Transcript
Page 1: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 1

In-situ Iridium Refractory Ohmic Contacts to p-InGaAs

Ashish Baraskar, Vibhor Jain, Evan Lobisser,

Brian Thibeault, Arthur Gossard, Mark J. W. Rodwell

University of California, Santa Barbara, CA

Mark Wistey

University of Notre Dame, IN

Page 2: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 2

Outline• Motivation

– Low resistance contacts for high speed HBTs

– Approach• Experimental details

– Contact formation

– Fabrication of Transmission Line Model structures

• Results

– Doping characteristics

– Effect of doping on contact resistivity

– Effect of annealing

• Conclusion

Page 3: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 3

Outline• Motivation

– Low resistance contacts for high speed HBTs

– Approach• Experimental details

– Contact formation

– Fabrication of Transmission Line Model structures

• Results

– Doping characteristics

– Effect of doping on contact resistivity

– Effect of annealing

• Conclusion

Page 4: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 4

Device Bandwidth Scaling Laws for HBT

To double device bandwidth:

• Cut transit time 2x

• Cut RC delay 2x

Scale contact resistivities by 4:1*

*M.J.W. Rodwell, CSICS 2008

bcWcTbT

eW

HBT: Heterojunction Bipolar TransistorRC

f in 2

1

effcbbb CR

ff

8max

Page 5: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 5

InP Bipolar Transistor Scaling Roadmap

Emitter256 128 64 32 nm width

8 4 2 1 Ω·µm2 access ρ

Base175 120 60 30 nm contact width

10 5 2.5 1.25 Ω·µm2 contact ρ

Collector

106 75 53 37.5 nm thick

9 18 36 72 mA/µm2 current

4 3.3 2.75 2-2.5 V breakdown

ft 520 730 1000 1400 GHz

fmax 850 1300 2000 2800 GHz

Contact resistivity serious challenge to THz technology

Less than 2.5 Ω-µm2 base contact resistivity required for simultaneous THz ft and fmax*

*M.J.W. Rodwell, CSICS 2008

Page 6: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 6

Approach - I

To achieve low resistance, stable ohmic contacts

• Higher number of active carriers

- Reduced depletion width

- Enhanced tunneling across metal-

semiconductor interface

• Better surface preparation techniques

- For efficient removal of oxides/impurities

Page 7: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 7

• Scaled device thin base

(For 80 nm device: tbase < 25 nm)

• Non-refractory contacts may diffuse at higher temperatures through

base and short the collector• Pd/Ti/Pd/Au contacts diffuse about 15 nm in InGaAs on annealing

Approach - II

100 nm InGaAs grown in MBE

15 nm Pd/Ti diffusion

Need a refractory metal for thermal stability

TEM: Evan Lobisser

Page 8: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 8

Outline• Motivation

– Low resistance contacts for high speed HBTs and FETs

– Approach• Experimental details

– Contact formation

– Fabrication of Transmission Line Model structures

• Results

– Doping characteristics

– Effect of doping on contact resistivity

– Effect of annealing

• Conclusion

Page 9: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 9

Semi-insulating InP Substrate

100 nm In0.52Al0.48As: NID buffer

100 nm In0.53Ga0.47As: C (p-type)

Epilayer growth by Solid Source Molecular Beam Epitaxy (SS-MBE)– p-InGaAs/InAlAs

- Semi insulating InP (100) substrate

- Un-doped InAlAs buffer

- CBr4 as carbon dopant source

- Hole concentration determined by Hall measurements

Epilayer Growth

Page 10: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 10

100 nm In0.52Al0.48As: NID buffer

100 nm In0.53Ga0.47As: C (p-type)

20 nm in-situ Ir

Semi-insulating InP Substrate

In-situ Ir contacts

In-situ iridium (Ir) deposition - E-beam chamber connected to MBE chamber- No air exposure after film growth

Why Ir? - Refractory metal (melting point ~ 2460 oC)- Easy to deposit by e-beam technique- Easy to process and integrate in HBT process flow

Page 11: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 11

TLM (Transmission Line Model) fabrication

• E-beam deposition of Ti, Au and Ni layers

• Samples processed into TLM structures by photolithography and liftoff

• Contact metal was dry etched in SF6/Ar with Ni as etch mask, isolated by wet etch

100 nm In0.52Al0.48As: NID buffer

100 nm In0.53Ga0.47As: C (p-type)

20 nm in-situ Ir20 nm ex-situ Ti

50 nm ex-situ Ni500 nm ex-situ Au

Semi-insulating InP Substrate

Page 12: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 12

• Resistance measured by Agilent 4155C semiconductor parameter

analyzer

• TLM pad spacing (Lgap) varied from 0.5-25 µm; verified from

scanning electron microscope (SEM)

• TLM Width ~ 25 µm

Resistance Measurement

W

RR ShC

C

22

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3 3.5

Gap Spacing (m)

Res

ista

nce

()

Page 13: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 13

• Extrapolation errors:– 4-point probe resistance

measurements on Agilent 4155C

– Resolution error in SEM

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6

Res

ista

nce

()

Gap Spacing (m)

R

d

Rc

Error Analysis• Processing errors:

Lgap

W

Variable gap along width (W)

1.10 µm 1.04 µm

– Variable gap spacing along width (W)

