIOL  321  students  who  par7cipated  in  our  data  collec7on.  

ACKNOWLEDGEMENTS    

MARCH  13th  2014,  UNBC  PHYSI-­‐O-­‐LYMPICS,  PRINCE  GEORGE,  BC  

Top Related