Transcript
Page 1: Oxford Medicine Online Principles of brain single-photon emission computed tomography ... · 2018. 10. 3. · Principles of brain single-photon emission computed tomography imaging

Principles of brain single-photon emission computed tomography imaging

Page 1 of 22

PRINTED FROM OXFORD MEDICINE ONLINE (www.oxfordmedicine.com). ©Oxford University Press, 2015. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordMedicine Online for personal use (for details see Privacy Policy). Subscriber: Habib Zaidi; date: 27 November 2015

Publisher: OxfordUniversityPress PrintPublicationDate: Oct2015PrintISBN-13: 9780199664092 Publishedonline: Oct2015DOI: 10.1093/med/9780199664092.001.0001

Chapter: Principlesofbrainsingle-photonemissioncomputedtomographyimagingAuthor(s): YongDuandHabibZaidiDOI: 10.1093/med/9780199664092.003.0008

OxfordMedicineOnline

OxfordTextbookofNeuroimagingEditedbyMassimoFilippi

Principlesofbrainsingle-photonemissioncomputedtomographyimaging

IntroductionThehistoricaldevelopmentofmedicalimagingismarkedbynumeroussignificanttechnologicalaccomplishments,drivenbyanunprecedentedcollaborationbetweenmultidisciplinaryresearchgroups.Thefirstmedicalapplicationsoftomographicimagingfocusedonthebrain[1].X-raycomputedtomography(CT)andmagneticresonanceimaging(MRI)have,foralongtime,beenthemostwidely-usedimagingmodalitiesforanatomicassessmentofpathologicprocessesaffectingthebrain.Alternatively,radionuclideimagingmethods,includingsingle-photonemissioncomputedtomography(SPECT)andpositronemissiontomography(PET)haveemergedasusefulmedicalimagingtechnologiesforevaluatingbrainfunction.Thedevelopmentoftheformertechnologyforbrainimagingdatesbackto1976whenDrsKeyesandJaszczakreportedindependentlyonthedevelopmentofabrainSPECTsystembasedonAngercameramountedonarotatinggantry[2,3].Asnuclearmedicineimaginghasbecomeintegratedintoclinicalpractice,severaldesigntrendshavedeveloped;withsystemsnowavailablewithaspectrumoffeatures,fromthosedesignedfor

Page 2: Oxford Medicine Online Principles of brain single-photon emission computed tomography ... · 2018. 10. 3. · Principles of brain single-photon emission computed tomography imaging

Principles of brain single-photon emission computed tomography imaging

Page 2 of 22

PRINTED FROM OXFORD MEDICINE ONLINE (www.oxfordmedicine.com). ©Oxford University Press, 2015. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordMedicine Online for personal use (for details see Privacy Policy). Subscriber: Habib Zaidi; date: 27 November 2015

clinicalwhole-bodyapplicationstoothersdesignedspecificallyforveryhigh-resolutionbrainresearchapplications[4].

SPECTisanon-invasive3Dtomographicimagingmodalitythatiswidelyusedinbothclinicaldiagnosisandacademicresearchtoassessmanydiseases[5,6,7].InSPECTimaging,the3Ddistributionofaradionuclide-labelledagentadministeredtoapatientismeasuredbydetectingthegamma-photonsemittedfromthedecayoftheradioactiveisotopesattachedtotheradiotracer.BecauseSPECTagentscanbedesignedtotargetspecificphysiologicalfunctions,SPECTimagescanprovideinformationonphysiologicalandphysiopathologicalprocessesatamolecularlevel.Thisuniquefeaturemakesitausefultoolforinvivoimagingofhumanbrainfunction,especiallyforstudyingdysfunctionoftheneurotransmissionsystemthatisrelatedtomanybraindiseases[8].Asaresult,brainSPECTimagingbecameapowerfultoolfordiagnosis,prognosis,evaluationofresponsetotherapy,andchoiceoftreatmentplanformanyneurodegenerativediseases[9,10].

Brainsingle-photonemissioncomputedtomographyinstrumentationConventionalSPECTimagingsystems

SincethepurposeofSPECTimagingistomeasureandrepresentthe3Ddistributionoftheradiopharmaceuticalsadministeredtothepatient,theenergiesofgammarayphotonsemittedbylabellingradionuclidesarehighenoughtoallowpenetrationthroughthepatient’sbody.Theemittedphotonscanbedetectedusingtheso-calledgammacamera(Fig.8.1)togenerateatwo-dimensional(2D)snapshotplanarimage.The2Dplanarimageisreferredtoasprojectionimagesinceitrepresentsaprojectedviewofthethree-dimensional(3D)radiotracerdistributionatacertainangle.Toacquirea3Ddistribution,aseriesofprojectionimagesaretakenaroundthepatientatdifferentdiscreteanglesbyrotatingthegammacameraaroundthepatientalongthesuperior-inferioraxis.Afteracquisition,the3Ddistributioncanthenbereconstructedfromthemeasuredprojectionimagesusingoneoftheavailablereconstructiontechniques.

Fig.8.1SchematicrepresentationofaSPECTgammacameraanditsmaincomponents.

Usually,conventionalSPECTimagingsystemshavetwoorthreegammacamerasthataremountedonagantrywhichprovidesmechanicalsupportandrotationofthecameras.Themaincomponentsofagammacameraincludethecollimator,scintillationcrystal,andphotomultipliertubes(PMTs)(Fig.8.1).

Thecollimatorisusedtoselectivelydetectphotonstravellinginacertaindirectionbecausethisinformationisneededforimagereconstruction.Itismadeofhighlydensephotonabsorbing

Page 3: Oxford Medicine Online Principles of brain single-photon emission computed tomography ... · 2018. 10. 3. · Principles of brain single-photon emission computed tomography imaging

Principles of brain single-photon emission computed tomography imaging

Page 3 of 22

PRINTED FROM OXFORD MEDICINE ONLINE (www.oxfordmedicine.com). ©Oxford University Press, 2015. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordMedicine Online for personal use (for details see Privacy Policy). Subscriber: Habib Zaidi; date: 27 November 2015

material,usuallyleadortungsten,withapatternofholesthatallowsonlyphotonstravellingparalleltothehole-directiontopassandreachthedetectorcrystal.Theholescanbearrangedwiththesamedirection(parallelholecollimator)orconvergetocertainpoints(forexample,aconebeamcollimator).Thescintillatorcrystal,commonlysodiumiodide(NaI)crystal,willabsorbthephotonandtransferitsenergyintovisibleorultraviolet(UV)lightphotonsthroughaprocesscalledscintillation.ThenumberofvisibleorUVphotonsisproportionaltotheenergyofincidentphotons.Thevisible/UVphotonswilltraveltothePMTtroughalightguideandproduceanelectriccurrentsignal.ThePMTcanmultiplythecurrentsignalbyafactorofasmuchasamillion.Thesignalwillthenbefurtheramplifiedthroughtheamplifierandsenttoprocessingelectronicstogeneratethepositionandtheenergyinformationoftheincidentgammaphoton.Theinformationwillthenbepassedontoanacquisitionboard/computertogeneratetheprojectionimages.

ManyoftheclinicalSPECTsystemscommerciallyavailabletodayaredual-modalitySPECT/CTsystemsthatalsoincludeaCTsubsystem[11].TheSPECTimagesandCTimagesarecomplimentarytoeachother:SPECTimagesprovidefunctionalinformation,whiletheCTimagesprovideanatomicalinformationaboutlocationofdiseasesite.Byfusingthetwoimagestogether,anaccurateinterpretationofimagescanbeachieved.Inaddition,CTimagescanalsobeconvertedintoattenuationmapsrequiredforattenuationcompensationtoimproveSPECTimagequalityandquantitativeaccuracy.AplethoraofCTscannersareusedoncombinedSPECT/CTsystems.SomeusediagnosticqualityCTtoprovideimagessuitableforclinicalusage.Toreducepatientradiationdose,low-doseCTscannershavealsobeendeployed,mostlyfortypicalnuclearmedicineapplications[12].Theimagequalityoflow-doseCTisusuallylowandcanonlybeusedforattenuationcompensationandlocalization.However,withtheadvanceofiterativeCTreconstructionalgorithms,low-doseCTscannowalsoprovideimagesofgoodquality[13].

Dedicatedcollimatorsandhardwareforbrainimaging

MostclinicalSPECTsystemscanbeusedforvariousapplicationsthroughappropriateselectionofthemostsuitedcollimatorforaparticularstudy.ThecollimatoristhemostimportantpartofaSPECTcameraandisconsideredtobethemaincomponentaffectingspatialresolution,sensitivity,andimagenoise.Thechoiceofthecollimatordependsontheimagedobjectandtrade-offconsiderationsbetweensensitivityandspatialresolution.Usually,collimatorswithbetterspatialresolutionhavelowersensitivity,thusrequiringalongacquisitiontimeasotherwisetheimagewillbeverynoisy.Ontheotherhand,collimatorswithhighersensitivitywillprovideimageswithlowerresolution.Themostcommonlyusedcollimatorsareparallel-holecollimators.Forexample,inbrainimagingusing Tc-labelledcompounds,alow-energyhigh-resolution(LEHR)parallel-holecollimatorisoftenusedtoprovideimageswithhighspatialresolution.BecausehighspatialresolutionisdesirableinbrainSPECTimaging,muchworthwhileresearchfocusedondesigningdedicatedcollimatorstoimprovespatialresolutionwithoutsacrificingsensitivity[4].

