Transcript

Direct Catalytic Aldol Reactions

Shibasakiʼs and Trostʼs contributions toward the development of catalytic enolate reactions.

ʻThe time has come,ʼ the Walrus said,ʻTo talk of many things:

Of shoes–and ships–and sealing wax–Of cabbages–and kings–

And why the sea is boiling hot–And whether pigs have wings.ʼ

ON N

O O PhPh

PhPh Zn

Zn

Me

Me

OOO O

OO

LnLi Li

Li

The Definition of a Direct Catalytic Enolate Addition

A large number of enantioselective aldol reactions exist:

Ar

R R

OEt

OTBSOSnBu3

RBINAP•AgOTfO O

OSiMe3

Me Me

CuF2•Tol-Binap

Carriera, 1998 Yamamoto, 1997 Chen, 1997

Preconversion to the ketone is a prerequisite for the reactions.

These are not direct aldol reactions.

Me R1

O

R H

O+

catalystR1

O

R

OH∗

A route to this reaction without stoichiometric amounts of base and/or adjunct reagents was desirable

Aldolases as Inspiration

fructose-1,6-bisphosphate and dihydroxyacetone phosphate (DHAP) aldolases are found in E. coli.

Fessner, W.-D.; Schneider, A.; Held, H.; Sinerius, G.; Walter, C.; Hixon, M.; Schloss, J. V. ACIE 1996, 35, 2219-2221

HOO

OPO32–H

OMe

OH

+enzyme O OPO3

2–

OH

OHHO

Me

L-fuculose

Key Points

• facilitates both electrophilic activation and proton abstraction

• Lewis acid and Brønsted base

• Multifunctional

ZnHis

His HIs

GluCO2

2+

deprotonation

HOO

OPO32–

OOPO3

2–

ZnHOGlu

CO2H

GluCO2H

H

OMe

OHO

OPO32–

ZnHO

HO

Tyr

H

OMe

OH

C-C bondformation

Me

OH

OH

OO

OPO32–

Zn

O OPO32–

OH

OHHO

Me

Professor Masakatsu Shibasaki

• Ph. D, University of Tokyo, 1974 (Yamada)• Post-doc, Harvard, 1974-77, (Corey)• Associate Prof, Teikyo, 1977-83 (Ikegama)• Professor, Hokkaido, 1986-1991• Professor, University of Tokyo, 1991-present

• To date, 465 publications

The 1970ʼs Corey GroupShibasakiNicolauBogerTius

FuchsSeebachNoyori

H. YamamotoB. SniderTakedaLipshutzMulzer

DanheiserKeck

Enders

Professor Masakatsu Shibasaki

The catalyst:

OOO O

OO

LnLi Li

Li

Sasai, H.; Suzuki, T.; Arai, S.; Arai, T.; Shibasaki, M. JACS 1992, 114, 4418-4420Sasai, H.; Suzuki, T.; ItoH, N.; Shibasaki, M. Tetrahedron Lett. 1993, 34, 851-854

Sasai, H.; Suzuki, T.; Itoh, N.; Tanaka, K.; Date, T.; Okamura, K.; Shibasaki, M. JACS 1993, 115, 10372-10373

MeNO2 H

O OHNO2catalyst

+ 91% yield90% ee

• The lithium is important, Na gave much lower selectivities and yields• small amounts of H2O are needed• Uncertain of success in aldol reaction due to low basicity of alkoxide

S-U-C-C-E-S-S thatʼs the way you spell Success

H

O

Me

OMe

MeMe

catalyst

THF+ Ph

OH OMe

MeMe

81% yield91% ee

• A variety of ketones are compatible• A variety of aldehydes are compatible• selectivity is generally high

• Long reaction times (up to 253 h)• Large excess of ketone (up to 50 equiv)• High catalyst loading (20 mol %)

Positives Negatives

In this case, the rxn worked better without the addition of water.

Mechanistic Insight:

Yamada, Y. M. A.; Yoshikawa, N.; Sasai, H.; Shibasaki, M. ACIE 1997, 36, 1871-1873

• Employment of the Pr related catalyst resulted upfield shift of the aldehyde proton

• Using dilithium salt of (R)-binapthol resulted in no chemical shift, afforded racemate

Improvement to the Reaction

catalyst

THF+Ph H

O

Me Me Me Ph

O

Ph

OH

Me Me

O

Ph

O

BnO OBn

OO catalystLiHMDS, H2O

+

O

BnO2C

CO2Bn

12 h99% yield

97% ee

Arai, T.; Yamada, Y. M. A.; Yamamoto, N.; Sasai, H.; Shibasaki, M. Chem.–Eur. J. 1996, 2, 1368-1372

trace amount

Yoshikawa, N.; Yamada, Y. M. A.; Das, J.; Sasai, H.; Shibasaki, M. JACS 1999, 121, 4168-4178

catalyst

THF+Ph H

O

Me Me Me Ph

O

Ph

OH

Me Me

O

Ph

O

BnO OBn

OO catalystLiHMDS, H2O

+

O

BnO2C

CO2Bn

Arai, T.; Yamada, Y. M. A.; Yamamoto, N.; Sasai, H.; Shibasaki, M. Chem.–Eur. J. 1996, 2, 1368-1372

