Transcript
Page 1: Harold’s Calculus Notes Cheat Sheet AP Calculus · PDF fileCopyright © 2015-2017 by Harold Toomey, WyzAnt Tutor 4 Analyzing the Graph of a Function (See Harold’s Illegals and

Copyright Β© 2015-2017 by Harold Toomey, WyzAnt Tutor 1

Harold’s Calculus Notes Cheat Sheet

17 November 2017

AP Calculus

Limits Definition of Limit Let f be a function defined on an open interval containing c and let L be a real number. The statement:

limπ‘₯β†’π‘Ž

𝑓(π‘₯) = 𝐿

means that for each πœ– > 0 there exists a

𝛿 > 0 such that

if 0 < |π‘₯ βˆ’ π‘Ž| < 𝛿, then |𝑓(π‘₯) βˆ’ 𝐿| < πœ– Tip : Direct substitution: Plug in 𝑓(π‘Ž) and see if it provides a legal answer. If so then L = 𝑓(π‘Ž).

The Existence of a Limit The limit of 𝑓(π‘₯) as π‘₯ approaches a is L if and only if:

limπ‘₯β†’π‘Žβˆ’

𝑓(π‘₯) = 𝐿

limπ‘₯β†’π‘Ž+

𝑓(π‘₯) = 𝐿

Definition of Continuity A function f is continuous at c if for every νœ€ > 0 there exists a 𝛿 > 0 such that |π‘₯ βˆ’ 𝑐| < 𝛿 and |𝑓(π‘₯) βˆ’ 𝑓(𝑐)| < νœ€. Tip: Rearrange |𝑓(π‘₯) βˆ’ 𝑓(𝑐)| to have |(π‘₯ βˆ’ 𝑐)| as a factor. Since |π‘₯ βˆ’ 𝑐| < 𝛿 we can find an equation that relates both 𝛿 and νœ€ together.

Prove that 𝒇(𝒙) = π’™πŸ βˆ’ 𝟏 is a continuous function.

|𝑓(π‘₯) βˆ’ 𝑓(𝑐)| = |(π‘₯2 βˆ’ 1) βˆ’ (𝑐2 βˆ’ 1)| = |π‘₯2 βˆ’ 1 βˆ’ 𝑐2 + 1| = |π‘₯2 βˆ’ 𝑐2| = |(π‘₯ + 𝑐)(π‘₯ βˆ’ 𝑐)| = |(π‘₯ + 𝑐)| |(π‘₯ βˆ’ 𝑐)|

Since |(π‘₯ + 𝑐)| ≀ |2𝑐| |𝑓(π‘₯) βˆ’ 𝑓(𝑐)| ≀ |2𝑐||(π‘₯ βˆ’ 𝑐)| < νœ€

So given νœ€ > 0, we can choose 𝜹 = |𝟏

πŸπ’„| 𝜺 > 𝟎 in the

Definition of Continuity. So substituting the chosen 𝛿 for |(π‘₯ βˆ’ 𝑐)| we get:

|𝑓(π‘₯) βˆ’ 𝑓(𝑐)| ≀ |2𝑐| (|1

2𝑐| νœ€) = νœ€

Since both conditions are met, 𝑓(π‘₯) is continuous. Two Special Trig Limits

π‘™π‘–π‘šπ‘₯β†’0

𝑠𝑖𝑛 π‘₯

π‘₯= 1

π‘™π‘–π‘šπ‘₯β†’0

1 βˆ’ π‘π‘œπ‘  π‘₯

π‘₯= 0

Page 2: Harold’s Calculus Notes Cheat Sheet AP Calculus · PDF fileCopyright © 2015-2017 by Harold Toomey, WyzAnt Tutor 4 Analyzing the Graph of a Function (See Harold’s Illegals and

Copyright Β© 2015-2017 by Harold Toomey, WyzAnt Tutor 2

Derivatives (See Larson’s 1-pager of common derivatives)

Definition of a Derivative of a Function Slope Function

𝑓′(π‘₯) = limβ„Žβ†’0

𝑓(π‘₯ + β„Ž) βˆ’ 𝑓(π‘₯)

β„Ž

𝑓′(𝑐) = limπ‘₯→𝑐

𝑓(π‘₯) βˆ’ 𝑓(𝑐)

π‘₯ βˆ’ 𝑐

Notation for Derivatives 𝑓′(π‘₯), 𝑓(𝑛)(π‘₯),𝑑𝑦

𝑑π‘₯, 𝑦′,

𝑑

𝑑π‘₯[𝑓(π‘₯)], 𝐷π‘₯[𝑦]

0. The Chain Rule

𝑑

𝑑π‘₯[𝑓(𝑔(π‘₯))] = 𝑓′(𝑔(π‘₯))𝑔′(π‘₯)

𝑑𝑦

𝑑π‘₯=

𝑑𝑦

𝑑𝑑·

𝑑𝑑

𝑑π‘₯

1. The Constant Multiple Rule 𝑑

𝑑π‘₯[𝑐𝑓(π‘₯)] = 𝑐𝑓′(π‘₯)

