Transcript

1  

   Atmospheric Correction for Dust Contaminated Ocean Regions  

Menghua Wang and Wei Shi NOAA/NESDIS/STAR

E/RA3, Room 102, 5200 Auth Rd. Camp Springs, MD 20746, USA  

Report of FY11 NASA ACE Funded Project March 14, 2012

Acknowledgements:  We  thank  Oleg  Dubovik  and  the  AERONET  group  for  providing  dust  model  data.  MODIS  and  CALIPSO  data  were  obtained  from  NASA/GSFC  and  NASA  Langley  Research  Center  Atmospheric  Science  Data  Center.  

2  

Project Summary: This is a demonstration study for deriving improved MODIS-Aqua ocean color products over dust-contaminated ocean regions using the dust vertical profile data from CALIPSO and dust models that have been developed from the AERONET ground-based measurements.

3  

Current  Satellite  Ocean  Color  Retrievals  Under  Dust  Condi;on    

1.  World  oceans  are  frequently  covered  with  dust,  especially  in  the  West  Africa  coast,  Arabian  Sea  and  Persian  Gulf,  US  west  coast,  etc.  

2.  Dust  aerosols  are  strongly  absorbing  in  the  blue  and  deep  blue  band.  

3.  Current  aerosol  models  for  satellite  ocean  color  processing  are  not  working  under  dust  condiPon  (also  need  aerosol  verPcal  distribuPon  info).  

4.  Shi  and  Wang  (2007)  developed  a  method  to  detect  absorbing  aerosols,  e.g.,  dust,  smoke.  

Shi, W., and Wang, M. (2007), Detection of turbid waters and absorbing aerosols for the MODIS ocean color data processing, Remote Sens. Environ., 110, 149-161.

4  

Efforts in Addressing Absorbing Aerosol Issue  Ø  There have been significant efforts for addressing dust aerosol issue & its

effects on ocean color remote sensing (list a few): –  Gordon, H. R., Du, T., and Zhang, T. (1997), Remote sensing of ocean color and aerosol

properties: resolving the issue of aerosol absorption, Appl. Opt., 36, 8670-8684. –  Fukushima, H., and Toratani, H. (1997), Asian dust aerosol: optical effect on satellite

ocean color signal and a scheme of its correction, J. Geophys. Res., 102, 17119-17130. –  Moulin, C., Gordon, H. R., Banzon, V. F., and Evans, R. H. (2001a), Assessment of

Saharan dust absorption in the visible from SeaWiFS imagery, J. Geophys. Res., 106, 18,239-218,249.

–  Moulin, C., Gordon, H. R., Chomko, R. M., Banzon, V. F., and Evans, R. H. (2001b), Atmospheric correction of ocean color imagery through thick layers of Saharan dust, Geophys. Res. Letters, 28, 5-8.

–  Claustre, H., Morel, A., Hooker, S.B., Babin, M., Antoine, D., Oubelkheir, K., Bricaud, A., Leblanc, K., Queuiner, B. and Maritorena, S. (2002), Is desert dust making oligotrophic water greener? Geophy. Research Letter, 29, 1469, doi: 10.1029/2001GL014056.

–  Cattrall, C., Carder, K. L., and Gordon, H. R. (2003), Columnar aerosol single-scattering albedo and phase function retrieved from sky radiance over the ocean: Measurements of Saharan dust, J. Geophys. Res., 108 (D9), 4287, doi:10.1029/2002JD002497.

–  Wiggert, J. D., Murtugudde, R. G. and Christian, J. R. (2006), Annual ecosystem variability in the tropical Indian Ocean: Results of a coupled bio-physical ocean general circulation model. Deep-Sea Research Part II, 53: 644-676.