Mostofthesecollimatorsareconvergingcollimators,inwhichtheholesarefocusedtoaline(fanbeamcollimator)orapoint(conebeamcollimator)infrontofthecollimator.Anumberofvaryingfocallengthcollimators,wheretheholesarefocusedtodifferentpointsinspacehavealsobeendevelopedandevaluatedinclinicalsetting.Thedetectionefficiencyofconvergingbeamcollimatorsishigherthanthatofparallel-holecollimators.Thespatialresolutionisalsoslightlybetter.Pinholecollimatorshavealsobeendesignedforimagingsmallorgans,suchasthethyroidortheextremitiestoprovideabetterspatialresolution,butattheexpenseofdetectionefficiency.Theefficiencycanbesubstantiallyimprovedbyusingmultiplepinholes[14].

99m

Page 4: Oxford Medicine Online Principles of brain single-photon emission computed tomography ... · 2018. 10. 3. · Principles of brain single-photon emission computed tomography imaging

Principles of brain single-photon emission computed tomography imaging

Page 4 of 22

PRINTED FROM OXFORD MEDICINE ONLINE (www.oxfordmedicine.com). ©Oxford University Press, 2015. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordMedicine Online for personal use (for details see Privacy Policy). Subscriber: Habib Zaidi; date: 27 November 2015

Furthermore,eveninthepresenceofhighcountstatistics,themechanicalmotionsinvolvedandthebulkofthedetectorheadslimittheshortesttimeinwhichacompletesetofprojectionscanberecorded[15,16].NumerousattemptshavebeencarriedouttoconsiderablyboostbrainSPECTsensitivityusingseveraldetectorheadsorring-likearrangementofdetectorstoenabletheveryrapidacquisitionofafullsetofprojections.AlthoughtheuseofsuchdedicatedsystemsisnotprevalentintheclinicforbrainSPECTimaging,theyareusefulforresearchapplicationsandcouldalsobeusefulfortheassessmentofthepotentialroleofadvancesininstrumentationinthefuture[17,18].AgoodexampleoffullringdetectorsystemsistheFASTSPECT,developedattheUniversityofArizona,whichconsistsof24position-sensitiveNaI(Tl)detectorsthatarecompletelystationary,togetherwithastationarysetof2-mmpinholecollimators,hence,achievinghighsensitivity(fastdynamicbrainscans)andhighspatialresolution[19].Theringdetectorsfromstationarysystemssurroundthehead,whichmakesitpossibletoacquiredatafrom360°atthesametime.Thisisespeciallyattractivefordynamicimagingwhereashortrepeat-scanoveraperiodoftimeisperformed.AnotherdedicatedbrainscannerwithstationaryannularNaI(Tl)detectoristheCERASPECTsystem,developedbyDigitalScintigraphicsInc.[20],whichisequippedwitharotatingcollimator.AmodifiedversionofthiscollimatoristheSensOgrade,avariablefocusingcollimator,whichsamplestheprojectionsunequally,withcentralregionsmoreheavilyrepresentedtocompensateforattenuationfromcentralbrainstructures,thusyieldingafour-tonine-foldincreaseinsensitivitycomparedwithconventionaldual-headcameras[21].AthirdexampleistheSPRINTIIsystemdevelopedattheUniversityofMichigan,whichconsistsof11detectorsarrangedinapolygonalfashionandarotatingcollimator,whichallowstheacquisitionofacompletesetoffan-beamprojectiondatawithin1/12ofarotation[22].AnotherexampleofunconventionalsystemsistheNeuroFocus™multi-conebeamimager(NeurophysicsCorporation,Shirley,MA,USA),whichproducestomographicSPECTimageswithanintrinsicspatialresolutionof~3mm.TheoperationoftheNeuroFocus™high-definitionfocusingemissiontomographicscanner(HDFET)followsthesameprinciplesofscanningopticalmicroscopestoobtainhigh-resolution3Dimagesofbiologicaltissue[23].Ahighlyfocusedpointoflightisscannedmechanicallyinthree-dimensionstouniformlysamplethevolumeunderobservation.AsanalternativetodynamicSPECTimagingusingmultiple,fastrotations,strategiesinvolvingtheuseofonlyasingle,slowcamerarotationhavebeenproposed[24,25].Furtheradvancesinelectronicsarepermittingnewcountingstrategiesandadvancesinelectroniccomponentcapabilityareallowingforenhancedsensitivity[26].

DataacquisitionprotocolsDataacquisition

DuringSPECTimageacquisition,aseriesof2Dprojectionimagesaretakenatdifferentanglesbyrotatingthecameraaroundthepatient.Toacquireenoughdataforimagereconstruction,itisimportanttoselectthecorrectscanarc,whichdefinestherangeofrotationandwheretostart.Forexample,forcardiacimaginga180°rotationfromrightposteriorobliquetoleftanteriorobliqueisused,whileforbrainimaginga360°rotationisusuallyrequired.Onealsoneedstodecidetheorbittospecifythedistanceofthecamerafromthepatientateachangle.Theorbitcanbeeithercircularornon-circular.Non-circularmeansthatthedistancesofthecamerafromthecentreofrotation,termedastheradiusofrotation,arenotthesamefordifferentangles.Inacircularorbit,theradiusofrotationisconstant.Foraparallel-holecollimator,thecloserthepatienttothecamera,thebetterthespatialresolutionis.Therefore,anon-circularorbitisoftenusedforimagingthetorso,wherethecameraispositionedasclosetothepatientaspossible.InmodernSPECT

Page 5: Oxford Medicine Online Principles of brain single-photon emission computed tomography ... · 2018. 10. 3. · Principles of brain single-photon emission computed tomography imaging

Principles of brain single-photon emission computed tomography imaging

Page 5 of 22

PRINTED FROM OXFORD MEDICINE ONLINE (www.oxfordmedicine.com). ©Oxford University Press, 2015. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordMedicine Online for personal use (for details see Privacy Policy). Subscriber: Habib Zaidi; date: 27 November 2015

systems,thiscanbedoneautomaticallyusingopticalsensorsinstalledonthecamera.Forbrainimaging,duetotheroundshapeofthehead,acircularorbitisoftenusedwheretheoperatorcanspecifytheradiusofrotation.

Thegammaphotonsemittedfromradioactivedecayhavecharacteristicenergy/energies,calledpeaksthatarespecifictotheisotope.Forexample, Tcdecayemitsgammaphotonsat140.5keVonly,while Idecayemitsgammaradiationmainlyat159keVwithsomeotherhigherenergypeakswithlowabundance.Ideally,duringSPECTimagingonlyphotonsdetectedwiththeexactpeakenergywillbecountedastrueevents.However,duetothelimitedenergyresolutionofthegammacamera,theenergiesofdetectedphotonsareGaussiandistributedaroundthepeakenergy.Tomaintainareasonablesensitivity,photonsdetectedwithenergiesinacertainrangearoundthepeakenergywillallbecountedastrueevents.Thisenergyrangeiscalledtheacquisitionenergywindow.Ontheotherhand,photonsscatteredinthepatientbodywillcontaminatetheimagesandtheyusuallyhaveabroadenergydistributionlowerthanthepeak.Toreducethenumberofrecordedscatteredphotons,theenergywindowshouldnotbetoowide.Thechoiceoftheenergywindowisdictatedbyabalancebetweenrecordingasmanypeakphotonsaspossiblewithoutsignificantlyincreasingscatteredphotoncounts.Commonly-usedenergieswindowsareusually15–20%wideandcentredaroundthepeakenergy.

AnotherimportantparameterinSPECTistheacquisitiontimeforeachprojectionangle.Longacquisitiontimesresultinhighcountsandlowimagenoise.However,thiswillalsoreducepatientcomfortandincreasechancesofartefactscausedbypatientmovementduringacquisition.Overall,thechoiceofscanningparametersdependsontheimagingtaskathand.Theaimistoacquireasmuchcompletedataaspossibletoprovidegoodimagequalityandmaketheprocesscomfortabletopatients.MostcommercialSPECTsystemshavemanufacturerpresetorrecommendedacquisitionprotocolsforcommonapplications,suchascardiacimaging,brainimaging,tumourimaging,andbonescans.Newprotocolscanalsobesetbytheuserstoaccomplishtheirspecialneeds.Thisrequirestheavailabilityofaqualifiedmedicalphysicisthavingtherequiredskills,expertise,andknowledgeofthistechnology.

Dual-isotopeimaging

Insomesituations,itmaybenecessarytoacquireimagesofmorethanonephysiologicalfunctiontoprovideaccuratediagnosis.Forexample,inbrainimagingofthedopaminergicsystem,itisgenerallyrecognizedthattheanalysisoftheintegrityofboththepre-andthepost-synapticneuroniscrucialindistinguishingdifferentparkinsoniansyndromes.Thepresynapticneuronscanbeimagedwithanagenttargetingthedopaminetransporter(DAT)onthecellmembrane.Agentstargetingthedopaminereceptors,especiallytypeIIreceptor(D2R),couldbeusedinimagingthepost-synapticneurons[27,28].Traditionally,DATandD2RimagingareperformedondifferentdaysbecausemostofDATandD2Ragentsarelabelledwiththesameisotope( I).Sincethehalf-lifeof Idecayis13hours,thetwoscansmustbeseparatedbyseveraldaystoallowtheradioactivityfromthefirstscantodecayinordertoavoidcontaminationofthesecondscan.Duringthisinterval,thepatient’sphysiologicalstatusmayhavechanged.Moreover,thepatient’spositionduringthetwoscanswillprobablybedifferent,whichwillcauseregistrationerrorsbetweentheimages[29].Thisisparticularlyrelevantforpatientssufferingtremors,wheretheartefactsinthetwoimagesmayhavedifferentpatternsthatwillfurthercomplicatediagnosis.

