Transcript
Page 1: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Near Infrared (NIR) Spectroscopy Instrumentation

Paul Geladi

Page 2: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Paul Geladi

Head of Research NIRCEChairperson NIR Nord

Unit of Biomass Technology and ChemistrySwedish University of Agricultural SciencesUmeåTechnobothniaVasa

paul.geladi @ btk.slu.se paul.geladi @ uwasa.fi

Page 3: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi
Page 4: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Content

• Spectroscopy?• Instrumentation• Modes of measurement

Page 5: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Content

• Spectroscopy?• Instrumentation• Modes of measurement

Page 6: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Content

• Spectroscopy?• Energy levels in atoms, molecules, crystals• Example IR-NIR calculations• Related techniques

Page 7: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Content

• Spectroscopy?• Energy levels in atoms,molecules, crystals• Example IR-NIR calculations• Related techniques

Page 8: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Spectroscopy

• Interaction of radiation and matter

• Electromagnetic radiation

• Gases, liquids, solids, mixtures

• Heterogeneous materials

Page 9: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Electromagnetic radiation

Cosmic Gamma Xray UV VIS NIR IR Micro Radio

Page 10: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Electromagnetic radiation• Cosmic > 2500 KeV• Gamma 10-2500 KeV• Xray 0.1-100 KeV• Ultraviolet 10-400 nm• Visible 400-780 nm• Near Infrared 780-2500 nm• Infrared 2500-15000 nm• Microwave GHz• Radio MHz-KHz

Page 11: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Why interaction?

• Photon energy matches some energy level

• E = h• E = hc/• Planck’s constant 6.63 10-34

Page 12: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Some useful constants

• qe= 1.602176462*10-19 As

• me = 9.10938188*10-31 Kg

• c = 2.99792458*108 m/s

• h = 6.62606876*10-34 Js

• 1 Joule to Electronvolt 6.241506363094028*1018

Page 13: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Units

• Joule (energy)

• Electron volt (KeV)

• Wavelength (nm, m, mm)

• Inverse cm (cm-1)

• Frequency (GHz,MHz,KHz)

Page 14: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Content

• Spectroscopy?• Energy levels in atoms,molecules, crystals• Example IR-NIR calculations• Related techniques

Page 15: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

HCl molecule (no true sizes)

HCl

UV,VISXray

UV,VIS

NIR,IR

Gamma ray

= electron

Page 16: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Photon-matter interaction

• Atomic nucleus = gamma ray

• Inner electron = Xray

• Outer electron, chemical single bond = UV

• Chemical double, triple bond = UV,VIS

• Molecular vibration overtone = NIR

• Molecular vibration = IR

• Molecular rotation = Micro

Page 17: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

E

h

Ground level

First excited level

Quantized energy levels

Page 18: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

What can be measured?

• Emission

• Absorption

• Fluorescence

Page 19: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

E

h

Ground level

First excited level

Emission

Thermal

Page 20: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

E

h

Ground level

First excited level

Absorption

Thermal

Page 21: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

E

h

Ground level

First excited level

Fluorescence

h out

Page 22: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Techniques?

• Gamma spectrometry• Instrumental neutron activation analysis• Xray spectrometry• UV-VIS spectrometry (AES,AAS,ICP...)• NIR spectrometry• IR spectrometry• Raman spectrometry• Microwave spectrometry

Page 23: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

What can be used?

Intensity

Energy

Position

Intensity, integral

Width

Page 24: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Special topics

• Polarization

• Time resolved spectroscopy

Page 25: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Content

• Spectroscopy?• Energy levels in atoms,molecules, crystals• Example IR-NIR calculations• Related techniques

Page 26: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Vibrational spectroscopy

Page 27: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Morse curves

The Morse curve describes the potential energy V of a diatomic molecule as a function of interatomic distance x.

V = De [1-exp(-bx)]2

Page 28: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

-2 -1 0 1 2 3 4 5 6 70

5

10

15

De = 5 b = 0.5

Page 29: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

• If the atoms go far apart the bond breaks.

• It is impossible to press the atoms close together. Enormous amounts of energy are needed.

Page 30: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

-2 -1 0 1 2 3 4 5 6 70

2

4

6

8

10

12

14

16

De = 10 b = 0.4

Zero = equilibrium distance

Page 31: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

-2 -1 0 1 2 3 4 5 6 70

2

4

6

8

10

12

14

16

Quantum levels = discrete

F

O1

O2

F FundamentalO1 First overtoneO2 Second overtone

Page 32: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

This was diatomic molecules

• Polyatomic molecules:

M=3N-6 quantized vibration modes

M=3N-5 linear molecules (N=1)

• N=3 , M=3 H2O, H2S, SO2

• N=4 , M=6 etc

Page 33: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Triatomic molecules

• G(a,b,c)=v1(a+1/2) + v2(b+1/2) + v3(c+1/2)

• Energy levels

• a=b=c=0 (0,0,0)

• a=1 b=c=0 (1,0,0)

• a=2 b=c=0 (2,0,0)

• a=0 b=1 c=0 etc (0,1,0)

Page 34: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

a cb

Combination band

Overtone

Groundlevel

Hot band

Fundamental

(0,0,0)

(1,0,0)

(2,0,0)

(0,1,0)

(0,2,0)

(0,0,1)

(0,0,2)

Page 35: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Intensity

• Some transitions are more probable

• Gives more intense bands

• Fundamentals in Gas phase

• Overtones in liquid,solid

• Combination bands in liquid, solid

Page 36: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Hot bands

• Only exist because of thermal excitation

• Boltzmann

• Ne = No exp(-E/kT)

• Ne number excited, No number ground

• k Boltzmann constant 1.3806503*10-23 J/K

• E energy difference

Page 37: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Why cm-1?