5  

AERONET Dust Aerosol Model  Ø AERONET dust models developed by Dubovik et al. are used for

generating aerosol lookup tables: –  Dubovik, O., Holben, B. N., Eck, T. F., Smirnov, A., Kaufman, Y. J., King,

M. D., Tanre, D., and Slutsker, I. (2002a), Variability of absorption and optical properties of key aerosol types observed in worldwide locations, J. Atmos. Sci., 59, 590-608.

–  Dubovik, O., Holben, B. N., Lapyonok, T., Sinyuk, A., Mishchenko, M., Yang, P., and Slutsker, I. (2002b), Non-spherical aerosol retrieval method employing light scattering by spheroids, Geophy. Res. Lett., 29, 1451, doi:1410.1029/2001GL014506.

–  Dubovik, O., Sinyuk, A., Lapyonok, T., Holben, B. N., Mishchenko, M., Yang, P., Eck, T. F., Volten, H., Munoz, O., Veihelmann, B., Zande, W. J. v. d., Leon, J.-F., Sorokin, M., and Slutsker, I. (2006), Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust, J. Geophys. Res., 111, D11208, doi:11210.11029/12005JD006619.

 

6  

Dust  Aerosol  Sca<ering  Phase  Func;on  

10-1

100

101

102

0 30 60 90 120 150 180

412 nm555 nm667 nm869 nm1240 nm2130 nm

Scattering Angle (Deg.)

(a)

Phas

e Fu

nctio

n

7  

Dust  Aerosol  Proper;es:  Single-­‐sca<ering  Albedo  and  Asymmetry  Parameter  

• Dust  property  varies  with  wavelength,  in  parPcularly,  in  visible  bands.  • Dust  parPcles  are  almost  non-­‐absorbing  at  the  NIR  and  SWIR  bands,  while  they  are  absorbing  at    visible  bands.     0.6

0.7

0.8

0.9

1

1.1

400 800 1200 1600 2000

Single-Scat AlbedoAsymmetry Parameter

Wavelength (nm)

Dust

Opt

ical P

aram

eter

(b)

8  

Dust Aerosol Lookup Tables  Ø Dust aerosol lookup tables (including atmospheric diffuse

transmittance tables) were generated with the vector radiative transfer model for different aerosol vertical profiles located at (from bottom): 0-km, 1-km, 2-km, 4-km, 6-km, 8-km, 10-km, and 99-km.

Ø  4 dust aerosol size distributions corresponding to AOT at 1020 nm of 0.3, 0.6, 1.0, and 1.5.

Ø  14 dust AOT at 865 nm are: 0.02, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 2.5, 3.0.

Ø  Solar-zenith angles from 0 to 80 (Deg.) at every 2.5 (Deg.). Ø  Sensor-zenith angles from 1 to 75 (Deg.) at every ~2 (Deg.). Ø Relative azimuth angle from 0 to 180 (Deg.) at every 10 (Deg.). Ø MODIS 16 spectral bands at 412, 443, 469, 488, 531, 551, 555,

640, 667, 678, 748, 859, 869, 1240, 1640, and 2130 nm.  

9  

TOA  Reflectance  

10-2

10-1

400 800 1200 1600 2000

τa(869) = 0.1τa(869) = 0.3

τa(869) = 0.6τa(869) = 1.0

TOA

Refle

ctan

ce

Wavelength (nm)

TOA Typical Radiance, θ0 = 20o, θ = 45o, Δφ = 90oAERONET Dust Model, 4km Layer, Black Ocean

(c)

10  

Effects  of  Dust  Aerosol  Ver;cal  Distribu;on  

0

0.005

0.01

0.015

400 500 600 700 800

1km vs. 3km bottom-layer1km vs. 6km bottom-layer1km vs. 9km bottom-layer

TOA

Refle

ctan

ce D

iffer

ence

Wavelength (nm)

τa(869) = 0.6, θ0 = 60o, θ = 45o, Δφ = 90o

AERONET Dust Model, Black Ocean

(d)

11  

Atmospheric  Correc;on:  Simula;ons  

-0.002

-0.001

0

0.001

0.002

0 10 20 30 40 50 60 70 80

412 nm443 nm488 nm531 nm551 nm

Solar Zenith Angle (Deg.)