Thesedrawbackscan,however,beovercomebyusingsimultaneousdual-isotopeacquisition

99m123

123123

Page 6: Oxford Medicine Online Principles of brain single-photon emission computed tomography ... · 2018. 10. 3. · Principles of brain single-photon emission computed tomography imaging

Principles of brain single-photon emission computed tomography imaging

Page 6 of 22

PRINTED FROM OXFORD MEDICINE ONLINE (www.oxfordmedicine.com). ©Oxford University Press, 2015. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordMedicine Online for personal use (for details see Privacy Policy). Subscriber: Habib Zaidi; date: 27 November 2015

methods.Takingadvantageofmoderncameras’higherenergyresolutionandtheabilitytoacquiremultipleenergywindows,simultaneousdual-isotopeimagingisamethodthatcanbeusedtodiagnosediseasesbyimagingdifferentphysiologicalinformationrevealedbyagentslabelledwithdifferentisotopesthatemitgammaphotonsatdifferentenergies.Comparedtoseparateimaging,simultaneousacquisitionreducesacquisitiontime,patientdiscomfortandmotionartefacts.Perhaps,moreimportantly,simultaneousacquisitionensuresperfectregistrationoftheimagesfrombothisotopesintimeandspace.Furthermore,motionartefacts,ifany,willbethesameonimagesofbothisotopes.Forexample,withtheintroductionof Tc-labelledDATligands,suchas Tc-TRODAT,SPECTimagingoftheDATandD2Rcannowbecarriedoutsimultaneouslyusingdual-isotope Tc/ Iimaging.Thereisalsointerestinsimultaneousimagingofbrainperfusionusing

Tc-HMPAOandneurotransmissionwith I-IBZM.However,researchonsimultaneousTc/ Idual-isotopebrainimaginghasshownthatimagequalityissignificantlydegradedbythe

cross-talkcontaminationbetweenthetwoisotopes.Cross-talkherereferstothecontaminationofoneagent/isotope’simagecausedbytheotherisotopeusedinsimultaneousdual-isotopeimaging.Beforesimultaneousimagingcanbeadoptedclinically,anefficientcross-talkcompensationmethodmustbedevelopedandvalidated[30,31,32].

ImagereconstructionImagereconstructiontechniques

SPECTimageformationcanbeexpressedasanintegrationofthe3Dradioactivitydistributionalongeachprojectiondirection,i.e.lineofintegration,intoaseriesof2Ddata.Imagereconstructionisaninverseproblemthattriestoestimatethe3Dactivitydistributionfromthe2Dprojectiondata.Bothanalyticalanditerativereconstructionapproacheshavebeendevisedtosolvethisreconstructionprobleminordertoprovidethebestestimatesthatareasclosetothetruthaspossible.Thesetwocategoriesofreconstructionstrategiesarebrieflysummarized.

Analyticalreconstruction

Asdescribedabove,aprojectionisanintegrationoftheactivitydistributionalongthelineofintegration.ThecollectionoftheseprojectionsasafunctionofprojectionangleisreferredtoastheRadontransformoftheobject[33].Byinversingtheradontransformoftheprojections,theoriginal3Dactivitydistributioncanthenbereconstructedanalytically.Themostwidelyusedanalyticalreconstructionmethodisthefilteredback-projection(FBP)algorithm,whichisstillusedinmanyimagereconstructiontasks.

Analyticalreconstructionmethods,suchasFBP,focusonthegeometryandsimplifythephysics.Theyaresimple,fast,andcanprovideaccurateresultswhentheassumedprojectionmodelmatchestheimageformationprocess.However,theyaresensitivetonoiseandmissingdata,whichwillresultinartefactsandlossofreconstructedimageresolution.Anothermajordisadvantageofanalyticalmethodsisthattheydonotallowprecisemodellingofthephysicalandstatisticalcharacteristicsofthedataacquisitionprocess,thusresultinginimageartefactsandpoorquantitation.Thisproblemcan,however,besolvedthroughtheuseofiterativereconstructionalgorithms,whereimagedegradingfactorscanbemodelledduringthereconstructionasdescribedinthenextsection.

Iterativereconstruction

99m 99m

99m 12399m 12399m 123

Page 7: Oxford Medicine Online Principles of brain single-photon emission computed tomography ... · 2018. 10. 3. · Principles of brain single-photon emission computed tomography imaging

Principles of brain single-photon emission computed tomography imaging

Page 7 of 22

PRINTED FROM OXFORD MEDICINE ONLINE (www.oxfordmedicine.com). ©Oxford University Press, 2015. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordMedicine Online for personal use (for details see Privacy Policy). Subscriber: Habib Zaidi; date: 27 November 2015

Fig.8.2showsageneralizedflowchartofaniterativereconstructionalgorithm.Aniterativemethodcanberegardedasanoperatorworkingbetweentheimagespace,i.e.the3Dspacerepresentingtheactivitydistributionintheobject,andprojectionspace,whichrepresentstheSPECTmeasurementofthe2Dprojections.Inaniterativemethod,aninitialestimateisprojectedtogenerateanestimatedprojectionofthecurrentestimate.Estimatedprojectionsarethencomparedwiththemeasuredprojections.Theerrorbetweenthetwoisback-projectedtotheimagespace,thenusedtoupdatethecurrentestimate.Byrepeatingtheprojection–back-projectionprocessinafeedbacklooptoupdatetheimageestimateuntilagivencriterionisfulfilled,iterativemethodscanproducehigh-qualityimageswithimprovedresolutionandnoiseproperties,andresultinadequatequantitativeaccuracy.

Fig.8.2Flowchartofaniterativereconstructionalgorithm.

Amongalliterativereconstructionalgorithms,themostsuccessfulandpopularonesarestatisticalreconstructions,whichareoftensimplyreferredtoasiterativereconstructionapproaches.Aniterativestatisticalreconstructionmethodconsistsofthreemajorcomponents:

1.Anunderlyingstatisticalmodelwithassociatedobjectivefunction.2.Aniterativealgorithmtofindtheoptimalestimateintermsoftheobjectivefunction.3.Amodeloftheimageformationprocessoftenimplementedusingaprojector–back-projectorpair.

Amongthese,theprojector–back-projectorpairisveryimportant.Itservesasabridgeconnectingtheimagespace(estimate)andtheprojectionspace(measurement).Itisintheprojection–back-projectionoperatorsthattheexactmodellingofthephysicsandimageformationprocessisperformed.Throughtheiterativeprocess,themodellingallowsforthecompensationofimage-degradingfactors,suchasscatterandattenuation.Theunderlyingstatisticalmodelandresultingobjectivefunctionplaytheroleofdecidinghowwelltheestimatematchestheprojections,takingintoaccountthenoisepropertiesofthemeasureddataandknowledgeaboutthecharacteristicsoftheunderlyingactivitydistribution.

ThemostpopulariterativereconstructionalgorithminSPECTisthemaximum-likelihoodexpectation-maximization(ML-EM)algorithmanditsacceleratedvariation,theordered-subsetsexpectation-maximization(OS-EM)approach[34,35].TheML-EMalgorithmisbasedonthefactthatphotonemissionanddetectionfromradioactivedecayarePoissondistributed.Itattemptstomaximizethestatisticallikelihoodthatthemeasuredprojectionscamefromthereconstructed

Page 8: Oxford Medicine Online Principles of brain single-photon emission computed tomography ... · 2018. 10. 3. · Principles of brain single-photon emission computed tomography imaging

Principles of brain single-photon emission computed tomography imaging

Page 8 of 22

PRINTED FROM OXFORD MEDICINE ONLINE (www.oxfordmedicine.com). ©Oxford University Press, 2015. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordMedicine Online for personal use (for details see Privacy Policy). Subscriber: Habib Zaidi; date: 27 November 2015

image.InOS-EM,thealgorithmismadefasterbyusingonlypartoftheprojectiondata,calledasubset,duringeachupdate.ComparedwithML-EM,OS-EMconvergesfasterwithafactorapproximatelyequaltothenumberofsubsetsused.ThiscategoryofreconstructionstrategieswassosuccessfulthatmostcurrentSPECTsystemsoffersoftwareforenduserstoperformML-EMandOS-EMreconstructionwithvariousphysicsmodellingoptions.Whilethishasbeenshowntobeofgreatpracticalvalue,itshouldbenotedthatOS-EMhasarelativelyweaktheoreticalbasisanditsconvergencepropertiesareonlypoorlyunderstood.

Despitetheiradvantagesandattractiveproperties,thesetechnicaladvanceshavemanylimitations.Iterativemethodscanbeverycomputationallydemanding,particularlywhencomplexmodelsareusedtomodelthephysicsoftheimageformationprocess.However,thewidespreadavailabilityofhighperformancecomputing,evenondesktopcomputers(includinggraphicsprocessingunitandcloudcomputing),andthecontinuingdevelopmentofrapidlyconvergingalgorithmshasledtorenewedinterestiniterativetechniquesandmadethemahottopicforleadingmanufacturersandacademicresearchgroups.

Imagedegradingfactors

Ideally,onlyphotonswithanoriginalpaththatisalongthecollimatorholedirectioncanbedetectedintheprojections.However,whengamma-photonstravelinsideanobject,theyinteractwithmatterthroughanumberofphysicalprocesses,suchasphotoelectricabsorptionandComptonscatter[36].Theprobabilityofoccurrenceofeachprocessdependsontheenergyofthephotonandtheelectrondensityofthematerial.Thoseinteractionscouldreducethenumberofphotonsorchangeaphoton’spathandenergy.Thedetectionofthosealternatedphotonscancausefalseinformationanddegradetheimagequalityinmultipleways.Fig.8.3demonstratesthedifferentfactorsthatcandegradeSPECTimages.Amongthose,themostsignificantfactorsarephotonattenuation,scatter,andcollimator-detectorresponse.

