Transcript
Page 1: Emulsion Polymerization (2)

Polymer SynthesisCHEM 421

Emulsion Polymerization (2)

• External variable (surfactant concentration) used to increase BOTH molecular weight as well as rate of polymerization

• Colloidal system easy to control

– Thermal, viscosity issues

• Reaction mixture in form of final product for coatings

• Reaction product needs to be isolated from aqueous latex for many applications like rubber, elastomers, PVC, fluoropolymers, etc

Page 2: Emulsion Polymerization (2)

Polymer SynthesisCHEM 421

Variables and Other Characteristics

• Redox Initiators– Hydrogen Peroxide w/ Ferrous Ion

• Surfactant-Free Emulsion Polymerization– Initiator fragment affords amphiphilic character

• Phase transfer catalysis (cyclodextran)• Microemulsion, Miniemulsion • Inverse emulsions• Core-Shell Particles• pH Control: Hollow Particles

Page 3: Emulsion Polymerization (2)

Polymer SynthesisCHEM 421

Various Emulsions

• Emulsion Polymerization (macro)– Classic aqueous system

– Particles range from 50-500 nm

• Microemulsion Polymerization– Optically clear, smaller particles

– No droplets, just micelles

• Miniemulsion Polymerization– Between macro and micro systems, monomer

droplets smaller than in macro systems

Page 4: Emulsion Polymerization (2)

Polymer SynthesisCHEM 421

Inverse Emulsion Polymerization

• Standard emulsion polymerization uses water as the continuous phase, or oil-in-water (O/W)

• Inverse Emulsions use:

– Oil as the continuous phase, or water-in-oil (W/O)

– Hydrophilic monomer (or aqueous solution of monomer) dispersed in oil, i.e. xylene/hexane

» Like Acrylamide

– Oil Soluble Initiator

– Surfactant

Page 5: Emulsion Polymerization (2)

Polymer SynthesisCHEM 421

Surfactants

H2O

Oil

Page 6: Emulsion Polymerization (2)

Surfactant Assemblies - Rich Morphologies

cationicsurfactant

anionicsurfactant

R

V

M

Vesicles

Rod-like Micelles

Micelles

Multi

V + L a

Multiphase Region

Vesicles and Lamellar Phase

5% SDBS

Water

V-

5% CTAT

V V

M

1% 1%

2% 2%

3% 3%

4% 4%RMulti

1% 2% 3% 4%

V+La

Inner Membrane

Outer Membrane

OP OOON

Inner Membrane

Outer Membrane

OP OOON

Page 7: Emulsion Polymerization (2)

Controlled Radical Polymerization in Microemulsion

M M

M

Monomer-Swollen Micelles

Polymer Particle

Microemulsion Nanoparticles

Monomer Diffusion

M

M

M

P•PM•M

0 30 60 90 120 150 1800.0

0.2

0.4

0.6

0.8

1.0

[1]/[V50]=0 (RC1 data) [1]/[V50]=1.5 [1]/[V50]=2.25 [1]/[V50]=3.0 [1]/[V50]=4.5 [1]/[V50]=6.0

Con

vers

ion

(f)

Time (mins)

4 8 12 16

RI

Res

pons

e

Elution Time (mins)

[1]/[V50]=3.0 5.1% conversion Mn=2850, Mw/Mn=1.55 31.4% conversion Mn=6090, Mw/Mn=1.39 52.5% conversion Mn=9500, Mw/Mn=1.29 77.1% conversion Mn=12300, Mw/Mn=1.31 90.5% conversion Mn=16800, Mw/Mn=1.24

Liu, S. Y.; Kaler, E. W. et al. Macromolecules 2006, 39, 4345

Page 8: Emulsion Polymerization (2)

Polymer SynthesisCHEM 421

Design of Polymeric Nanogelsfor DNA Delivery

Release of DNADiffusion Pathway

Research Objectives:

1. Design nanogels < 200 nm in diameter using inverse micro-emulsion techniques with excellent solution stability (w/o toxic solvents!)