2. The Sum and Difference Rule 𝑑

𝑑π‘₯[𝑓(π‘₯) Β± 𝑔(π‘₯)] = 𝑓′(π‘₯) Β± 𝑔′(π‘₯)

3. The Product Rule 𝑑

𝑑π‘₯[𝑓𝑔] = 𝑓𝑔′ + 𝑔 𝑓′

4. The Quotient Rule 𝑑

𝑑π‘₯[𝑓

𝑔] =

𝑔𝑓′ βˆ’ 𝑓𝑔′

𝑔2

5. The Constant Rule 𝑑

𝑑π‘₯[𝑐] = 0

6a. The Power Rule 𝑑

𝑑π‘₯[π‘₯𝑛] = 𝑛π‘₯π‘›βˆ’1

6b. The General Power Rule 𝑑

𝑑π‘₯[𝑒𝑛] = π‘›π‘’π‘›βˆ’1 𝑒′ π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑒 = 𝑒(π‘₯)

7. The Power Rule for x 𝑑

𝑑π‘₯[π‘₯] = 1 (π‘‘β„Žπ‘–π‘›π‘˜ π‘₯ = π‘₯1 π‘Žπ‘›π‘‘ π‘₯0 = 1)

8. Absolute Value 𝑑

𝑑π‘₯[|π‘₯|] =

π‘₯

|π‘₯|

9. Natural Logorithm 𝑑

𝑑π‘₯[ln π‘₯] =

1

π‘₯

10. Natural Exponential 𝑑

𝑑π‘₯[𝑒π‘₯] = 𝑒π‘₯

11. Logorithm 𝑑

𝑑π‘₯[logπ‘Ž π‘₯] =

1

(ln π‘Ž) π‘₯

12. Exponential 𝑑

𝑑π‘₯[π‘Žπ‘₯] = (ln π‘Ž) π‘Žπ‘₯

13. Sine 𝑑

𝑑π‘₯[𝑠𝑖𝑛(π‘₯)] = cos(π‘₯)

14. Cosine 𝑑

𝑑π‘₯[π‘π‘œπ‘ (π‘₯)] = βˆ’π‘ π‘–π‘›(π‘₯)

15. Tangent 𝑑

𝑑π‘₯[π‘‘π‘Žπ‘›(π‘₯)] = 𝑠𝑒𝑐2(π‘₯)

16. Cotangent 𝑑

𝑑π‘₯[π‘π‘œπ‘‘(π‘₯)] = βˆ’π‘π‘ π‘2(π‘₯)

17. Secant 𝑑

𝑑π‘₯[𝑠𝑒𝑐(π‘₯)] = 𝑠𝑒𝑐(π‘₯) π‘‘π‘Žπ‘›(π‘₯)

Page 3: Harold’s Calculus Notes Cheat Sheet AP Calculus · PDF fileCopyright © 2015-2017 by Harold Toomey, WyzAnt Tutor 4 Analyzing the Graph of a Function (See Harold’s Illegals and

Copyright Β© 2015-2017 by Harold Toomey, WyzAnt Tutor 3

Derivatives (See Larson’s 1-pager of common derivatives)

18. Cosecant 𝑑

𝑑π‘₯[𝑐𝑠𝑐(π‘₯)] = βˆ’ 𝑐𝑠𝑐(π‘₯) π‘π‘œπ‘‘(π‘₯)

19. Arcsine 𝑑

𝑑π‘₯[sinβˆ’1(π‘₯)] =

1

√1 βˆ’ π‘₯2

20. Arccosine 𝑑

𝑑π‘₯[cosβˆ’1(π‘₯)] =

βˆ’1

√1 βˆ’ π‘₯2

21. Arctangent 𝑑

𝑑π‘₯[tanβˆ’1(π‘₯)] =

1

1 + π‘₯2

22. Arccotangent 𝑑

𝑑π‘₯[cotβˆ’1(π‘₯)] =

βˆ’1

1 + π‘₯2

23. Arcsecant 𝑑

𝑑π‘₯[secβˆ’1(π‘₯)] =

1

|π‘₯| √π‘₯2 βˆ’ 1

24. Arccosecant 𝑑

𝑑π‘₯[cscβˆ’1(π‘₯)] =

βˆ’1

|π‘₯| √π‘₯2 βˆ’ 1

25. Hyperbolic Sine ( π’†π’™βˆ’π’†βˆ’π’™

𝟐)

𝑑

𝑑π‘₯[π‘ π‘–π‘›β„Ž(π‘₯)] = cosh(π‘₯)

26. Hyperbolic Cosine (𝒆𝒙+π’†βˆ’π’™

𝟐)

𝑑

𝑑π‘₯[π‘π‘œπ‘ β„Ž(π‘₯)] = π‘ π‘–π‘›β„Ž(π‘₯)