Overlap Resistance

– Overlap resistance

Page 14: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 14

Outline• Motivation

– Low resistance contacts for high speed HBTs and FETs

– Approach• Experimental details

– Contact formation

– Fabrication of Transmission Line Model structures

• Results

– Doping characteristics

– Effect of doping on contact resistivity

– Effect of annealing

• Conclusion

Page 15: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 15

1019

1020

40

50

60

70

80

0 10 20 30 40 50 60

hole concentration

mobility

Mob

ility

(cm

2 -Vs)

CBr4 foreline pressure (mtorr)

Hol

e C

once

ntra

tion

(cm

-3)

Doping Characteristics-I

Hole concentration Vs CBr4 flux

– Hole concentration saturates at high CBr4 fluxes– Number of di-carbon defects as CBr4 flux *

Tsub = 460 oC

*Tan et. al. Phys. Rev. B 67 (2003) 035208

Page 16: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 16

2

4

6

8

10

10 20 30 40 50 60

Group V / Group III

Hol

e C

once

ntra

tion

(10

19)

cm-3

As V/III ratio hole concentration

hypothesis: As-deficient surface drives C onto group-V sites

Doping Characteristics-IIHole concentration Vs V/III flux

CBr4 = 60 mtorr

Page 17: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 17

4 1019

8 1019

1.2 1020

1.6 1020

2 1020

300 350 400 450

Hol

e C

once

ntra

tion

(cm

-3)

Substrate Temp. (oC)

CBr4 = 60 mtorr

Doping Characteristics-IIIHole concentration Vs substrate temperature

*Tan et. al. Phys. Rev. B 67 (2003) 035208

Tendency to form di-carbon defects as Tsub *

Page 18: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 18

4 1019

8 1019

1.2 1020

1.6 1020

2 1020

300 350 400 450

Hol

e C

once

ntra

tion

(cm

-3)

Substrate Temp. (oC)

CBr4 = 60 mtorr

Doping Characteristics-IIIHole concentration Vs substrate temperature

*Tan et. al. Phys. Rev. B 67 (2003) 035208

1019

1020

0 20 40 60 80 100

Tsub = 460 oC

Tsub = 350 oC

CBr4 foreline pressure (mtorr)

Hol

e C

once

ntra

tion

(cm

-3)

Tendency to form di-carbon defects as Tsub *

Page 19: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 19

ρc lower than the best reported contacts to

pInGaAs (ρc = 4 Ω-µm2)[1,2]

1. Griffith et al, Indium Phosphide and Related Materials, 2005.

2. Jain et al, IEEE Device Research Conference, 2010.

Metal Contact ρc (Ω-µm2) ρh (Ω-µm)

In-situ Ir 0.58 ± 0.48 7.6 ± 2.6

• Hole concentration, p = 2.2 x 1020 cm-3

• Mobility, µ = 30 cm2/Vs• Sheet resistance, Rsh = 94 ohm/ (100 nm thick film)

Results: Contact Resistivity - I

0

5

10

15

0 1 2 3 4Pad Spacing (m)

Res

ista

nce

()

p = 2.2 x1020 cm-3

TLM width, W = 25 m

Page 20: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 20

*

p1expρC

Tunneling

Data suggests tunneling

ThermionicEmission c ~ constant*

High active carrier concentration is the key to low resistance contacts

* Physics of Semiconductor Devices, S M Sze

Results: Contact Resistivity - II

0

2

4

6

8

10

5 10 15 20 25

Co

nta

ct R

esis

tivity

, c (

-

m2 )

Hole Concentration, p (x1019 cm-3)

1

10

5 10 15

[p]-1/2 (10-11 cm-3/2)

c (

m

2 )

p = 2.2×1020 cm-3

p = 5.7×1019 cm-3

Page 21: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 21

Mo contacts annealed under N2 flow for 60 mins. at 250 oC

Thermal Stability - I

Before annealing After annealing

ρc (Ω-µm2) 0.58 ± 0.48 0.8 ± 0.56

0

5

10

15

0 1 2 3 4

Un-annealedAnnealed

Pad Spacing (m)

Res

ista

nce

()

TLM width, W = 25 m

p = 2.2 x1020 cm-3

TEM: Evan Lobisser

Page 22: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 22

Summary

• Maximum hole concentration obtained = 2.2 x1020 cm-3 at a substrate temperature of 350 oC

• Low contact resistivity with in-situ Ir contacts lowest ρc= 0.58 ± 0.48 Ω-µm2

• Need to study ex-situ contacts for application to HBTs

Page 23: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 23

Thank You !

Questions?

Acknowledgements:

ONR, DARPA-TFAST, DARPA-FLARE

Page 24: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 24

Extra Slides

Page 25: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 25

Correction for Metal Resistance in 4-Point Test Structure

WLsheet /metalR Wcontactsheet /)( 2/1

Error term (Rmetal/x) from metal resistance

L

W

I

I

V

V

xRWLW metalsheetcontactsheet ///)( 2/1

Page 26: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 26

Random and Offset Error in 4155C

0.6642

0.6643

0.6644

0.6645

0.6646

0.6647

0 5 10 15 20 25

Res

ista

nce

(

)

Current (mA)

• Random Error in resistance measurement ~ 0.5 m

• Offset Error < 5 m*

*4155C datasheet

Page 27: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 27

Accuracy Limits

• Error Calculations– dR = 50 mΩ (Safe estimate)– dW = 1 µm– dGap = 20 nm

• Error in ρc ~ 40% at 1.1 Ω-µm2


Top Related