Transcript

Institute of Engineering Mechanics (ITM)

Contact and Structure Mechanics Laboratory(LaMCoS UMR 5259)

Simulation of Refrigerant-Lubricated Gas Foil BearingsTim Leister, Benyebka Bou-Saïd, Wolfgang Seemann

[email protected] [email protected] [email protected]

KIT – The Research University in the Helmholtz Association www.kit.edu

Gas Foil Bearings (GFBs)Bump foil

Top foil

Bearing sleeve

Rotor journal

http://rotorlab.tamu.edu/tribgroup/Proj_GasFoilB.htm https://archive.org/details/C-2007-1879

High-speed rotor supported by aerodynamic lubrication wedge

Oil-free machinery offers high energy efficiency and low wear

Application: Vapor-Compression Refrigeration

Condenser

Evaporator

MotorTurb. Comp.

GFB

Heat absorpedfrom cabin

Heat expelledto environment

Hotvapor

Warmvapor

Liquid

Coldmixture(vapor–liquid)

GFB

System optimized by using refrigerant as the lubricating fluid

Challenge: Self-Excited Vibrations

Stationary operating pointstend to become unstable atelevated rotational speed

Occurrence of self-excitedrotor vibrations with largeamplitudes (fluid whirl)

ωc > ω2 (Loss of Stability)

ω1

ω2 > ω1

Key requirements for simulation of GFB rotor systems

1 Realistic fluid model accounting for phase transitions2 Dissipative foil structure model considering dry friction3 Rotor model mutually coupled to nonlinear GFB forces

Refrigerant R-245fa C C C FH

F

H

H

FF

F

(1,1,1,3,3-pentafluoropropane)

Normal boiling point at 15.3 ◦C

50 100 150 200 2500.51.0

1.52.0

10

20

30

40

50

60

Pre

ssur

eP=

p/p 0

P, D, T SurfaceSat. Vapor LineSat. Liquid Line

Reg. PR EoSCub. PR EoSCritical Point

Density D = ρ/ρ0

Temp. T=

ϑ/ϑ0

Pre

ssur

eP=

p/p 0

T=

1.37

T=

1.46

T=

1.55

Cubic Peng–Robinson equation of state (PR EoS)

PPR(D, T)

=1p0

Rϑ0T(M

ρ0D

)− b− a(ϑ0T)(

Mρ0D

)2+ 2b

(M

ρ0D

)− b2

Equilibrium vapor pressure (coexistence curve)by fitting simplified Clausius–Clapeyron solution

Psat(T) = exp(

C0− C1T−1− C2 ln T)

Regularization of PR EoS requires algebraic solutionof cubic equation PPR(D, T) = Psat(T)for roots Dv(T) < Dm(T) < Dl(T)

Mass fraction of liquid

Wl(D, T) =D− Dv(T)

Dl(T)− Dv(T)

Fluid film thickness

H =

Clearance

1

Rotor position

− ε(τ) cos[

ϕ− γ(τ)] Structure deformation

−Q

Reynolds equation for compressible fluids (density D, pressure P, viscosity V)Fluid

compression

∂D∂τ

H + D

Rotor squeeze

− ε′(τ) cos[

ϕ− γ(τ)]− ε(τ)γ′(τ) sin

[ϕ− γ(τ)

]Structuresqueeze

− ∂Q∂τ

=

12

Poiseuille flow

∂ϕ

[DH3

V∂P∂ϕ

]+ κ2 ∂

∂Z

[DH3

V∂P∂Z

] Couette flow

−Λ∂

∂ϕ

[DH

]

FluidDynamics

P(ϕ, Z, τ)

StructureDynamicsQ (ϕ, Z, τ),

Q′(ϕ, Z, τ)

RotorDynamics

ε(τ), ε′(τ),

γ(τ), γ′(τ) FluidDynamicsP(ϕ, Z, τ)

Deformation field Q(ϕ, Z, τ) calculated with beam model (top foil)coupled to deflections of NB bumps per foil strip (free and fixed ends)

Axially averaged pressure load P(ϕ, τ) =∫ +0.5

−0.5P(ϕ, Z, τ)dZ

u1(t)u0(t) uNB−2(t) uNB−1(t)

kB

mF

µCθ0(t) θ1(t) θNB−2(t) θNB−1(t)

. . . FixedEnd

FreeEnd

lR

Coulomb friction forces fn(τ) = µC

[f⊥, n(τ) + f⊥, preload

]sgn U′n(τ)

Continuous signum regularization sgn U′n(τ) ≈ tanh[ΞU′n(τ)

]with Ξ� 1

L

Fluid

Structure

Rotor

2mg

ω0

Symmetric horizontalrotor (rigid or elastic)

Constant vertical loadand static unbalance

Rotational speed(bearing number)

Λ =6µ0ω0

p0

(RC

)2

Bearing forces bypressure integration

f(τ) =[

fξ(τ)fη(τ)

]{eξ,eη}

=∫ +0.5

−0.5

∫ 2π

0P(ϕ, Z, τ)

[sin ϕcos ϕ

]{eξ,eη}

dϕ dZ

Computational AnalysisFinite difference discretization on computational grid Nϕ× NZ = 469× 15

Simultaneous subproblem solution by means of collective state vector

Nonlinear ODE system s′(τ) = k{

s(τ), Λ}

with k : Rn×R→ Rn

s(τ) =

[D1,1(τ) · · · DNϕ−2,NZ−2(τ) Θ0(τ) Θ′0(τ) · · · ΘNB−1(τ) Θ′NB−1(τ) ε(τ) ε′(τ) γ(τ) γ′(τ)

]>∈ Rn

Results and Conclusions

Density D

Pressure P

Mass Fraction of Liquid Wl in %

−π −π/2 0 +π/2 +πϕ

−0.5

0

+0.5

Z

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

1 Fluid pressure build-up limited by local vapor–liquid phase transitions

−3

−2

−1

0

+1

+2

+3

0 4 8 12 16

Tang

entia

lBum

pF

oilD

ispl

acem

enti

nµm

Time in ms

0.0

0.1

0.2

0.3

0.4

0 1 2 3 4 5 6 7 8 9

Pro

port

ion

ofD

issi

pate

dE

nerg

y

Free End← Contact #→ Fixed End

2 Important effect of bump–bump interaction mechanisms

0.50.60.70.80.9

0 10000 20000 30000 40000 50000Rot

.Spe

edΛ

Time τ

Run-Up Coast-Down

0.0

−1.0

+1.0

0 10000 20000 30000 40000 50000

Rot

orP

os.ξ

Time τ

0.0

−1.0

+1.0

0 10000 20000 30000 40000 50000

Rot

orP

os.η

Time τ

Dissipative Structure ModelRigid Structure Model

Dissipative Structure ModelRigid Structure Model

3 Undesirable self-excitation vibrations reduced by friction

Γ(t)

e(t)eξ

r

R

q(ϕ, z, t)

h(ϕ, z, t)

ω0

O

P

h̃(ϕ,t)

ey

exezQ

Flu

idM

od

elS

tru

ctu

reM

od

el Ro

tor

Mo

del

Top Related