27. Hyperbolic Tangent 𝑑

𝑑π‘₯[π‘‘π‘Žπ‘›β„Ž(π‘₯)] = π‘ π‘’π‘β„Ž2(π‘₯)

28. Hyperbolic Cotangent 𝑑

𝑑π‘₯[π‘π‘œπ‘‘β„Ž(π‘₯)] = βˆ’π‘π‘ π‘β„Ž2(π‘₯)

29. Hyperbolic Secant 𝑑

𝑑π‘₯[π‘ π‘’π‘β„Ž(π‘₯)] = βˆ’ π‘ π‘’π‘β„Ž(π‘₯) π‘‘π‘Žπ‘›β„Ž(π‘₯)

30. Hyperbolic Cosecant 𝑑

𝑑π‘₯[π‘π‘ π‘β„Ž(π‘₯)] = βˆ’ π‘π‘ π‘β„Ž(π‘₯) π‘π‘œπ‘‘β„Ž(π‘₯)

31. Hyperbolic Arcsine 𝑑

𝑑π‘₯[sinhβˆ’1(π‘₯)] =

1

√π‘₯2 + 1

32. Hyperbolic Arccosine 𝑑

𝑑π‘₯[coshβˆ’1(π‘₯)] =

1

√π‘₯2 βˆ’ 1

33. Hyperbolic Arctangent 𝑑

𝑑π‘₯[tanhβˆ’1(π‘₯)] =

1

1 βˆ’ π‘₯2

34. Hyperbolic Arccotangent 𝑑

𝑑π‘₯[cothβˆ’1(π‘₯)] =

1

1 βˆ’ π‘₯2

35. Hyperbolic Arcsecant 𝑑

𝑑π‘₯[sechβˆ’1(π‘₯)] =

βˆ’1

π‘₯ √1 βˆ’ π‘₯2

36. Hyperbolic Arccosecant 𝑑

𝑑π‘₯[cschβˆ’1(π‘₯)] =

βˆ’1

|π‘₯| √1 + π‘₯2

Position Function 𝑠(𝑑) =1

2𝑔𝑑2 + 𝑣0𝑑 + 𝑠0

Velocity Function 𝑣(𝑑) = 𝑠′(𝑑) = 𝑔𝑑 + 𝑣0

Acceleration Function π‘Ž(𝑑) = 𝑣′(𝑑) = 𝑠′′(𝑑)

Jerk Function 𝑗(𝑑) = π‘Žβ€²(𝑑) = 𝑣′′(𝑑) = 𝑠(3)(𝑑)

Page 4: Harold’s Calculus Notes Cheat Sheet AP Calculus · PDF fileCopyright © 2015-2017 by Harold Toomey, WyzAnt Tutor 4 Analyzing the Graph of a Function (See Harold’s Illegals and

Copyright Β© 2015-2017 by Harold Toomey, WyzAnt Tutor 4

Analyzing the Graph of a Function

(See Harold’s Illegals and Graphing Rationals Cheat Sheet)

x-Intercepts (Zeros or Roots) f(x) = 0 y-Intercept f(0) = y Domain Valid x values Range Valid y values Continuity No division by 0, no negative square roots or logs Vertical Asymptotes (VA) x = division by 0 or undefined

Horizontal Asymptotes (HA) limπ‘₯β†’βˆžβˆ’

𝑓(π‘₯) β†’ 𝑦 and limπ‘₯β†’βˆž+

𝑓(π‘₯) β†’ 𝑦

Infinite Limits at Infinity limπ‘₯β†’βˆžβˆ’

𝑓(π‘₯) β†’ ∞ and limπ‘₯β†’βˆž+

𝑓(π‘₯) β†’ ∞

Differentiability Limit from both directions arrives at the same slope Relative Extrema Create a table with domains, f(x), f ’(x), and f ”(x)

Concavity If 𝑓 ”(π‘₯) β†’ +, then cup up ⋃

If 𝑓 ”(π‘₯) β†’ βˆ’, then cup down β‹‚ Points of Inflection f ”(x) = 0 (concavity changes)

Graphing with Derivatives

Test for Increasing and Decreasing Functions

1. If f ’(x) > 0, then f is increasing (slope up) β†— 2. If f ’(x) < 0, then f is decreasing (slope down) β†˜ 3. If f ’(x) = 0, then f is constant (zero slope) β†’

The First Derivative Test

1. If f ’(x) changes from – to + at c, then f has a relative minimum at (c, f(c)) 2. If f ’(x) changes from + to - at c, then f has a relative maximum at (c, f(c)) 3. If f ’(x), is + c + or - c -, then f(c) is neither

The Second Deriviative Test Let f ’(c)=0, and f ”(x) exists, then

1. If f ”(x) > 0, then f has a relative minimum at (c, f(c)) 2. If f ”(x) < 0, then f has a relative maximum at (c, f(c)) 3. If f ’(x) = 0, then the test fails (See 1𝑠𝑑 derivative test)

Test for Concavity 1. If f ”(x) > 0 for all x, then the graph is concave up ⋃ 2. If f ”(x) < 0 for all x, then the graph is concave down β‹‚

Points of Inflection Change in concavity

If (c, f(c)) is a point of inflection of f, then either 1. f ”(c) = 0 or 2. f ” does not exist at x = c.