Additive

Page 38: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

S02

wavenumber band

519 v2

606 v1-v2

1151 v1

1361 v3

1871 v2+v3

2296 2v1

2499 v1+v3

Page 39: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Thermal radiation

• Planck’s law

• W() = c1-5[exp(c2-1 T-1)-1]

• T °K

• c1 = 1.91*10-12

• c2 = 1.438*104

• m

Page 40: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

1

2

3

4

5

6

7x 10-14

m

Radiance

4000 K (Tungsten melts)

3500 K

3000 K

2500 K2000 K

Page 41: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Planck curves

• More total energy for high temperature

• More UV for high temperature

• More flat curve for low temperature

Page 42: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Content

• Spectroscopy?• Energy levels in atoms,molecules, crystals• Example IR-NIR calculations• Related techniques

Page 43: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Energy supply

• Photon

• Thermal

• Electron -

• Proton +

• Ion + -

Page 44: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Optics

• Electron optics

• Ion optics

Page 45: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Techniques

• Electron microscopy

• Electron spectroscopy

• Mass spectrometry

• Ion microscopy

Page 46: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Transmission

Readoutelectronics

Detector

Sample cell

Mono-chromator

Radiation source

Page 47: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Transmission

Readoutelectronics

Detector

Sample cell

Mono-chromator

Radiation source

I0 It

Page 48: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Lambert-Beer-Bouguer law

TransmissionAbsorbance

T = It / I0

A = log10 ( I0 / It) = -log10 (It / I0)

Page 49: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Lambert-Beer-Bouguer law

A = klC

l = path lengthk = constantC = concentration

Page 50: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Reflection

Readoutelectronics

Detector(s)

Sample cell

Mono-chromator

Radiation source

Page 51: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Reflection

Readoutelectronics

Detector(s)

Sample cell

Mono-chromator

Radiation source

I0 Ir

Page 52: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Lambert-Beer-Bouguer law

ReflectionPseudoabsorbance

R = Ir / I0

A* = -log10 (Ir / I0)

Page 53: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Content

• Spectroscopy?• Instrumentation• Modes of measurement

Page 54: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

What can be changed?

• Radiation source

• Monochromator

• Sample cell

• Detector

Page 55: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Radiation source

• Tungsten-halogen lamp (Car type)

• Coated tungsten SiC

• Laser(s)

• LEDs

• LED arrays

Page 56: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

ln(Wavelength), m

ln(Energy flux)

3000K

1000K

0.2 1

Page 57: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Wavelength, m

Energy flux

1000

1150

1300

1520

LEDs

Page 58: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

What can be changed?

• Radiation source

• Monochromator

• Sample cell

• Detector

Page 59: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Monochromator

• ”Glass filter”

• Interference filters

• Prism

• Grating

• Interferometer

• Electrooptical

Page 60: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Monochromator

• ”Glass filter” not selective

• Interference filters

• Prism too primitive, never used

• Grating

• Interferometer

• Electrooptical

Page 61: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Interference filter

Glass

High RI coating

Low RI coating

Multiple reflections

Page 62: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Tilting interference filter

Glass

High RI coating

Low RI coating

Differentpathlengths

Page 63: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

There are also gradual interference filters

• Disk with increasing thickness

• Rotate for new wavelength bands

Page 64: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Filter wheel

Readoutelectronics

Detector(s)

Sample cell

Radiation source

Filter wheel

Page 65: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Grating

Mirror staircase

Pathlength difference

Page 66: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Grating

Polychromatic

Monochromatic

Rotate

Entrance slit

Exit slit

Page 67: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Interferometer

Fixed mirror

Moving mirror

Semitransparantmirror (50%)

Detector

Sample

Page 68: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Interferometer

Fixed mirror

Moving mirror

Semitransparantmirror (50%)

Detector(interferogram)

a

b

Wavelengths for whichb-a = whole cycle reachdetector

Page 69: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Interferometer

Interferogram

Fourier transform

Spectrum

Page 70: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

What can be changed?

• Radiation source

• Monochromator

• Sample cell

• Detector

Page 71: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi
Page 72: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Content

• Spectroscopy?• Instrumentation• Modes of measurement

Page 73: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Modes of measurementThis is a real strong point of NIR spectroscopy. There are many modes of measurement:

• Transmission

• Diffuse reflection

• Fiber optic based

-Transflection

-Interaction

Page 74: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

DetIntegratingsphere

Det Det

Fiberoptic Fiberoptic Mirror

Page 75: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Transflectance probe

Fiber bundle Sapphire mirror

Page 76: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Mixed solutions

• Use tunable laser instead of monochromator (more lasers?)

• Use LED’s in different wavelengths instead of monochromator

• Use array of detectors instead of scanning monochromator

DIODE ARRAY

Page 77: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Grating

Polychromatic

Entrance slit

Diode array

Page 78: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Filter wheel instrument with interference filters

Page 79: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Interferometricinstrument

Page 80: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi
Page 81: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Process NIR spectrometer based on moving grating

Page 82: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Transmision instrument

Page 83: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Sample changer for seeds (transmission)

Page 84: Near Infrared (NIR) Spectroscopy  Instrumentation Paul Geladi

Diffuse reflectance instrument (rotating cup)


Top Related