2. Control release profile of DNA by selection of monomer and crosslinker composition and concentration

3. Attach targeting ligands to surface of nanogels

McAllister, K.; Sazani, P.; Adam, M.; Cho, M.; Rubinstein, M.; Samulski, R. J.; DeSimone*, J. M. J. Am. Chem. Soc. 2002, 15198-15207

Page 9: Emulsion Polymerization (2)

Polymer SynthesisCHEM 421

Microemulsion Polymerizationand Isolation of Nanogels

Step 1:Form

microemulsion

Step 2:Polymerize

microemulsion

Step 3:Extract and

purify nanogels

Addition of Initiator to

oil phase andfree radical

polymerization

Removal ofheptane and

surfactantby extraction and dialysis

Page 10: Emulsion Polymerization (2)

Polymer SynthesisCHEM 421

Designing Polymeric Nanogels

NanogelsMonomers

PEGdiacrylate n=8

2-Hydroxyethylacrylate

2-Acryloxytrimethyl-ammonium chloride

Increasing Crosslinker

Incr

easi

ng C

harg

e+

+

+

++

+

+

++

+

+

++

+

+

+

++

+

++

+

+

++

+++

+

++ + + +

+

++

+

++

+

++

++ +

++

OO

O

O

O

n

OHO

O

NO

O CH3 Cl -

CH3

CH3+

Page 11: Emulsion Polymerization (2)

Polymer SynthesisCHEM 421

Dynamic Light Scattering of Microemulsion Before and After Polymerization

Dia

met

er (n

m)

Crosslinker Concentration (wt %)

0

20

40

60

80

100

0 10 20 30 40 50 60

= 0% Cationic Monomer

= 12% Cationic Monomer

= 25% Cationic Monomer

Before Polymerization

After Polymerization

AfterBefore

Page 12: Emulsion Polymerization (2)

Polymer SynthesisCHEM 421

Cross-linked Particles Adsorbed to Surface

Low Crosslinking

Particles Flatten and Spread

High Crosslinking

Particles Maintain Shape

Page 13: Emulsion Polymerization (2)

Polymer SynthesisCHEM 421

TEM Images of Nanogels

3% Crosslinker 12% Crosslinker 50% Crosslinker

0% C

harg

e12

% C

harg

e

66K Magnification Samples Stained with 1% PTA

Page 14: Emulsion Polymerization (2)

Polymer SynthesisCHEM 421

% HeLa Cells Living After 40 Hour Exposure to Nanogels

0

20

40

60

80

100%

HeL

a Ce

lls L

ivin

g

Non

-ioni

c

Catio

nic

(12%

)

Catio

nic

(25%

)

Blan

k

Poly

lysi

ne

Page 15: Emulsion Polymerization (2)

Polymer SynthesisCHEM 421

Release of Dye Molecules from Non-ionic Nanogels

Dialysis for 24 hoursat 37°C and at 4°C

Initial FluorescenceIntensity in Bag

Final FluorescenceIntensity in Bag

37°C = 100% 4° C = 100%

37°C = 4% 4° C = 8%

Page 16: Emulsion Polymerization (2)

Polymer SynthesisCHEM 421

In Vitro Efficacy:Nanogel Uptake by HeLa Cells

Add Nanogels Wash Cells

HeLa Cells Cells + Nanogels Nanogels Bound to Cells

Page 17: Emulsion Polymerization (2)

Polymer SynthesisCHEM 421

HeLa Cells Exposed to Nanogels

0% Charge 12% Charge 25% Charge

HeLa Cells Viewed at 400 x Magnification

After 24 h exposure to nanogels (12% cross-linker) and PBS wash

Page 18: Emulsion Polymerization (2)

Polymer SynthesisCHEM 421

Confocal Microscopy of HeLa Cells Exposed to Rhodamine-Labeled Nanogels

0% Charge 12% Charge 25% Charge

3% C

ross

linke

r12

% C

ross

linke

r

Page 19: Emulsion Polymerization (2)

Polymer SynthesisCHEM 421Future Directions

• Determine maximum DNA length which does not induce aggregation

• Evaluate in vitro delivery of DNA with nanogel/DNA complexes

• Extend to hydrolytically degradable matrices, targeting ligands, diffusion barriers

• Extend to peptides, pharmaceuticals, vaccines

Page 20: Emulsion Polymerization (2)

Murthy N et al. PNAS 2003;100:4995-5000

Page 21: Emulsion Polymerization (2)

Miniemulsion Polymerization for Dually-Triggered Degradable Nanogels

Li, Z. C, et al. et al. J. Controlled Release 2011, 152, 57

Page 22: Emulsion Polymerization (2)
Page 23: Emulsion Polymerization (2)