Tangent Lines Genreal Form π‘Žπ‘₯ + 𝑏𝑦 + 𝑐 = 0 Slope-Intercept Form 𝑦 = π‘šπ‘₯ + 𝑏 Point-Slope Form 𝑦 βˆ’ 𝑦0 = π‘š(π‘₯ βˆ’ π‘₯0) Calculus Form 𝑦 = 𝑓′(𝑐)(π‘₯ βˆ’ 𝑐) + 𝑓(𝑐)

Slope π‘š =π‘Ÿπ‘–π‘ π‘’

π‘Ÿπ‘’π‘›=

βˆ†π‘¦

βˆ†π‘₯=

𝑦2 βˆ’ 𝑦1

π‘₯2 βˆ’ π‘₯1=

𝑑𝑦

𝑑π‘₯= 𝑓′(π‘₯)

Page 5: Harold’s Calculus Notes Cheat Sheet AP Calculus · PDF fileCopyright © 2015-2017 by Harold Toomey, WyzAnt Tutor 4 Analyzing the Graph of a Function (See Harold’s Illegals and

Copyright Β© 2015-2017 by Harold Toomey, WyzAnt Tutor 5

Differentiation & Differentials Rolle’s Theorem f is continuous on the closed interval [a,b], and f is differentiable on the open interval (a,b).

If f(a) = f(b), then there exists at least one number c in (a,b) such that f’(c) = 0.

Mean Value Theorem If f meets the conditions of Rolle’s Theorem, then

𝑓′(𝑐) =𝑓(𝑏) βˆ’ 𝑓(π‘Ž)

𝑏 βˆ’ π‘Ž

𝑓(𝑏) = 𝑓(π‘Ž) + (𝑏 βˆ’ π‘Ž)𝑓′(𝑐) Find β€˜c’.

Intermediate Value Therem f is a continuous function with an interval, [a, b], as its domain.

If f takes values f(a) and f(b) at each end of the interval, then it also takes any value between f(a) and f(b) at

some point within the interval.

Calculating Differentials Tanget line approximation

𝑓(π‘₯ + βˆ†π‘₯) β‰ˆ 𝑓(π‘₯) + 𝑑𝑦 = 𝑓(π‘₯) + 𝑓′(π‘₯) 𝑑π‘₯

Example: √824

β†’ 𝑓(π‘₯) = √π‘₯4

, 𝑓(π‘₯ + βˆ†π‘₯) = 𝑓(81 + 1)

Newton’s Method Finds zeros of f, or finds c if f(c) = 0.

π‘₯𝑛+1 = π‘₯𝑛 βˆ’π‘“(π‘₯𝑛)

𝑓′(π‘₯𝑛)

Example: √824

β†’ 𝑓(π‘₯) = π‘₯4 βˆ’ 82 = 0, π‘₯𝑛 = 3

Related Rates

Steps to solve: 1. Identify the known variables and rates of change.

(π‘₯ = 15 π‘š; 𝑦 = 20 π‘š; π‘₯β€² = 2π‘š

𝑠; 𝑦′ = ? )

2. Construct an equation relating these quantities. (π‘₯2 + 𝑦2 = π‘Ÿ2)

3. Differentiate both sides of the equation. (2π‘₯π‘₯β€² + 2𝑦𝑦′ = 0)

4. Solve for the desired rate of change.

(𝑦′ = βˆ’π‘₯

𝑦 π‘₯β€²)

5. Substitute the known rates of change and quantities into the equation.

(𝑦′ = βˆ’15

20⦁ 2 =

3

2 π‘š

𝑠)

L’HΓ΄pital’s Rule

𝐼𝑓 limπ‘₯→𝑐

𝑓(π‘₯) = limπ‘₯→𝑐

𝑃(π‘₯)

𝑄(π‘₯)=

{0

0,∞

∞, 0 β€’ ∞, 1∞, 00, ∞0, ∞ βˆ’ ∞} , 𝑏𝑒𝑑 π‘›π‘œπ‘‘ {0∞},

π‘‘β„Žπ‘’π‘› limπ‘₯→𝑐

𝑃(π‘₯)

𝑄(π‘₯)= lim

π‘₯→𝑐

𝑃′(π‘₯)

𝑄′(π‘₯)= lim

π‘₯→𝑐

𝑃′′(π‘₯)

𝑄′′(π‘₯)= β‹―

Page 6: Harold’s Calculus Notes Cheat Sheet AP Calculus · PDF fileCopyright © 2015-2017 by Harold Toomey, WyzAnt Tutor 4 Analyzing the Graph of a Function (See Harold’s Illegals and

