Transcript
Page 1: Lecture 14 Membranes continued Diffusion Membrane transport

Lecture 14

Membranes continued

Diffusion

Membrane transport

Page 2: Lecture 14 Membranes continued Diffusion Membrane transport

From S. Feller

Lipid Bilayers are dynamic

distributions of phosphate and carbonyl groups and lateral pressure profiles

Page 3: Lecture 14 Membranes continued Diffusion Membrane transport

from S. White

Distribution of groups along the z-axis

Page 4: Lecture 14 Membranes continued Diffusion Membrane transport

Ele

ctro

stat

ic p

oten

tial

Electric Double Layer (EDL)

Dipole Potential

Page 5: Lecture 14 Membranes continued Diffusion Membrane transport

surface pressure

= 70 dyne/cm

compressed monolayer

surface pressure of the crowding surfactant balances part of the surface tension, thus the apparent surface tension to the left of the barrier is smaller

Lipids at air-water interface

Page 6: Lecture 14 Membranes continued Diffusion Membrane transport

Irving Langmuir

w- surf = surf

surf

w - surface tension of pure water

surf - surface tension in the

presence of surfactant

surf

surf – surface pressure of the surfactant

dipalmitoyl phosphatidylcholine (DPPC)

monolayer-bilyer equivalence pressure 35-40 dyn/cm

Page 7: Lecture 14 Membranes continued Diffusion Membrane transport

Schematics for measuring surface potentials in lipid monolayers

Page 8: Lecture 14 Membranes continued Diffusion Membrane transport

what’s wrong?

Page 9: Lecture 14 Membranes continued Diffusion Membrane transport

Differential Scanning Calorimeter (DSC):  Phase transition for DPPC (Dipalmitoyl phosphatidylcholine)

http://employees.csbsju.edu/hjakubowski/classes/ch331/lipidstruct/oldynamicves.html

For DOPC (oleyl)…-18°C

For DPPC (palmytoyl)…+41°C

S = H/Tm

Page 10: Lecture 14 Membranes continued Diffusion Membrane transport

Mixtures of phospholipids

Two phases

www.mpikg-golm.mpg.de/th/people/jpencer/raftsposter.pdf

Page 11: Lecture 14 Membranes continued Diffusion Membrane transport

•Increases short-range order

•Broadens phase transition

Sizes are wrong?

Page 12: Lecture 14 Membranes continued Diffusion Membrane transport

Biochim Biophys Acta. 2005 Dec 30;1746(3):172-85.

DOPC/DPPC

POPC…palmitoyl, oleyl

http://www.nature.com/emboj/journal/v24/n8/full/7600631a.html

Phospholipid/ganglioside

Lateral Phase Separation

Page 13: Lecture 14 Membranes continued Diffusion Membrane transport

Diffusion is a result of random motion which simply maximizes entropy

Einstein treatment:

c1 c2

l l

butl

CC

dx

dc 12

C

distance

negative slope

therefore: butdx

dcDJ net (Fick’s law)

dx

dc

t

lJnet

2

2

1

tlCJ /2

11 tlCJ /

2

12

tlCCJnet /)(2

121

Dtl 22 Dtl 2 (one dimension)

Page 14: Lecture 14 Membranes continued Diffusion Membrane transport

y

x

z

1D

2D

3D

Dtl 22

Dtl 42

Dtl 62 l

222 yxl

2222 zyxl

Page 15: Lecture 14 Membranes continued Diffusion Membrane transport

Diffusion = random walkti

me

X, distance

2

2

x

cD

t

c

Diffusionequation

x

cDJ

Fick’s law

flux gradient

rate

Page 16: Lecture 14 Membranes continued Diffusion Membrane transport

Dt

x

Dttxp

4exp

4

1),(

2

Dt22 Variance

2

21exp

2

1)(

x

xp

Normal distribution Random walk in one dimension

D = diffusion coefficientt = time 0.06 0.04 0.02 0 0.02 0.04 0.06

0

20

40

60

80

100

p1 x( )

p2 x( )

p3 x( )

x, cm

t = 1 s

t = 10 s

t = 100 s

D = 10-5 cm2/s

Dt2

root-mean-square (standard)deviation

x = deviation from the origin

Dtx 2

Replace:

where

Page 17: Lecture 14 Membranes continued Diffusion Membrane transport

0 1 2 3 40

0.5

x,

1.0

0.607

area inside 1 = 0.68

If we step 1 sigma () away from the origin, what do we see?

conce

ntr

ati

on

observer

Page 18: Lecture 14 Membranes continued Diffusion Membrane transport

Dt

x

Dttp

4exp

4

1)(

2

Dt

x

Dtxp

4exp

4

1)(

2

x = x1, x2, x3t = t1, t2, t3

t, s

0 0.005 0.01 0.015 0.02 0.0250

20

40

60

80

100

x, cm

= 0.0045 cm

= 0.014 cm

= 0.045 cm

Dtx 2t1 = 1 s

t2 = 10 s

t3 = 100 s

An observer sees that the

concentration first increases and then

decreases

1 is a special point where the concentration of the diffusible substance reaches its maximum

0 20 40 60 80 1000

10

20

30

40

50

60

t = 1 s

t = 10 s

t = 100 s

x = 0.0045 cm

x = 0.014 cm

x = 0.045

D = 10-5 cm2/s

Page 19: Lecture 14 Membranes continued Diffusion Membrane transport

Diffusion across exchange epithelium

bas ila r m em brane

10 m vascularendothe lium

B LO O D

IN TE R S TIT IU M

Dtx 22 Einstein eqn:

<x2> - mean square distance (cm2)D – diffusion coefficient (cm2/s)t – time interval (s)

“random walk”


Top Related