Fig.8.3OverviewofphotondetectioninSPECTrepresentingdifferentphysicaldegradingfactors.(1and2)Photonspassthroughthecollimatorwithoutinteractions,1alsoshowstheattenuationofthephotonintensity.(3)Photonpenetratesorscattersinthecollimator-detectorsystem.(4)Photonscattersinsidetheimagingobject.(5)Photoelectricabsorption;and(6)Photonescapestheobjectwithouthittingthecollimator-detectorsystem.

Whenphotonspassthroughtheimagingobject,theycanbeabsorbedbyphotoelectricabsorption

Page 9: Oxford Medicine Online Principles of brain single-photon emission computed tomography ... · 2018. 10. 3. · Principles of brain single-photon emission computed tomography imaging

Principles of brain single-photon emission computed tomography imaging

Page 9 of 22

PRINTED FROM OXFORD MEDICINE ONLINE (www.oxfordmedicine.com). ©Oxford University Press, 2015. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordMedicine Online for personal use (for details see Privacy Policy). Subscriber: Habib Zaidi; date: 27 November 2015

ordivertedbyComptonscatter.Asaresult,theintensityofthephotonfluxfinallyreachingthedetectorwillbemuchsmallercomparedwiththeoriginaloneandthiseffectisreferredtoasphotonattenuation.Attenuationreducesthemeasuredprojectioncounts.Thedegreedependsonthephotonpathandtheobject.Itcanbeexpressedasanexponentfunctionoftheproductoftheattenuationcoefficientoftheobjectandthedistancethephotonhastotravelintheobject.Ifnotcompensatedfor,attenuationleadstoreconstructedimageswithreducedintensityinvoxelsdeepintheobject.Itcanalsoresultinvisibleartefactsandquantificationwithsignificanterrors.

Anumberofphotonsemittedfromtheradionuclidewillscatterinthepatientatleastoncebeforeexitingthebody.ThedominantscattereventsareComptonscatter,whichreflectsacollisioninteractionbetweenagamma-photonandanoutershellelectronofanatom.Duringthecollision,gamma-photonswilltransfersomeoftheirenergytotheelectronandchangethedirectionofmovement.Theenergyofthescatteredphotonisafunctionofthescatteringangle,givenbytheComptonformula.Thephotonlosesmostofitsenergywhenitisscatteredbackward(180°).Whenthescatteringangledecreases,theenergyofthescatteredphotoncomesclosetotheincomingphoton’senergy.TheprobabilityofComptonscatteringdependsonthephotonenergyandthenumberofelectronsavailableintheobject.Theprobabilityoftheangulardistributionofthescatteredphoton,describedbyKlein–Nishinaformula,isalsoafunctionofthephotonenergyandscatteringangle[36].

BecauseComptonscatteringreducesphotonenergy,usuallyonlythosephotonsscatteredonceortwice,andwithinasmallscatteringanglecanbedetectedwithintheimagingenergywindow.Sincescatterdivertsthedirectionofscatteredphotons,whenthosephotonsaredetected,theyresultincountsinvoxelsthattheywouldnotreachwithoutbeingscattered.Scatterinprojectiondataisspatiallyvaryingandisafunctionoftheobjectattenuationproperties,theimagingenergywindow,andthesourcedistribution.Inbrainimagingusing I-or Tc-labelledcompounds,scatteredphotonscancontributeupto11%ofthetotalcountsinthefinalimages.Ifnotcompensatedfor,scattercouldresultinastructuredbackgroundartefactthatresemblesthemedium-andlow-frequencycharacteroftheactivitydistribution,andassuchreducesimagecontrast.Quantitatively,scattercanleadtooverestimationoftraceruptake[37,38].

Thecollimatoristhecrucialelementdeterminingthesensitivity,spatialresolutionandcontrastofSPECTimages.Aperfectcollimatoronlyallowsthedetectionofphotonsthattravelinadirectionparalleltothecollimatorhole.AsshowninFigs8.3and8.4,sincearealcollimatorholehasafinitegeometricsize,photonsincidentwithinasmallacceptanceanglefromthehole-directioncanstillbedetected.Thisisreferredtoasgeometrically-collimatedphotonsorcollimatorgeometricresponse.Inaddition,duetostatisticvariations,thepositionofphotonabsorptioninthecrystalisusuallydeterminedwithimprecision,andisdefinedasintrinsicresolution.Bothcollimatorgeometricresponseandintrinsicresolutionreducethespatialresolutionandcauseblurringoftheimage.Theseeffectscanbemodelledusinggeometricresponsefunctions.Typically,Gaussianfunctionsareusedtoanalyticallymodelthegeometricresponses.ThefullwidthathalfmaximumoftheGaussianis,therefore,oftenusedasanindicationofthesystemspatialresolution[39].Ingeneral,collimatorswithlargeholesallowmorephotonstopassthrough,butwillalsocausemorespatialblurring.Collimatorswithsmallholescanprovidebetterspatialresolution,butlowersensitivity.Theresolutionisalsoafunctionofdistance:thefarthertheobjectfromthecollimator,theworsetheresolution.

123 99m

Page 10: Oxford Medicine Online Principles of brain single-photon emission computed tomography ... · 2018. 10. 3. · Principles of brain single-photon emission computed tomography imaging

Principles of brain single-photon emission computed tomography imaging

Page 10 of 22

PRINTED FROM OXFORD MEDICINE ONLINE (www.oxfordmedicine.com). ©Oxford University Press, 2015. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordMedicine Online for personal use (for details see Privacy Policy). Subscriber: Habib Zaidi; date: 27 November 2015

Fig.8.4Differentcomponentsofthecollimator-detectorresponse.(1)Geometricresponse.(2)Collimatorpenetration.(3)Collimatorscatter.

Photonsincidentonthecollimatorwithlargeanglesareusuallyabsorbedbytheseptabetweencollimatorholes.However,somehigh-energyphotonsemittedfromisotopessuchas IcanstillpenetratetheseptaorpassthroughafterscatteringinsidetheseptaasshowninFig.8.4.Thepenetratedphotonsfromapointsourceusuallyresultinastar-orstripe-shapedpatternintheprojection.Collimatorscatteredphotonsusuallyresultinabroadlydistributedbackgroundintheprojection.Ifnotcompensatedfor,thesephotonscancauseartefactsinthereconstructedimages.Thefullcollimator-detectorresponse,includinggeometricresponse,collimatorpenetration,andcollimatorscatterdependsonthecollimatorgeometryandthephotonenergy.Itcanbemodelledbythecollimator-detectorresponsefunction(CDRF)thatismeasuredorsimulatedbyplacingapointsourceatvariousdistancesfromthefaceofthecollimator.

Fig.8.5showssimulatedSPECTimagesconsideringthedifferentimagedegradingfactorsdiscussedabove.TheimageswerereconstructedusingFBPwithoutpost-reconstructionfiltering.Fromlefttoright,theimagequalityisgettingworsebecausemoredegradingfactorswereincludedinthesimulationprocess.Theworstimageisthelastoneontheright,whichincludesallthephysicaldegradingfactorsandisthemostrepresentativeofwhatisfoundintheclinicwithoutanycompensation.Theimagesalsoindicatethatattenuationreducestheintensityatthecentreofthebrain,collimator-detectorresponseblursimagesandreducesspatialresolution,andscatterreducesimagecontrast.

Fig.8.5

123

Page 11: Oxford Medicine Online Principles of brain single-photon emission computed tomography ... · 2018. 10. 3. · Principles of brain single-photon emission computed tomography imaging

Principles of brain single-photon emission computed tomography imaging

Page 11 of 22

PRINTED FROM OXFORD MEDICINE ONLINE (www.oxfordmedicine.com). ©Oxford University Press, 2015. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordMedicine Online for personal use (for details see Privacy Policy). Subscriber: Habib Zaidi; date: 27 November 2015

Effectsofimagedegradingfactors.Theimagesrepresenttheactualtracerdistributioninthestriatalbrainphantom(a)andreconstructedSPECTimagesgeneratedwithoutdegradingfactors(b);withphotonattenuation(c);withattenuationandcollimator-detectorresponseblurring(d);andwithattenuation,collimator-detectorresponseblurring,andscatter(e).

ThespatialresolutionintypicalSPECTimagesisaround1–2cm.AsshowninFig.8.5,thefinitespatialresolutionresultsinblurredimageswithpartialvolumeeffects(PVEs).PVEsincludebothalossofcountsinstructuressmallerthantwoorthreetimesthesystemresolution’sfullwidthathalfmaximum(partialvolume)andcontaminationbetweenadjacentregions(spillover).PVEsalsodependontheshape,size,andrelativeactivitiesoftheobjectsofinterest.Theproceduresappliedafterimageacquisition,suchasimagereconstruction,willalsoaffectthelevelofPVEs.Inbrainimaging,duetothefinedimensionsofthestructuresofinterest,suchastheputamenandcaudate,PVEscancauselargequantitativeerrors.