Copyright Β© 2015-2017 by Harold Toomey, WyzAnt Tutor 6

Summation Formulas

Sum of Powers

βˆ‘ 𝑐

𝑛

𝑖=1

= 𝑐𝑛

βˆ‘ 𝑖

𝑛

𝑖=1

=𝑛(𝑛 + 1)

2=

𝑛2

2+

𝑛

2

βˆ‘ 𝑖2

𝑛

𝑖=1

=𝑛(𝑛 + 1)(2𝑛 + 1)

6=

𝑛3

3+

𝑛2

2+

𝑛

6

βˆ‘ 𝑖3

𝑛

𝑖=1

= (βˆ‘ 𝑖

𝑛

𝑖=1

)

2

=𝑛2(𝑛 + 1)2

4=

𝑛4

4+

𝑛3

2+

𝑛2

4

βˆ‘ 𝑖4

𝑛

𝑖=1

=𝑛(𝑛 + 1)(2𝑛 + 1)(3𝑛2 + 3𝑛 βˆ’ 1)

30=

𝑛5

5+

𝑛4

2+

𝑛3

3βˆ’

𝑛

30

βˆ‘ 𝑖5

𝑛

𝑖=1

=𝑛2(𝑛 + 1)2(2𝑛2 + 2𝑛 βˆ’ 1)

12=

𝑛6

6+

𝑛5

2+

5𝑛4

12βˆ’

𝑛2

12

βˆ‘ 𝑖6

𝑛

𝑖=1

=𝑛(𝑛 + 1)(2𝑛 + 1)(3𝑛4 + 6𝑛3 βˆ’ 3𝑛 + 1)

42

βˆ‘ 𝑖7

𝑛

𝑖=1

=𝑛2(𝑛 + 1)2(3𝑛4 + 6𝑛3 βˆ’ 𝑛2 βˆ’ 4𝑛 + 2)

24

π‘†π‘˜(𝑛) = βˆ‘ π‘–π‘˜

𝑛

𝑖=1

=(𝑛 + 1)π‘˜+1

π‘˜ + 1βˆ’

1

π‘˜ + 1βˆ‘ (

π‘˜ + 1

π‘Ÿ) π‘†π‘Ÿ(𝑛)

π‘˜βˆ’1

π‘Ÿ=0

Misc. Summation Formulas

βˆ‘ 𝑖(𝑖 + 1)

𝑛

𝑖=1

= βˆ‘ 𝑖2

𝑛

𝑖=1

+ βˆ‘ 𝑖

𝑛

𝑖=1

=𝑛(𝑛 + 1)(𝑛 + 2)

3

βˆ‘1

𝑖(𝑖 + 1)

𝑛

𝑖=1

=𝑛

𝑛 + 1

βˆ‘1

𝑖(𝑖 + 1)(𝑖 + 2)

𝑛

𝑖=1

=𝑛(𝑛 + 3)

4(𝑛 + 1)(𝑛 + 2)

Page 7: Harold’s Calculus Notes Cheat Sheet AP Calculus · PDF fileCopyright © 2015-2017 by Harold Toomey, WyzAnt Tutor 4 Analyzing the Graph of a Function (See Harold’s Illegals and

Copyright Β© 2015-2017 by Harold Toomey, WyzAnt Tutor 7

Numerical Methods

Riemann Sum

𝑃0(π‘₯) = ∫ 𝑓(π‘₯) 𝑑π‘₯𝑏

π‘Ž

= lim‖𝑃‖→0

βˆ‘ 𝑓(π‘₯π‘–βˆ—) βˆ†π‘₯𝑖

𝑛

𝑖=1

where π‘Ž = π‘₯0 < π‘₯1 < π‘₯2 < β‹― < π‘₯𝑛 = 𝑏 and βˆ†π‘₯𝑖 = π‘₯𝑖 βˆ’ π‘₯π‘–βˆ’1

and ‖𝑃‖ = π‘šπ‘Žπ‘₯{βˆ†π‘₯𝑖} Types:

β€’ Left Sum (LHS) β€’ Middle Sum (MHS) β€’ Right Sum (RHS)

Midpoint Rule (Middle Sum)

𝑃0(π‘₯) = ∫ 𝑓(π‘₯) 𝑑π‘₯𝑏

π‘Ž

β‰ˆ βˆ‘ 𝑓(�̅�𝑖) βˆ†π‘₯ =

𝑛

𝑖=1

βˆ†π‘₯[𝑓(οΏ½Μ…οΏ½1) + 𝑓(οΏ½Μ…οΏ½2) + 𝑓(οΏ½Μ…οΏ½3) + β‹― + 𝑓(�̅�𝑛)]

where βˆ†π‘₯ =π‘βˆ’π‘Ž

𝑛

and �̅�𝑖 =1

2(π‘₯π‘–βˆ’1 + π‘₯𝑖) = π‘šπ‘–π‘‘π‘π‘œπ‘–π‘›π‘‘ π‘œπ‘“ [π‘₯π‘–βˆ’1, π‘₯𝑖]