Improvement to the Reaction

with KHMDS and H2O as an additivewith only 8 mol % catalyst

5 h74% yield

84% ee

12 h99% yield

97% ee

Yoshikawa, N.; Yamada, Y. M. A.; Das, J.; Sasai, H.; Shibasaki, M. JACS 1999, 121, 4168-4178

catalyst

THF+Ph H

O

Me Me Me Ph

O

Ph

OH

Me Me

O

Ph

Improvement to the Reaction

5 h74% yield

84% eewith KHMDS and H2O as an additive

with only 8 mol % catalyst

OHMe

MeMe

O

Ph

75%, 88% ee

OHMe

Me

ONO2

68%, 70% ee

OH O

PhMe Me

BnO

70%, 93% ee

OH O

Me MePh

Me

72%, 88% ee

OHMe

OTBS

ONO2

48 h73% yield

99% ee

no racemization of pre-existing stereocenter

Self-condensation of the aldehyde was not observed.Yoshikawa, N.; Yamada, Y. M. A.; Das, J.; Sasai, H.; Shibasaki, M. JACS 1999, 121, 4168-4178

New Player in the Game

•This catalyst uses Zn, which mimics aldolases.

• It is easily prepared from 2,6-(bromomethyl)-p-cresol.

•Similarly, phenoxide should assist in both deprotonation and then protonation of alkoxide in product.

•One Zn is used for formation of enolate, the other for aldehyde coordination

ON N

O O PhPh

PhPh Zn

Zn

Me

Me

Professor Barry M. Trost

Ph.D- MIT, 1965 (House)Assistant Prof.- University of Wisconsin, 1965-68Associate Prof.- University of Wisconsin, 1968-69

Professor- University of Wisconsin, 1969-87Professor- Stanford, 1987-present

Over 720 publications

Best known for p-allyl palladium chemistry.

CurranFerreiraFrontier

MolanderToste

Krische

StambuliTaber

LautensMcIntoshParquette

Former Students/Post-docs:

Substrate Scope

R

O

H Me

O

Ar

5 mol % ligand10 mol % ZnEt2

15 mol % Ph3PS4Å MS

R

O

Ar

OH+ ON N

O O PhPh

PhPh Zn

Zn

Me

MeNotice two equiv of ZnEt2 and use of triphenylphosphine sulfide

O

Ph

OHMe

Me

49%, 68% ee

O

Ph

OH

60%, 98% ee

O

Ph

OH

Ph

Ph

79%, 99% ee

O

Ph

OH

Me

Ph

67%, 2:1 dr, 94% ee

O

Ph

OH

Me MeTBSO

61%, 93% ee

OOH

Me

Me O

66%, 97% ee

OOH

Me

MeOMe

48%, 97% ee

Trost, B. M.; Ito, H. JACS 2000, 122, 12003-12004

Trostʼs Explanation of Pathway

• 3 active Hʼs suggest that 2 Zn atoms may be involved• 2 equiv of ZnEt2 per 1 equiv of ligand liberates 3 equiv of ethane• Addition of H2O, liberates 4 equiv of ethane

ON N

O O PhPh

PhPh Zn Zn

O

Me

Ar

O

RH

ON N ��

O O PhPh

PhPh Zn Zn

O

Me

Ar

O

R

H

ON N

O O PhPh

PhPh Zn Zn

Me

O

R O

ArO

Ar

R

O

Ar

OH

Application to Other Manifolds

Henry Reaction:

R

O

H

catalyst+

OHNO2

MeNO2 Me

Me

90% yield92% ee

Trost, B. M.; Yeh, V. S. C. ACIE 2002, 41, 861-863

Mannich Reaction:

catalystHO

O

Ph

N

EtO2C H

MeO

+O

PhOH

NH

EtO2C

Ar70% yield

15:1 dr99% ee

Trost, B. M.; Terrell, L. R. JACS 2003, 125, 338-339

Diol Desymmetrization:

catalyst

OH

OH

MeOO

O

Ph+

OCOPh

OH

MeO

H93% yield

99% ee

Trost, B. M.; Mino, T. JACS 2003, 125, 2410-2411

Incorporation of Methyl Vinyl Ketone

Trost, B. M.; Shin, S.; Sclafani. JACS 2005, 127, 8602-86-3

R

O

H Me

O catalyst+

R

OH O

OH O OH O

Me

MeMe

OH O

Me MeBnO

OH OMe

MeMe

53%, 92% ee 74%, 86% ee 64%, 83% ee 49%, 98% ee

• MVK is extremely unstable in both acidic and basic conditions

• Main problems associated with elimination of b-hydroxy ketone product

• There is a profound negative nonlinear effect

Recent Advances

Me Me

OH

O

NO2

Me

O OH

NO2

(S)-proline+ 68% yield

76% ee

List, B.; Lerner, R. A.; Barbas, C. F. III. J. Am. Chem. Soc. 2000, 122, 2395

Secondary Amine Catalysis:

Palladium Catalysis:

Me

O O

Me

ArO

Me

PdOH2

OH2

PP

2+2 OTf

Me

O OAr

+ MeO

Me

84% yield90% ee

Hamashima, Y.; Hotta, D.; Sodeoka, M. J. Am. Chem. Soc. 2002, 124, 11240

Nickel Catalysis:

N

OMe

S

S

(MeO)3CHNi(II)•tol-BINAP

BF3•OEt2+ N

O

S

S

OMe

OMe

Me

73% yield97% ee

Evans, D. A.; Thomson, R. J. J. Am. Chem. Soc. 2005, 127, 10506


Top Related