Polymer SynthesisCHEM 421

Core-shell Polymer Particles

General Practical Uses:• impact modification (soft core, hard shell) • providing chemical reactivity to latex particles • enhancement of adhesion properties (hard core, soft shell)• controlled-release drug delivery (water-soluble core)• prevent colors from showing through (hollow core)

Morphology:is determined by thermodynamic control (lowest surface free energy) and kinetic control. The second polymer doesn’t necessarily form the shell!

shell

core

Page 24: Emulsion Polymerization (2)

Polymer SynthesisCHEM 421

Possible Morphologies

1st-stage polymer2nd-stage polymer

MicrodomainsA B

Raspberry SandwichA B

Kinetically Trapped Morphologies

Core-shell Inverted core-shell Half-Moon A Half-moon B

Thermodynamically Stable Morphologies

Page 25: Emulsion Polymerization (2)

Polymer SynthesisCHEM 421

Hollow Particles & Ropaque™

Hollow particles in: paints, sunscreens, inks, cosmetics, fluorescent coatings, forgery- or counterfeiting-proof coated paper, paper products, etc.

•Hollow polymer particles industrially important•Can replace use of TiO2

•Ropaque™ made by Rohm & Haas

Kowalski, A.; Vogel, M. U.S. Patent 4,469,825.Blankenship, R.M.; Finch, W.C.; Mlynar, L.; Schultz, B.J. U.S. Patent 6,139,961.

microvoid

Raise pH Lower pH

CH3

OOH

O

CH3

OCH3

O

CH3

OCH3

O

Page 26: Emulsion Polymerization (2)

Polymer SynthesisCHEM 421

Hollow Particle Micrographs

J. Poly. Sci. A: Polym. Chem., 2001, 39, 1435 Colloid Polym. Sci. 1999, 277, 252.

PMMA particles via W/O/W emulsion polymerization

Core-shell hollow particlesusing methacrylic acid

Page 27: Emulsion Polymerization (2)

Emulsion Polymerization for Dye-Labeled Nanoparticles

Zhu, M. Q.; Li, A. D. Q. et al. J. Am. Chem. Soc. 2006, 128, 4303

Page 28: Emulsion Polymerization (2)

PGMA macroCTA as a Steric Stabiliser for the Aqueous Dispersion Polymerisation of HPMA

Targeting a longer core-forming block relative to the stabiliser blockshould lead to progressively larger sterically-stabilised nanolatexes?

PGMA65

RAFT CTAHPMA

Y. T. Li and S. P. Armes, Angewandte Chem., 2010, 49, 4042

Page 29: Emulsion Polymerization (2)

90 nm PGMA65-PHPMA200 latex 105 nm PGMA65-PHPMA300 latex

SEM images confirm spherical, near-monodisperse latexes

Scanning Electron Microscopy StudiesY. T. Li and S. P. Armes, Angewandte Chem., 2010, 49, 4042

Page 30: Emulsion Polymerization (2)

PGMA65-PHPMA50 PGMA65-PHPMA70 PGMA65-PHPMA100

Dh = 29 nm Dh = 40 nm Dh = 58 nm

Scale bar: 100 nm

Negative staining using uranyl formate:Prof. S. Sugihara and Dr. A. Blanazs

Transmission Electron Microscopy StudiesY. T. Li and S. P. Armes, Angewandte Chem., 2010, 49, 4042

200 nm 200 nm 200 nm

Page 31: Emulsion Polymerization (2)

DMF GPC Studies of PGMA-PHPMA Block Copolymers

A. Blanazs, S. P. Armes, A. J. Ryan et al., J. Am. Chem. Soc. 2011, ASAP

Aldrich-sourced HPMA has only 0.10 mol % dimethacrylate impurity

Best result: Mw/Mn < 1.20 for G47-H1000 at 99 % conv. (within 2 h at 70oC) !

So excellent control over MWD and good CTA blocking efficiencies….

Page 32: Emulsion Polymerization (2)

A. Blanazs, S. P. Armes,

J. Madsen, A. J. Ryan

and G. Battaglia

JACS, 2011, ASAP

Scale bars: 200 nm

75 min = 62 %, DP 123

77.5 min = 68 %, DP 131

84 mins = 75 %, DP 150

225 mins = 100 % DP 200

90 mins = 82 %, DP 164

65 min = 46 %, DP 92

87 mins = 78 % DP 156

More In Situ Studies: PGMA47-PHPMAx


Top Related