Error Bounds: |𝐸𝑀| ≀ 𝐾(π‘βˆ’π‘Ž)3

24𝑛2

Trapezoidal Rule

𝑃1(π‘₯) = ∫ 𝑓(π‘₯) 𝑑π‘₯𝑏

π‘Ž

β‰ˆ

βˆ†π‘₯

2[𝑓(π‘₯0) + 2𝑓(π‘₯1) + 2𝑓(π‘₯3) + β‹― + 2𝑓(π‘₯π‘›βˆ’1)

+ 𝑓(π‘₯𝑛)]

where βˆ†π‘₯ =π‘βˆ’π‘Ž

𝑛

and π‘₯𝑖 = π‘Ž + π‘–βˆ†π‘₯

Error Bounds: |𝐸𝑇| ≀ 𝐾(π‘βˆ’π‘Ž)3

12𝑛2

Simpson’s Rule

𝑃2(π‘₯) = ∫ 𝑓(π‘₯)𝑑π‘₯𝑏

π‘Ž

β‰ˆ

βˆ†π‘₯

3[𝑓(π‘₯0) + 4𝑓(π‘₯1) + 2𝑓(π‘₯2) + 4𝑓(π‘₯3) + β‹―

+ 2𝑓(π‘₯π‘›βˆ’2) + 4𝑓(π‘₯π‘›βˆ’1) + 𝑓(π‘₯𝑛)] Where n is even

and βˆ†π‘₯ =π‘βˆ’π‘Ž

𝑛

and π‘₯𝑖 = π‘Ž + π‘–βˆ†π‘₯

Error Bounds: |𝐸𝑆| ≀ 𝐾(π‘βˆ’π‘Ž)5

180𝑛4

TI-84 Plus

[MATH] fnInt(f(x),x,a,b), [MATH] [1] [ENTER]

Example: [MATH] fnInt(x^2,x,0,1)

∫ π‘₯2 𝑑π‘₯1

0

=1

3

TI-Nspire CAS

[MENU] [4] Calculus [3] Integral [TAB] [TAB]

[X] [^] [2] [TAB] [TAB] [X] [ENTER]

Shortcut: [ALPHA] [WINDOWS] [4]

Page 8: Harold’s Calculus Notes Cheat Sheet AP Calculus · PDF fileCopyright © 2015-2017 by Harold Toomey, WyzAnt Tutor 4 Analyzing the Graph of a Function (See Harold’s Illegals and

Copyright Β© 2015-2017 by Harold Toomey, WyzAnt Tutor 8

Integration (See Harold’s Fundamental Theorem of Calculus Cheat Sheet)

Basic Integration Rules Integration is the β€œinverse” of differentiation, and vice versa.

∫ 𝑓′(π‘₯) 𝑑π‘₯ = 𝑓(π‘₯) + 𝐢

𝑑

𝑑π‘₯∫ 𝑓(π‘₯) 𝑑π‘₯ = 𝑓(π‘₯)

𝑓(π‘₯) = 0 ∫ 0 𝑑π‘₯ = 𝐢

𝑓(π‘₯) = π‘˜ = π‘˜π‘₯0 ∫ π‘˜ 𝑑π‘₯ = π‘˜π‘₯ + 𝐢

1. The Constant Multiple Rule ∫ π‘˜ 𝑓(π‘₯) 𝑑π‘₯ = π‘˜ ∫ 𝑓(π‘₯) 𝑑π‘₯

2. The Sum and Difference Rule ∫[𝑓(π‘₯) Β± 𝑔(π‘₯)] 𝑑π‘₯ = ∫ 𝑓(π‘₯) 𝑑π‘₯ Β± ∫ 𝑔(π‘₯) 𝑑π‘₯

The Power Rule 𝑓(π‘₯) = π‘˜π‘₯𝑛

∫ π‘₯𝑛 𝑑π‘₯ =π‘₯𝑛+1

𝑛 + 1+ 𝐢, π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑛 β‰  βˆ’1

𝐼𝑓 𝑛 = βˆ’1, π‘‘β„Žπ‘’π‘› ∫ π‘₯βˆ’1 𝑑π‘₯ = ln|π‘₯| + 𝐢

The General Power Rule

If 𝑒 = 𝑔(π‘₯), π‘Žπ‘›π‘‘ 𝑒′ =𝑑

𝑑π‘₯𝑔(π‘₯) then

∫ 𝑒𝑛 𝑒′𝑑π‘₯ =𝑒𝑛+1

𝑛 + 1+ 𝐢, π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑛 β‰  βˆ’1

Reimann Sum βˆ‘ 𝑓(𝑐𝑖)

𝑛

𝑖=1

βˆ†π‘₯𝑖 , π‘€β„Žπ‘’π‘Ÿπ‘’ π‘₯π‘–βˆ’1 ≀ 𝑐𝑖 ≀ π‘₯𝑖

β€–βˆ†β€– = βˆ†π‘₯ =𝑏 βˆ’ π‘Ž

𝑛

Definition of a Definite Integral Area under curve

limβ€–βˆ†β€–β†’0

βˆ‘ 𝑓(𝑐𝑖)