Inaddition,SPECTimagesalsosufferfromnoise.NoiseinSPECTimagesconsistsmainlyofstatisticalnoiseresultingfromtherandomnatureofphotonemission(followingradioactivedecay)anddetectionprocesses.ItcanbecharacterizedbyaPoissondistributioninwhichthevarianceequalsthemean.Therefore,noiseinSPECTdataisafunctionofthenumberofdetectedcounts—thehigherthecounts,thelesserthenoise.Noisecouldsignificantlyaffectimagequalityandquantitativeaccuracy,andreducethedetectabilityofsubtleabnormalitiesandtheirmeasurement.Noisecanalsocauseimageartefacts,introducingtexturesintouniformly-distributedregions.Increasingthecountlevelusinglongacquisitiontimesorhighinjectiondosescanreducenoise.Lowpassfilteringisoftenusedtosmoothoutnoiseinthereconstructedimages.Alternatively,constrainscanalsobeappliedduringiterativereconstructiontoreducenoise.

Cross-talkindual-isotopeimaging

Insimultaneousdual-isotopeimaging,aphotonemittedfromoneisotopecanbedetectedinanotherisotope’senergywindowowingtothefiniteenergyresolutionofthedetectorsystem,andtheinteractionofphotonswiththeobjectandcollimator-detectorsystem.Thesephotonscanreduceimagequality,degradequantitativeaccuracy,andcauseartefactsintheimages.Thiseffectisreferredtoascross-talkcontamination.Cross-talkcontaminationdependsontheemissionenergiesandtheimagingenergywindowsofbothisotopes.Assuch,theoverallimpactisdifferentforvariousisotopecombinations,makingitdifficulttofindauniversalcompensationmethod.

Fig.8.6showssimulatedenergyspectraofasimultaneous Tc/ Idual-isotopebrainSPECTstudy.Thespectraindicatethatcross-talkfrom Tcinto Iprojectiondataoriginatesmainlyfromunscattered Tcphotonsthataredetectedinthe Ienergywindowasaresultofthedetector’sfiniteenergyresolution.Thecross-talkfrom Iinto Tcwindow,however,iscomplexandincludesphotonsoriginatingfromavarietyofprocesses.Inadditiontothe159keVphotonsusedforimaging, Idecayalsoemitshigh-energyphotonswithenergiesrangingfrom182keVto783keVwithatotalabundanceof~3%[40].Thedown-scatterofthesephotonsintoboth TcandIenergywindowscanfurthercontaminatetheimagesofbothradionuclides.

99m 12399m 123

99m 123123 99m

12399m

123

Page 12: Oxford Medicine Online Principles of brain single-photon emission computed tomography ... · 2018. 10. 3. · Principles of brain single-photon emission computed tomography imaging

Principles of brain single-photon emission computed tomography imaging

Page 12 of 22

PRINTED FROM OXFORD MEDICINE ONLINE (www.oxfordmedicine.com). ©Oxford University Press, 2015. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordMedicine Online for personal use (for details see Privacy Policy). Subscriber: Habib Zaidi; date: 27 November 2015

Fig.8.6Simulatedenergyspectraofa Tc/ Idual-isotopestudy.

Compensationtechniques

Toimproveimagequalityandquantitativeaccuracy,imagingdegradingfactorshavetobecompensatedfor.Tocompensateforattenuation,anattenuationmaprepresentingthespatialdistributionofthepatient’sattenuationcoefficientsisrequired.TheattenuationmapcanbederivedbyscanningthepatientusingeithertransmissionsourcesofradionuclideshavinganenergyclosetotheenergyoftheradionuclideusedforSPECTimagingorfromCTimagesacquiredoncombinedSPECT-CTsystems.Inthepast,analyticalmethodshavebeenusedtocompensateforphotonattenuation,whichusuallyinvolvesscalingtheprojectionimageorpost-reconstructionfiltering[41,42].Becausethesemethodsoftenassumeuniformattenuationofthemedium,theycanonlyprovideanapproximatecompensation,andsometimesmayevencausemoreartefactswhentheobjectisnon-homogeneous[43].

Accurateattenuationcompensationcanbeachievedusingiterativereconstruction-basedcompensation,wheretheattenuationmapacquiredfromatransmissionscanisusedtomodeltheattenuationintheprojection–back-projectionoperators[44].Iterativereconstruction-basedattenuationcompensationhasbeenshowntosignificantlyimprovetheimagequalityandquantitativeaccuracy,andiscurrentlywidelyusedintheclinic.Similarly,anaccuratecompensationofthecollimator-detectorresponseisusuallyachievedthroughiterativereconstruction-basedcompensationbyincludingtheCDRFmodelsintheprojection–back-projectionoperators[45].

Comptonscattercompensationstrategiescanbecategorizedintomethodsthatcompensateforscatterdirectlyontheprojectiondata(pre-reconstruction),methodsthatcompensateforscatterduringthereconstructionprocessandpost-reconstructionrestorationfiltering[38].Methodsthatoperateonprojectiondatausuallyaccomplishthecompensationbysubtractingthescatterestimatefrommeasuredprojectiondata.Scatterisoftenestimatedbyscalingprojectiondataacquiredinoneortwoscatterwindowswithpre-determinedfactors[46,47,48].Thescattercanalsobeestimatedbyanalysingthespectrumofprojectiondataacquiredinmultiplenarrow(1–4keVwide)energywindowsusingspectralfittingtechniquesorartificialneuralnetworks[49,50].Post-reconstructionfilteringusuallycompensatesforthescatterbydeconvolvingthereconstructedimageswithascatterresponsefunction(ScRF)acquiredthroughexperimentalmeasurementsorderivedfromMonteCarlosimulations[51].Bothpre-andpost-reconstructionscattercompensationmethods

99m 123

Page 13: Oxford Medicine Online Principles of brain single-photon emission computed tomography ... · 2018. 10. 3. · Principles of brain single-photon emission computed tomography imaging

Principles of brain single-photon emission computed tomography imaging

Page 13 of 22

PRINTED FROM OXFORD MEDICINE ONLINE (www.oxfordmedicine.com). ©Oxford University Press, 2015. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordMedicine Online for personal use (for details see Privacy Policy). Subscriber: Habib Zaidi; date: 27 November 2015

makesimpleassumptionsaboutthescattercomponent,suchasshift-invariance,whichresultsinbiasedscatterestimates.Furthermore,scattercompensationisachievedbysubtractionoftheestimatedscattercomponent,whichisusuallyaccompaniedbyalargeincreaseinstatisticalnoise[52,53].

Reconstruction-basedscattercompensation(RBSC)methodscompensateforscatterbymodellingthespatiallyvaryingandobject-dependentSRFintheprojection–back-projectionoperatorswithintheframeworkofaniterativereconstructionalgorithm[37,54].RBSCmethodswereshowntoprovidethemostaccuratescattercompensationamongallmethods[37,38].CurrentlyavailablescattermodellingtechniquesforRBSCincludetheslab-derivedscatterestimation(SDSE)model,theeffectivesourcescatterestimation(ESSE)techniques[54,55],thenon-stochasticnumericalintegrationmethod[56,57],andthefastMonteCarlosimulationapproach[58,59].

Todemonstratetheefficacyofthevariousimagecorrectiontechniques,Fig.8.7showsrepresentativeSPECTbrainimagesreconstructedwithcompensationforvariousdegradingfactors.Theimagequalitygraduallyimproveswhenmoredegradingfactorsarecompensatedfor.Thebestresultisachievedbyincludingcompensationsforallthephysicaldegradingfactors.

Fig.8.7Imagesreconstructedwithcompensationfordifferentphysicaldegradingfactors.Theimagesrepresenttheactualtracerdistributioninthestriatalbrainphantom(a)andreconstructedSPECTimagesobtainedwithoutcompensation(b);withattenuationcompensation(c);withattenuationandcollimator-detectorresponsecompensation(d);andwithattenuation,collimator-detectorresponse,andscattercompensation(e).

Mostofcross-talkcompensationmethodshavebeendevelopedbasedonscattercompensationmethods[60,61,62,63,64,65].Theproceduresincludeestimatingthecross-talk,andsubtractingitpriortoreconstructionorusingreconstruction-basedcompensationapproaches.Thecross-talkcanbeestimatedusingmultipleenergywindowmethods,includingthetriple-energywindowtechniqueormorecomplicatedtechniques,suchasthoseusingartificialneuralnetworks,constrainedspectraldeconvolution,andprincipalcomponentanalysis.Cross-talkmodelswerealsodevelopedforiterativereconstruction-basedcompensationthatuseestimatesoftheactivitydistributionforeachisotopecombinedwiththephysicsoftheimage-formationprocesstoestimatethecross-talk.Forexample,model-basedcross-talkcompensation(MBCC)usestheESSEtechniquetomodelphotoninteractionsinsideobjects,andcollimator-detectorresponsefunctionstomodelphotoninteractionswithinthecollimator-detectorandthefiniteenergyresolutionofthedetector[66].MonteCarlosimulationshavealsobeenusedforcross-talkestimation[58].

Fig.8.8showssimultaneous Tc/ Idual-isotopeimagesreconstructedwithoutcross-talkcompensationandwithMBCC,comparedwithcross-talkfreesingle-isotopeimages.Overall,withoutcompensation,thecross-talkreducedimagecontrastforboth Tcand Iimages.AftercompensationusingMBCC,theimagesareveryclosetosingle-isotopeimages,indicatingthe

99m 123

99m 123

Page 14: Oxford Medicine Online Principles of brain single-photon emission computed tomography ... · 2018. 10. 3. · Principles of brain single-photon emission computed tomography imaging

Principles of brain single-photon emission computed tomography imaging

Page 14 of 22

PRINTED FROM OXFORD MEDICINE ONLINE (www.oxfordmedicine.com). ©Oxford University Press, 2015. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordMedicine Online for personal use (for details see Privacy Policy). Subscriber: Habib Zaidi; date: 27 November 2015

efficacyofcross-talkcompensation[66].