τa(865) = 0.1, θ = 20o, Δφ = 90o

(a)

Erro

r Δ[t ρ

w(λ) ]

The SWIR Algorithm: 1240 nm and 2130 nmAeronet Dust Model (dH) at 3km bottom layerAssuming: dust at 2km layer

-0.003

-0.002

-0.001

0

0.001

0 10 20 30 40 50 60 70 80

412 nm443 nm488 nm531 nm551 nm

Solar Zenith Angle (Deg.)

τa(865) = 0.3, θ = 20o, Δφ = 90o

(b)

Erro

r Δ[tρ

w( λ)]

The SWIR Algorithm: 1240 nm and 2130 nmAeronet Dust Model (dH) at 3km bottom layerAssuming: dust at 2km layer

Derived  water-­‐leaving  reflectances  are  biased  low  due  to  a  wrong  assumpPon  of  dust  aerosol  layer  (more  so  for  larger  aerosol  opPcal  thickness  at  shorter  wavelengths).  

Dust  layer  at  3-­‐km,  but  assumed  at  2-­‐km.  

12  

NASA  Cloud-­‐Aerosol  Lidar  and  Infrared  Pathfinder  Satellite  Observa;on  (CALIPSO)  

•   Launched  on  April  28,  2006  •   Part  of  the  Aqua  satellite  constellaPon  (or  A-­‐Train)  •   CALIPSO  lags  MODIS-­‐Aqua  by  1  to  2  minutes.  •   Wavelengths:  532  nm  &  1064  nm  •   Pulse  energy:  110  mJoule/channel  •   Footprint/FOV:  100  m/  130  µrad  •   VerPcal  resoluPon:  30-­‐60  m  •   Horizontal  resoluPon:  333  m  

13  

CALIPSO  L2  Aerosol  &  Cloud  Products  

An  example  of  data  collected  by  CALIPSO's  lidar  in  June  2006   Aerosols  

• Height,  Thickness  • OpPcal  depth,  τ  • Backscager,  &  betaa(z)  • ExPncPon,  σa  

Clouds  • Height  • Thickness  • OpPcal  depth,  τ  • Backscager,  &betac(z)  • ExPncPon,  σc  • Ice/water  phase  • Ice  cloud  emissivity,  ε  • Ice  parPcle  size  

14  

CASE  ONE  :  Dust  In  Japan  Sea  on  5/26/2007  MODIS  Granule  (2007146)  

Calipso  track  

Dust  height  0–2.5  km  

MODIS  True  Color  Image  and  CALIPSO  Track  532  nm  total  agenuated  backscager  

0                                                                                                                                0.01  sr-­‐1km-­‐1  

15  

CASE  ONE  :  Ocean  Color  Retrieval  Comparison  MODIS  Granule  (2007146)  With  A  No  Dust  Case  on  5/22/2007  

nLw412-­‐NIR-­‐02dust     nLw412-­‐NIR   nLw412-­‐NIR  5/22/2007  

nLw443-­‐NIR-­‐02dust     nLw443-­‐NIR   nLw443-­‐NIR  5/22/2007  

Spectral  comparison  

0   3.0  mW/cm3    µm  sr  

No  Dust  

No  Dust  

16  

nLw667-­‐NIR-­‐02dust     nLw667-­‐NIR   nLw667-­‐NIR  5/22/2007  

0   1.0  mW/cm3    µm  sr  

CASE  ONE  :  Ocean  Color  Retrieval  Comparison  MODIS  Granule  (2007146)  With  a  No  Dust  Case  on  5/22/2007  

No  Dust  

17  

Taua531  comparison  along  the  track  of  CALIPSO  

CASE  ONE  :  Ocean  Color  Retrieval  Comparison  MODIS  Granule(2007146)  