𝑛

𝑖=1

βˆ†π‘₯𝑖 = ∫ 𝑓(π‘₯) 𝑑π‘₯𝑏

π‘Ž

Swap Bounds ∫ 𝑓(π‘₯) 𝑑π‘₯𝑏

π‘Ž

= βˆ’ ∫ 𝑓(π‘₯) 𝑑π‘₯π‘Ž

𝑏

Additive Interval Property ∫ 𝑓(π‘₯) 𝑑π‘₯𝑏

π‘Ž

= ∫ 𝑓(π‘₯) 𝑑π‘₯𝑐

π‘Ž

+ ∫ 𝑓(π‘₯) 𝑑π‘₯𝑏

𝑐

The Fundamental Theorem of Calculus

∫ 𝑓(π‘₯) 𝑑π‘₯𝑏

π‘Ž

= 𝐹(𝑏) βˆ’ 𝐹(π‘Ž)

The Second Fundamental Theorem of Calculus

𝑑

𝑑π‘₯ ∫ 𝑓(𝑑) 𝑑𝑑

π‘₯

π‘Ž

= 𝑓(π‘₯)

𝑑

𝑑π‘₯ ∫ 𝑓(𝑑) 𝑑𝑑

𝑔(π‘₯)

π‘Ž

= 𝑓(𝑔(π‘₯))𝑔′(π‘₯)

𝑑

𝑑π‘₯∫ 𝑓(𝑑) 𝑑𝑑

β„Ž(π‘₯)

𝑔(π‘₯)

= 𝑓(β„Ž(π‘₯))β„Žβ€²(π‘₯) βˆ’ 𝑓(𝑔(π‘₯))𝑔′(π‘₯)

Mean Value Theorem for Integrals

∫ 𝑓(π‘₯) 𝑑π‘₯𝑏

π‘Ž

= 𝑓(𝑐)(𝑏 βˆ’ π‘Ž) Find β€˜π‘β€™.

The Average Value for a Function

1

𝑏 βˆ’ π‘Žβˆ« 𝑓(π‘₯) 𝑑π‘₯

𝑏

π‘Ž

Page 9: Harold’s Calculus Notes Cheat Sheet AP Calculus · PDF fileCopyright © 2015-2017 by Harold Toomey, WyzAnt Tutor 4 Analyzing the Graph of a Function (See Harold’s Illegals and

Copyright Β© 2015-2017 by Harold Toomey, WyzAnt Tutor 9

Integration Methods 1. Memorized See Larson’s 1-pager of common integrals

2. U-Substitution

∫ 𝑓(𝑔(π‘₯))𝑔′(π‘₯)𝑑π‘₯ = 𝐹(𝑔(π‘₯)) + 𝐢

Set 𝑒 = 𝑔(π‘₯), then 𝑑𝑒 = 𝑔′(π‘₯) 𝑑π‘₯

∫ 𝑓(𝑒) 𝑑𝑒 = 𝐹(𝑒) + 𝐢

𝑒 = _____ 𝑑𝑒 = _____ 𝑑π‘₯

3. Integration by Parts

∫ 𝑒 𝑑𝑣 = 𝑒𝑣 βˆ’ ∫ 𝑣 𝑑𝑒

𝑒 = _____ 𝑣 = _____ 𝑑𝑒 = _____ 𝑑𝑣 = _____

Pick β€˜π‘’β€™ using the LIATED Rule:

L – Logarithmic : ln π‘₯ , log𝑏 π‘₯ , 𝑒𝑑𝑐.

I – Inverse Trig.: tanβˆ’1 π‘₯ , secβˆ’1 π‘₯ , 𝑒𝑑𝑐.

A – Algebraic: π‘₯2, 3π‘₯60, 𝑒𝑑𝑐.

T – Trigonometric: sin π‘₯ , tan π‘₯ , 𝑒𝑑𝑐.

E – Exponential: 𝑒π‘₯ , 19π‘₯ , 𝑒𝑑𝑐.

D – Derivative of: 𝑑𝑦𝑑π‘₯

⁄

4. Partial Fractions

βˆ«π‘ƒ(π‘₯)