Fig.8.8Simultaneousdual-isotopeimages.Toprow: Tcimages,bottomrow: Iimages.Dual-isotopeimageswithoutcross-talkcompensation(aandd);withMBCC(bande);andcross-talkfreesingle-isotopeimages(candf).

Compensationforcollimator-detectorresponsecanimproveimageresolutionandreducePVEs.However,completecountrecoveryhasnotbeenachievedyet[45,66,67,68].Additionalpartialvolumeeffectcompensationisusuallyrequired.Aplethoraofpartialvolumecompensation(PVC)strategieshavebeenproposed[69,70].SomeofthesemethodsattempttoremoveorreducethePVEsbydeconvolvingtheimagewiththesystempointspreadfunction.Toimprovenoiseproperties,regularizationisrequiredduringdeconvolution.Pixel-by-pixeltemplate-basedapproaches,wherespill-inandspill-outcountsaremodelledbytheireffectontemplateimagesfollowedbycompensationusingsubtractionanddivision,werealsoproposed[71].AlternativeapproachesdirectlycompensateforPVEsattheregionalleveltoprovidecorrectedactivityestimatesusingatransfermatrixofPVEs[72].ApplicationofPVCtodopaminergicneurotransmissionSPECTimaginghasbeenshowntosignificantlyimprovequantitativeaccuracy[73].Reconstruction-basedPVCmethodshavealsobeenproposed,usingforinstance,themaximumaposterioriapproach[74].MethodsthatincorporatePVCdirectlyintothekineticmodellingprocessbyintroducingadditionalparametersthatmodelPVEswerealsoreportedfordynamicimaging[75].Overall,accuratePVCrequiresperfectknowledgeofthesystemresolutionandprecisedelineationofregions-of-interest(ROIs)boundaries,whichcanbeperformedthroughtheuseofregisteredhigh-resolutionanatomicalimagessuchasCTorMRI.

ImagequalityassessmentanddataanalysisQualitativeversusquantitative

Traditionally,SPECTimageshavebeenqualitativelyassessedbyvisualobservationoftraceruptake

99m 123

Page 15: Oxford Medicine Online Principles of brain single-photon emission computed tomography ... · 2018. 10. 3. · Principles of brain single-photon emission computed tomography imaging

Principles of brain single-photon emission computed tomography imaging

Page 15 of 22

PRINTED FROM OXFORD MEDICINE ONLINE (www.oxfordmedicine.com). ©Oxford University Press, 2015. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordMedicine Online for personal use (for details see Privacy Policy). Subscriber: Habib Zaidi; date: 27 November 2015

inregionslinkedtoknownpatternsofvariousdiseases.Thevisualassessmentconveysinformationonwhetherthetraceruptakeisnormalorabnormal,and,ifabnormal,itprovidesanideaaboutthemagnitudeoftheabnormality.InbrainSPECT,thevisualassessmentprovidesinformationaboutrighttoleftasymmetriesandwhichstructuresarethemostaffectedbydisease.

However,becausetheuptakeofanimagingtracerisoftenstronglycorrelatedtotheintegrityofphysiologicalfunctionsintargetedROIs,thequantitativemeasurementsoftraceruptakeinthoseROIscanprovidemoreinformationforin-depthassessment.Mostimportantly,quantitativeanalysisenablestoestimatephysiologicalparameters,suchasbloodflow,metabolism,andreceptorconcentration.Thesemeasurementscanbeusedinclinicaldiagnosticwork-uporintheassessmentoftheefficacyoftherapies.Forinstance,thebindingofDATorD2Ragentsinthedopaminergicsystemarestronglycorrelatedtothedegreeofdiseaseprogressioninmovementdisorders.Recentresearchhasdemonstratedthatthequantitativemeasurementoftraceruptakecanprovidemoreinformationforbetterassessmentofmanybraindiseaseprocesses[10,76,77].

Quantificationtechniques

QuantitativestudiesusuallyinvolvedefiningROIsontheimagesandthenmeasuringthetraceuptakeinsidethem.OnecommonlyusedmethodinbrainSPECTistocalculatethespecificbindingpotential(SBP,alsocalledspecificuptakevalue)oftheradiotracerintheROIastheratiobetweenactivityconcentrationinsidetheROIandtheactivityconcentrationsinareferenceregionthathasnospecificbindingforthetracerconsidered.Theimagescanalsobeassessedusingmoresophisticatedvoxel-basedquantitativemethods,suchasstatisticalparametricmapping(SPM),whichautomaticallymapsbrainregionstoastandardizedatlasandcomparestheimageswithadatabaseofnormalsubjects[77].ComparedwithSPM,computingtheSBPgreatlysimplifiesdataanalysisandoftenprovidesareliablemeasurement.

DynamicSPECTcanalsobeusedtoacquireaseriesofimagesoftraceruptakewithintheROIfromtheinjectiontimetillthetimethetraceriswashedoutorthedistributionreachesequilibrium.Consequentialkineticanalysisoftheacquireddynamicdatausingtissuecompartmentmodelsprovidesuniqueinformationthatimprovesthediscriminationbetweenhealthyanddiseasedtissuecomparedwithstaticimages[25].

FutureperspectivesThemajorchallengefacingthefutureofbrainSPECTimagingisthewidespreadadoptionandavailabilityofPETinclinicalsetting.PEThasbetterspatialresolutionandhighersensitivitythanSPECT.TocompetewithPET,futurebrainSPECTsystemsshouldprovideimageswithbetterqualityandimprovedquantitativeaccuracythatisequivalentoratleastcomparablewithPET.

Software

SoftwaredevelopmentinSPECTiscurrentlyfocusingonimprovingimagequalityandquantitativeaccuracyofreconstructedimages.Thisincludesthedevelopmentofnovelreconstructionalgorithmsandimagecorrectiontechniques.Promisingresultshavebeenachievedusingmaximumaposteriori(MAP)reconstructionalgorithmsthatincorporateanatomicalknowledgeintotheSPECTreconstructionprocess.TheanatomicalinformationcanbeobtainedfromMRimages,whichareroutinelyperformedintheclinicforbrainstudies.MRIprovidesdetailedstructural

Page 16: Oxford Medicine Online Principles of brain single-photon emission computed tomography ... · 2018. 10. 3. · Principles of brain single-photon emission computed tomography imaging

Principles of brain single-photon emission computed tomography imaging

Page 16 of 22

PRINTED FROM OXFORD MEDICINE ONLINE (www.oxfordmedicine.com). ©Oxford University Press, 2015. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordMedicine Online for personal use (for details see Privacy Policy). Subscriber: Habib Zaidi; date: 27 November 2015

informationaboutthebrainwhichismissinginSPECT.InMAPreconstruction,theanatomicalinformationcouldbeusedasapriortoreducestatisticalnoiseandimprovetheresolution,especiallywhenanatomicalregion-basedpriorsareusedtoreducenoiseinsideeachstructurebutnotacrosstheboundaries[74,78,79].Differentpriorscanalsobeusedforeachstructurebasedonitsbiologicalproperties.Fig.8.9showsexamplescomparingOS-EMwithMAPreconstructionsusingdifferentregionalpriors.TheOS-EMimagescontainasignificantamountofnoise.IntheMAPreconstruction,auniformpriorwasusedforthestriatumassuminguniformuptake.Asmoothpriorwasusedforthebackgroundtoreducenoise.ImagesfromMAPreconstructionportraymuchreducednoiseandimprovedspatialresolutionforthestriatumcomparedwithOS-EMreconstruction.

Fig.8.9BrainSPECTimagesreconstructedusingdifferentalgorithmsshowingtheactualtracerdistributioninthestriatalbrainphantom(a).OS-EMreconstruction(b).MAPreconstructionwithonlyauniformpriorforthestriatum(c).MAPreconstructionwithasmoothpriorforbackgroundandauniformpriorforthestriatum(d).

Hardware

AmorefundamentalwayofimprovingSPECTimagesistodevelopnewdetectortechnologythatcouldprovideimageswithhighsensitivityandhighspatialresolution.Detectorsusingsemiconductortechnology,wheredirectphotonconversiondetectorssuchascadmiumtelluridearemostlyused,acquiredataatbetterenergyresolutionthanconventionalgammacameras[80,81].Thiscouldpotentiallyprovideimageswithlessscatterandreducecross-talkindual-isotopeimaging.Developmentinmultimodalityimagingisalsobeingpursued.InSPECT/CT,recentdevelopmentsindual-energyCTscannersmakeitpossibletosegmentsofttissuesinCTimageswithouttheuseofcontrastagents.SimultaneousSPECT/MRIisalsopromisingandshouldenablebothMRandSPECTimagesofpatient’sbraintobeacquiredatthesametime,thusprovidingperfectlyregisteredimages.

AcknowledgementsThisworkwassupportedbytheSwissNationalScienceFoundationundergrantSNSF31003A-149957

References1.AbrahamT,FengJ.(2011).Evolutionofbrainimaginginstrumentation.SeminarsinNuclearMedicine,41,202–19.

Page 17: Oxford Medicine Online Principles of brain single-photon emission computed tomography ... · 2018. 10. 3. · Principles of brain single-photon emission computed tomography imaging

Principles of brain single-photon emission computed tomography imaging

Page 17 of 22

PRINTED FROM OXFORD MEDICINE ONLINE (www.oxfordmedicine.com). ©Oxford University Press, 2015. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordMedicine Online for personal use (for details see Privacy Policy). Subscriber: Habib Zaidi; date: 27 November 2015

2.KeyesJ,Jr,OrlandeaN,HeetderksW,etal.(1977).TheHumongotron-ascintillation-cameratransaxialtomograph.JournalofNuclearMedicine,18,381–7.