18  

Spectral  comparison  at  locaPon  of  [38.42°N,  135.90°E]    (marked  in  the  Calipso  Track  marked  in  2007146)  

CASE  ONE  :  Ocean  Color  Retrieval  Comparison  MODIS  Granule  (2007146)  

Old  

New  

No Dust Case  

19  

Total  Agenuated  Backscager  

CASE  2  :  Dust  Gulf  of  OMAN  on  5/26/2007  

0                                                                                                                                0.01  sr-­‐1km-­‐1  

MODIS  Granule:  2006326  

Dust  Height  0  -­‐  1.5  km  

20  

CASE  2:  Comparison  of  ocean  color  products  from  NIR-­‐dust  and  NIR  nLw(412)  

nLw(443)  

Dust  NIR-­‐02km  Corr.   Standard  NIR  Corr.  

MODIS  Granule:  2006326  

0   3.0  mW/cm3    µm  sr  

21  

nLw(488)  

nLw(551)  

Dust  NIR-­‐02km  Corr.   Standard  NIR  Corr.  

CASE  2:  Comparison  of  ocean  color  products  from  NIR-­‐dust  and  NIR  

MODIS  Granule:  2006326  

0   3.0  mW/cm3    µm  sr  

22  

nLw(667)  

scale:0  -­‐  1

 Ch

la  

Scale:0.1  –  32  log  

Dust  NIR-­‐02km  Corr.   Standard  NIR  Corr.  

CASE  2:  Comparison  of  ocean  color  products  from  NIR-­‐dust  and  NIR  

MODIS  Granule:  2006326  

0   1.0  mW/cm3    µm  sr  

0.1   32  mg/m3    

23  

AOT(531)  

scale:0  -­‐  0

.6  

AOT(869)  

Scale:0.-­‐  0

.6  

Dust  NIR-­‐02km  Corr.   Standard  NIR  Corr.  

Spectral  Comparison  

CASE  2:  Comparison  of  ocean  color  products  from  NIR-­‐dust  and  NIR  

MODIS  Granule:  2006326  

0.6  0.0  

24  

Taua531  Comparison  along  Calipso  Track   Spectral  Comparison  at  [22.34°N,  61.97°E]    

CASE  2:  Comparison  of  ocean  color  products  from  NIR-­‐dust  and  NIR  

MODIS  Granule:  2006326  

Old  

New  

25  

Atmospheric Correction for Dust Contaminated Ocean Region

Menghua Wang and Wei Shi

CALIPSO Data Provide Dust Height

MODIS True Color Image (Gulf of Oman)

Nov. 22, 2006

Region is covered by dust

nLw(443) from the standard-NIR method: significantly biased low values over the region.  

nLw(443) from a new approach, dust models & dust height, show increased / improved results.  

Chlorophyll-a from a new approach, clearly show ocean features (e.g., eddies).      

CALIPSO Track

Old Results

New Results

New Results

Ø  Improved ocean color products Ø  Use realistic dust aerosol models Ø  CALIPSO data--dust height information Ø  Promising from preliminary results

26  

Conclusions  

Ø  For ocean color remote sensing over dust contaminated ocean regions, we need realistic dust aerosol models and dust vertical distribution (~0.5-1km) information. Ø  We demonstrate an approach to carry out atmospheric correction for satellite ocean color observations under dust conditions using AERONET dust models and dust height information from CALIPSO measurements. With this approach, ocean color results (nLws) are improved. Ø  Dust aerosol height along the CALIPSO tracking are assumed to be representative for the entire dust region. This might not be accurate and can lead to errors in nLw retrievals. Ø  Future research is still necessary on improving dust aerosol models, how to effectively/accurately obtain aerosol height information (e.g., its spatial distribution), algorithm implementation, etc., in atmospheric correction for satellite ocean color products.


Top Related