𝑄(π‘₯) 𝑑π‘₯

where 𝑃(π‘₯) π‘Žπ‘›π‘‘ 𝑄(π‘₯) are polynomials

Case 1: If degree of 𝑃(π‘₯) β‰₯ 𝑄(π‘₯) then do long division first

Case 2: If degree of 𝑃(π‘₯) < 𝑄(π‘₯) then do partial fraction expansion

5a. Trig Substitution for βˆšπ’‚πŸ βˆ’ π’™πŸ

∫ βˆšπ‘Ž2 βˆ’ π‘₯2 𝑑π‘₯

Substutution: π‘₯ = π‘Ž sin πœƒ Identity: 1 βˆ’ 𝑠𝑖𝑛2 πœƒ = π‘π‘œπ‘ 2 πœƒ

5b. Trig Substitution for βˆšπ’™πŸ βˆ’ π’‚πŸ

∫ √π‘₯2 βˆ’ π‘Ž2 𝑑π‘₯

Substutution: π‘₯ = π‘Ž sec πœƒ Identity: 𝑠𝑒𝑐2 πœƒ βˆ’ 1 = π‘‘π‘Žπ‘›2 πœƒ

5c. Trig Substitution for βˆšπ’™πŸ + π’‚πŸ

∫ √π‘₯2 + π‘Ž2 𝑑π‘₯

Substutution: π‘₯ = π‘Ž tan πœƒ Identity: π‘‘π‘Žπ‘›2 πœƒ + 1 = 𝑠𝑒𝑐2 πœƒ

6. Table of Integrals CRC Standard Mathematical Tables book

7. Computer Algebra Systems (CAS) TI-Nspire CX CAS Graphing Calculator

TI –Nspire CAS iPad app

8. Numerical Methods Riemann Sum, Midpoint Rule, Trapezoidal Rule, Simpson’s

Rule, TI-84

9. WolframAlpha Google of mathematics. Shows steps. Free.

www.wolframalpha.com

Page 10: Harold’s Calculus Notes Cheat Sheet AP Calculus · PDF fileCopyright © 2015-2017 by Harold Toomey, WyzAnt Tutor 4 Analyzing the Graph of a Function (See Harold’s Illegals and

Copyright Β© 2015-2017 by Harold Toomey, WyzAnt Tutor 10

Partial Fractions (See Harold’s Partial Fractions Cheat Sheet)

Condition

𝑓(π‘₯) =𝑃(π‘₯)

𝑄(π‘₯)

where 𝑃(π‘₯) π‘Žπ‘›π‘‘ 𝑄(π‘₯) are polynomials and degree of 𝑃(π‘₯) < 𝑄(π‘₯)

If degree of 𝑃(π‘₯) β‰₯ 𝑄(π‘₯) π‘‘β„Žπ‘’π‘› π‘‘π‘œ π‘™π‘œπ‘›π‘” π‘‘π‘–π‘£π‘–π‘ π‘–π‘œπ‘› π‘“π‘–π‘Ÿπ‘ π‘‘

Example Expansion

𝑃(π‘₯)

(π‘Žπ‘₯ + 𝑏)(𝑐π‘₯ + 𝑑)2(𝑒π‘₯2 + 𝑓π‘₯ + 𝑔)

=𝐴

(π‘Žπ‘₯ + 𝑏)+

𝐡

(𝑐π‘₯ + 𝑑)+

𝐢

(𝑐π‘₯ + 𝑑)2+

𝐷π‘₯ + 𝐸

(𝑒π‘₯2 + 𝑓π‘₯ + 𝑔)

Typical Solution βˆ«π‘Ž

π‘₯ + 𝑏 𝑑π‘₯ = π‘Ž 𝑙𝑛|π‘₯ + 𝑏| + 𝐢

Sequences & Series (See Harold’s Series Cheat Sheet)

Sequence

limπ‘›β†’βˆž

π‘Žπ‘› = 𝐿 (Limit)

Example: (π‘Žπ‘›, π‘Žπ‘›+1, π‘Žπ‘›+2, …)

Geometric Series

𝑆 = limπ‘›β†’βˆž

π‘Ž(1 βˆ’ π‘Ÿπ‘›)

1 βˆ’ π‘Ÿ =

π‘Ž

1 βˆ’ π‘Ÿ

only if |π‘Ÿ| < 1

where π‘Ÿ is the radius of convergence and (βˆ’π‘Ÿ, π‘Ÿ) is the interval of convergence

Convergence Tests (See Harold’s Series Convergence Tests Cheat Sheet)

Series Convergence Tests

1. Divergence or π‘›π‘‘β„Ž Term

2. Geometric Series

3. p-Series

4. Alternating Series

5. Integral

6. Ratio

7. Root

8. Direct Comparison

9. Limit Comparison

10. Telescoping

Taylor Series (See Harold’s Taylor Series Cheat Sheet)

Taylor Series

𝑓(π‘₯) = 𝑃𝑛(π‘₯) + 𝑅𝑛(π‘₯)

= βˆ‘π‘“(𝑛)(𝑐)

𝑛!

+∞

𝑛=0

(π‘₯ βˆ’ 𝑐)𝑛 + 𝑓(𝑛+1)(π‘₯βˆ—)

(𝑛 + 1)!(π‘₯ βˆ’ 𝑐)𝑛+1

where π‘₯ ≀ π‘₯βˆ— ≀ 𝑐 (worst case scenario π‘₯βˆ—)

and limπ‘₯β†’+∞

𝑅𝑛(π‘₯) = 0


Top Related