3.JaszczakRJ,MurphyPH,HuardD,etal.(1977).Radionuclideemissioncomputedtomographyoftheheadwith99mTcandascintillationcamera.JournalofNuclearMedicine,18,373–80.

4.AccorsiR.(2008).Brainsingle-photonemissionCTphysicsprinciples.AJNRAmericanJournalofNeuroradiology,29,1247–56.

5.JaszczakRJ.(2006).Theearlyyearsofsinglephotonemissioncomputedtomography(SPECT):ananthologyofselectedreminiscences.PhysicsinMedicineandBiology,51,R99–115.

6.MadsenMT.(2007).RecentadvancesinSPECTimaging.JournalofNuclearMedicine,48,661–73.

7.HuttonBF.(2010).NewSPECTtechnology:potentialandchallenges.EuropeanJournalofNuclearMedicineandMolecularImaging,37,1883–6.

8.CamargoEE.(2001).BrainSPECTinneurologyandpsychiatry.JournalofNuclearMedicine,42,611–23.

9.CatafauAM.(2001).BrainSPECTofdopaminergicneurotransmission:anewtoolwithprovedclinicalimpact.NuclearMedicineCommunications,22,1059–60.

10.DevousMD.(2002).Functionalbrainimaginginthedementias:roleinearlydetection,differentialdiagnosis,andlongitudinalstudies.EuropeanJournalofNuclearMedicine,29,1685–96.

11.SeoY,MariC,andHasegawaBH.Technologicaldevelopmentandadvancesinsingle-photonemissioncomputedtomography/computedtomography.SeminarsinNuclearMedicine,38,177–98.

12.FrancBL,MyersR,PoundsTR,etal.(2012).ClinicalutilityofSPECT-(low-dose)CTversusSPECTaloneinpatientspresentingforbonescintigraphy.ClinicalNuclearMedicine,37,26–34.

13.BeisterM,KolditzD,andKalenderWA.(2012).IterativereconstructionmethodsinX-rayCT.PhysicsinMedicine,28,94–108.

14.BeekmanF,andvanderHaveF.(2007).Thepinhole:gatewaytoultra-high-resolutionthree-dimensionalradionuclideimaging.EuropeanJournalofNuclearMedicineandMolecularImaging,V34,151–61.

15.CherrySR.(2004).Invivomolecularandgenomicimaging:newchallengesforimagingphysics.PhysicsinMedicine,49,R13–48.

16.MeikleSR,KenchP,KassiouM,etal.(2005).SmallanimalSPECTanditsplaceinthematrixofmolecularimagingtechnologies.PhysicsinMedicineandBiology,2005,22.

17.ZaidiH,(ed.)(2006).Quantitativeanalysisinnuclearmedicineimaging.NewYork:Springer2006.

18.ZaidiH,andElFakhriG.(2008).Isabsolutequantificationofdopaminergicneurotransmissionstudieswith123ISPECTreadyforclinicaluse?EuropeanJournalofNuclearMedicineand

Page 18: Oxford Medicine Online Principles of brain single-photon emission computed tomography ... · 2018. 10. 3. · Principles of brain single-photon emission computed tomography imaging

Principles of brain single-photon emission computed tomography imaging

Page 18 of 22

PRINTED FROM OXFORD MEDICINE ONLINE (www.oxfordmedicine.com). ©Oxford University Press, 2015. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordMedicine Online for personal use (for details see Privacy Policy). Subscriber: Habib Zaidi; date: 27 November 2015

MolecularImaging,35,1330–3.

19.RoweRK,AarsvoldJN,BarrettHH,etal.(1993).AstationaryhemisphericalSPECTimagerforthree-dimensionalbrainimaging.JournalofNuclearMedicine,34,474–80.

20.GennaS,andSmithAP.(1988).ThedevelopmentofAspect,anannularsingle-crystalbraincameraforhigh-efficiencySPECT.IEEETransactionsinNuclearSciences,35,654–8.

21.ElFakhriG,OuyangJ,ZimmermanRE,etal.(2006).Performanceofanovelcollimatorforhigh-sensitivitybrainSPECT.MedicalPhysics,33,209–15.

22.RogersWL,ClinthorneNH,ShaoL,etal.(1988).SPRINTII:asecondgenerationsinglephotonringtomograph.IEEETransactionsinNuclearSciences,7,291–7.

23.SeibylJP,StobbartHA,MartinD,etal.(2002).EvaluationofhighresolutionNeuroFocusSPECTdeviceforsmallanimalimaging(abstract).JournalofNuclearMedicine,2002,43

24.FarncombeT,CellerA,NollD,etal.(1999).DynamicSPECTimagingusingasinglecamerarotation(dSPECT).IEEETransactionsinNuclearSciences,46,1055–61.

25.GullbergGT,ReutterBW,SitekA,etal.(2010).Dynamicsinglephotonemissioncomputedtomography-basicprinciplesandcardiacapplications.PhysicsinMedicineandBiology,55,R111–91.

26.WongWH,LiH,UribeJ,etal.(2001).Feasibilityofahigh-speedgamma-cameradesignusingthehigh-yield-pileup-event-recoverymethod.JournalofNuclearMedicine,42,624–32.

27.ActonPD,andMozleyPD.(1999).Singlephotonemissiontomographyimaginginparkinsoniandisorders:areview.BehaviouralNeurology,12,11–27.

28.TatschK,AsenbaumS,BartensteinP,etal.(2002).EuropeanassociationofnuclearmedicineprocedureguidelinesforbrainneurotransmissionSPETusing123I-labelleddopaminetransportligands.EuropeanJournalofNuclearMedicineandMolecularImaging,29,BP30–5.

29.DjangDS,JanssenMJ,BohnenN,etal.(2012).SNMpracticeguidelinefordopaminetransporterimagingwith123I-ioflupaneSPECT1.0.JournalofNuclearMedicine,53,154–63.

30.DevousMD,LoweJL,PayneJK.(1992).Dual-isotopebrainSPECTimagingwithTechnetiumandI-123—Validationbyphantomstudies.JournalofNuclearMedicine,33,2030–5.

31.DevousMD,PayneJK,andLoweJL.(1992).Dual-isotopebrainSPECTimagingwithTechnetiumandI-123—ClinicalvalidationusingXe-133SPECT.JournalofNuclearMedicine,33,1919–24.

32.IvanovicM,WeberDA,LoncaricS,etal.(1994).FeasibilityofdualradionuclidebrainimagingwithI-123andTc-99m.MedicalPhysics,21,667–74.

33.KakAC,andSlaneyM.(1988).Principlesofcomputerizedtomographicimaging.IEEEPress.

34.HudsonHM,andLarkinRS.(1994).Acceleratedimagereconstructionusingorderedsubsetsofprojectiondata.IEEETransactionsinNuclearSciences,13,601–9.

Page 19: Oxford Medicine Online Principles of brain single-photon emission computed tomography ... · 2018. 10. 3. · Principles of brain single-photon emission computed tomography imaging

Principles of brain single-photon emission computed tomography imaging

Page 19 of 22

PRINTED FROM OXFORD MEDICINE ONLINE (www.oxfordmedicine.com). ©Oxford University Press, 2015. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordMedicine Online for personal use (for details see Privacy Policy). Subscriber: Habib Zaidi; date: 27 November 2015

35.LangeK,andCarsonR.(1984).EMreconstructionalgorithmsforemissionandtransmissiontomography.JournalofComputerAssistedTomography,8,306–16.

36.CherrySR,SorensonJA,andPhelpsME.(2012).Physicsinnuclearmedicine,4thedn.Philadelphia,PA:ElsevierSaunders.

37.ZaidiH,andKoralKF.(2004).Scattermodellingandcompensationinemissiontomography.EuropeanJournalofNuclearMedicineandMolecularImaging,31,761–82.

38.HuttonBF,BuvatI,andBeekmanFJ.(2011).ReviewandcurrentstatusofSPECTscattercorrection.PhysicsinMedicineandBiology,56,R85–112.

39.MetzCE,AtkinsFB,andBeckRN.(1980).Thegeometrictransferfunctioncomponentforscintillationcameracollimatorswithstraightparallelholes.PhysicsinMedicineandBiology,25,1059–70.

40.TanakaM,UeharaS,KojimaA,etal.(2007).MonteCarlosimulationofenergyspectrafor123Iimaging.PhysicsinMedicineandBiology,52,4409–25.

41.BudingerTF,GullbergGT,HuesmanRH.(1979).Emissioncomputedtomography.Imagereconstructionfromprojections:implementationandapplications.32,147–246.

42.ChangL-T.(1978).Amethodforattenuationcorrectioninradionuclidecomputedtomography.IEEETransactionsinNuclearSciences,NS-25,638–43.

43.ZaidiH,andHasegawaBH.(2003).Determinationoftheattenuationmapinemissiontomography.JournalofNuclearMedicine,44,291–315.

44.TsuiBMW,GullbergGT,EdgertonER,etal.(1989).CorrectionofnonuniformattenuationincardiacSPECTimaging.JournalofNuclearMedicine,30,497–507.

45.TsuiBMW,ZhaoXD,FreyEC,etal.(1994).Quantitativesingle-photonemissioncomputed-tomography—basicsandclinicalconsiderations.SeminarsinNuclearMedicine,24,38–65.

46.JaszczakRJ,GreerKL,FloydCE,etal.ImprovedSPECTquantificationusingcompensationforscatteredphotons.JournalofNuclearMedicine,25,893–900.

47.IchiharaT,OgawaK,MotomuraN,etal.(1993).Comptonscattercompensationusingthetriple-energywindowmethodforsingle-anddual-isotopeSPECT.JournalofNuclearMedicine,34,2216–21.

48.KingMA,HademenosGJ,andGlickSJ.(1992).Adual-photopeakwindowmethodforscattercorrection.JournalofNuclearMedicine,33,605–12.

49.BuvatI,BenaliH,ToddpokropekA,etal.(1994).Scattercorrectioninscintigraphy—thestate-of-the-art.EuropeanJournalofNuclearMedicine,21,675–94.

50.ElFakhriG,MaksudP,KijewskiMF,etal.(2000).Scatterandcross-talkcorrectionsinsimultaneousTc-99m/I-123brainSPECTusingconstrainedfactoranalysisandartificialneuralnetworks.IEEETransactionsinNuclearSciences,47,1573–80.

51.FloydCE,Jr,JaszczakRJ,GreerKL,etal.(1985).DeconvolutionofComptonscatterinSPECT.

Page 20: Oxford Medicine Online Principles of brain single-photon emission computed tomography ... · 2018. 10. 3. · Principles of brain single-photon emission computed tomography imaging

Principles of brain single-photon emission computed tomography imaging

Page 20 of 22

PRINTED FROM OXFORD MEDICINE ONLINE (www.oxfordmedicine.com). ©Oxford University Press, 2015. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordMedicine Online for personal use (for details see Privacy Policy). Subscriber: Habib Zaidi; date: 27 November 2015

JournalofNuclearMedicine,26,403–8.

52.GillandDR,TsuiBMW,McCartneyWH,etal.(1988).DeterminationoftheoptimumfilterfunctionforSPECTimaging.JournalofNuclearMedicine,29,643–50.

53.YanchJC,FlowerMA,andWebbS.(1988).AcomparisonofdeconvolutionandwindowedsubtractiontechniquesforscattercompensationinSPECT.IEEETransactionsinNuclearSciences,7,13–20.

54.FreyEC,andTsuiBMW.(1996).Anewmethodformodelingthespatially-variant,object-dependentscatterresponsefunctioninSPECT.In:1996IEEENuclearScienceSymposiumConferenceRecord,pp.1082–6.Anaheim,CA.

55.DuY,TsuiBMW,andFreyEC.(2006).Model-basedcompensationforquantitativeI-123brainSPECTimaging.PhysicsinMedicineandBiology,51,1269–82.

56.CaoZJ,FreyEC,andTsuiBMW.(1994).AscattermodelforparallelandconvergingbeamSPECTbasedontheKlein–Nishinaformula.IEEETransactionsinNuclearSciences,41,1594–600.

57.RiaukaTA,andGortelZW.(1994).Photonpropagationanddetectioninsingle-photonemissioncomputedtomograph—ananalyticalapproach.MedicalPhysics,21,1311–22.

58.BeekmanFJ,deJongHWAM,andvanGelovenS.(2002).Efficientfully3-DiterativeSPECTreconstructionwithMonteCarlo-basedscattercompensation.IEEETransactionsinMedicalImaging,21,867–77.

59.LazaroD,ElBitarZ,BretonV,etal.(2005).Fully3DMonteCarloreconstructioninSPECT:afeasibilitystudy.PhysicsinMedicineandBiology,50,3739–54.

60.ElFakhriG,MooreSC,MaksudP,etal.(2001).AbsoluteactivityquantitationinsimultaneousI-123/Tc-99mbrainSPECT.JournalofNuclearMedicine,42,300–8.

61.ErlandssonK,VisvikisD,WaddingtonWA,etal.(1999).DualradionuclidebrainimagingwithTc-99mandI-123withcrosstalkcorrectionsusingmultipleenergywindows.EuropeanJournalofNuclearMedicine,26,1186.

62.KnesaurekK,andMachacJ.(1997).Enhancedcross-talkcorrectiontechniqueforsimultaneousdual-isotopeimaging:aTl-201/Tc-99mmyocardialperfusionSPECTdogstudy.MedicalPhysics,24,1914–23.

63.LinksJM,PrinceJL,andGuptaSN.(1996).AvectorWienerfilterfordual-radionuclideimaging.IEEETransactionsinMedicalImaging,15,700–9.

64.NeumannDR,andChenEQ.(1992).Convolution-basedmethodofenergyspectralcrosstalkcorrectionforsimultaneous,dual-isotopeSPECT.Radiology,185,176.

65.YangJT,YamamotoK,SadatoN,etal.(1997).Clinicalvalueoftriple-energywindowscattercorrectioninsimultaneousdual-isotopesingle-photonemissiontomographywith123I-BMIPPand201Tl.EuropeanJournalofNuclearMedicine,24,1099–106.

66.DuY,TsuiBMW,andFreyEC.(2007).Model-basedcrosstalkcompensationforsimultaneous

Page 21: Oxford Medicine Online Principles of brain single-photon emission computed tomography ... · 2018. 10. 3. · Principles of brain single-photon emission computed tomography imaging

Principles of brain single-photon emission computed tomography imaging

Page 21 of 22

PRINTED FROM OXFORD MEDICINE ONLINE (www.oxfordmedicine.com). ©Oxford University Press, 2015. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordMedicine Online for personal use (for details see Privacy Policy). Subscriber: Habib Zaidi; date: 27 November 2015

Tc-99m/I-123dual-isotopebrainSPECTimaging.MedicalPhysics,34,3530–43.

67.PretoriusPH,KingMA,PanTS,etal.(1988).ReducingtheinfluenceofthepartialvolumeeffectonSPECTactivityquantitationwith3Dmodellingofspatialresolutioniniterativereconstruction.PhysicsinMedicineandBiology,43,407–20.

68.SoretM,RiddellC,HapdeyS,etal.(2001).SimultaneousattenuationandpartialvolumeeffectcorrectionforSPECTI-123dopaminereceptorimaging.JournalofNuclearMedicine,42,57p.

69.RoussetO,RahmimA,AlaviA,etal.(2007).PartialvolumecorrectionstrategiesinPET.PETClinics,2,235–49.

70.ErlandssonK,BuvatI,PretoriusPH,etal.(2012).Areviewofpartialvolumecorrectiontechniquesforemissiontomographyandtheirapplicationsinneurology,cardiologyandoncology.PhysicsinMedicineandBiology,57,R119–59.

71.MeltzerCC,ZubietaJK,LinksJM,etal.(1994).MRI-basedcorrectionforPETpartialvolumeeffectsinthepresenceofheterogeneityingray-matterradioactivity.JournalofNuclearMedicine,35,P197.

72.RoussetOG,MaY,EvansAC.(1998).CorrectionforpartialvolumeeffectsinPET:principleandvalidation.JournalofNuclearMedicine,39,904–11.

73.DuY,TsuiBMW,FreyEC.(2005).PartialvolumeeffectcompensationforquantitativebrainSPECTimaging.IEEETransactionsinMedicalImaging,24,969–76.

74.BaeteK,NuytsJ,VanLaereK,etal.(2004).EvaluationofanatomybasedreconstructionforpartialvolumecorrectioninbrainFDG-PET.NeuroImage,23,305–17.

75.IidaH,LawI,PakkenbergB,etal.(2000).QuantitationofregionalcerebralbloodflowcorrectedforpartialvolumeeffectusingO-15waterandPET:I.Theory,erroranalysis,andstereologiccomparison.JournalofCerebralBloodFlowMetabolism,20,1237–51.

76.ActonPD,MeyerPT,MozleyPD,etal.(2000).Simplifiedquantificationofdopaminetransportersinhumansusing[99mTc]TRODAT-1andsingle-photonemissiontomography.EuropeanJournalofNuclearMedicine,27:1714–18.

77.HabrakenJB,BooijJ,SlomkaP,etal.(1999).Quantificationandvisualizationofdefectsofthefunctionaldopaminergicsystemusinganautomaticalgorithm.JournalofNuclearMedicine,40,1091–7.

78.BaeteK,NuytsJ,VanPaesschenW,etal.(2004).Anatomical-basedFDG-PETreconstructionforthedetectionofhypo-metabolicregionsinepilepsy.IEEETransactionsinMedicalImaging,23,510–19.

79.NuytsJ,BaeteK,BequeD,etal.(2005).ComparisonbetweenMAPandpostprocessedMLforimagereconstructioninemissiontomographywhenanatomicalknowledgeisavailable.IEEETransactionsinMedicalImaging,24,667–75.

80.OgawaK,OhmuraN,IidaH,etal.(2009).Developmentofanultra-highresolutionSPECTsystemwithaCdTesemiconductordetector.AnnalsofNuclearMedicine,23,763–70.

Page 22: Oxford Medicine Online Principles of brain single-photon emission computed tomography ... · 2018. 10. 3. · Principles of brain single-photon emission computed tomography imaging

Principles of brain single-photon emission computed tomography imaging

Page 22 of 22

PRINTED FROM OXFORD MEDICINE ONLINE (www.oxfordmedicine.com). ©Oxford University Press, 2015. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordMedicine Online for personal use (for details see Privacy Policy). Subscriber: Habib Zaidi; date: 27 November 2015

81.TakahashiY,MiyagawaM,NishiyamaY,etal.(2013).PerformanceofasemiconductorSPECTsystem:comparisonwithaconventionalAnger-typeSPECTinstrument.AnnalsofNuclearMedicine,27,11–16.


Top Related