Transcript

Analysis of Dioxins and POPs using

Atmospheric Pressure GC/MS

Ingrid Ericson Jogsten

MTM research centre, Örebro University

2014-12-16 1

2014-12-16 2

Outline

POPs and related environmental pollutants

POPs analysis

APGC

Dioxins

Other POPs

APGC vs high res for PCBs and OCPs

BFRs

PBDEs

Other environmental pollutants

Progress of scientific knowledge

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Scientific publications

Knowledge on effects

"PCBs and effects"

"PFOS and effects"

0

50

100

150

200

250

300

350

400 Scientific publications

Analytical development

"Analytical Chemistry"

Slide courtesy of Samira Salihovic

Environment and Health Research focussed on POPs

• Health and exposure

• Environmental Levels

• Chemical and Bioassay Analysis

• UNEP reference laboratory

Stockholm Convention

Parties (179), Signatories (152)

Chemical Parent POPs Transformation products

Aldrin aldrin

Dieldrin dieldrin

Endrin endrin

Chlordane cis- and trans-chlordane cis- and trans nonachlor, oxychlordane

Heptachlor heptachlor -heptachlorepoxide

DDT 4,4’-DDT, 2,4’-DDT 4,4’-DDE, 2,4’ DDE, 4,4’-DDD, 2,4’-DDD

HCB hexachlorobenzene

Mirex mirex

Toxaphene congeners P26, P50, P62

PCB Σ7 ‘marker’ congeners: #28,#52,#101,#118,#138,#153,#180

12 congeners with TEFs: #77, #81, #105, #114, #118, #123, #126, #156, #157,

#167, #169, #189

PCDD/PCDF 2,3,7,8-PCDD/PCDF (17 congeners)

New POPs on SC 2009

HCHs hexachlorocyclohexane

PCBz pentachlorobenzene

BFRs PBDEs (not DeBDE #209), PBB

PFAS PFOS and its salts, POSFs

Substances to Be Monitored

Substances to be monitored (GMP guidance)

ESI

APCI

APPI

GC/MS

MALDI PFOS (LC-MS/MS)

Dioxins (HRGC/HRMS)

PBDEs (NCI m/z 79/81 non-specific)

Toxaphene, Drins (large fragmentation EI -> NCI)

Different Ionization Techniques?

Universal MS platform for POPs

analysis

2014-12-16 8

Atmospheric Pressure Ionisation

APGC

Plasma

Corona Pin

Analyte Molecules

Sample Cone

Make-up gas (N2)

Mechanism of Ionization (I)

N2+●

N2 e-

2e-

2N2

N4+● M●+

M Corona Pin

M●+

M

Charge Transfer

“Dry” source conditions

Favored by relatively non-polar compounds

Horning et al. 1973 (Anal. Chem, 1973, 45, 936-943)

Mechanism of Ionization (II)

N2+●

N4+●

H2O

H2O+●

H2O

H3O+●

+OH●

[M+H]+

M

Protonation

Modified source conditions eg. with water or methanol present

Favored by relatively polar compounds

Corona Pin

Horning et al. 1973 (Anal. Chem, 1973, 45, 936-943)

Analytical difficulties using high

resolution magnetic sectors

instruments

Dioxin analysis on HRGC-HRMS

• GC separation

– Capillary column

• Ionisation

– EI

• Mass detection

– SIR

• Resolution

– > 10 000

– 0.01 amu

Sensitivity 100 fg and 10 fg TCDD on

column

2014-12-16 14

Sensitivity mix; TCDDs

100 fg, 50 fg, 25 fg, 10 fg, 5 fg, 2 fg

Dioxins on APGC

Congener Concentration (pg/µL)

Name 1/10 CSL* CSL CS0.5 CS1 CS2 CS3 CS4

TCDD 0.01 0.1 0.25 0.5 2 10 40

TCDF 0.01 0.1 0.25 0.5 2 10 40

PCDD 0.05 0.5 1.25 2.5 10 50 200

PCDF 0.05 0.5 1.25 2.5 10 50 200

HxCDD 0.05 0.5 1.25 2.5 10 50 200

HxCDF 0.05 0.5 1.25 2.5 10 50 200

HpCDD 0.05 0.5 1.25 2.5 10 50 200

HpCDF 0.05 0.5 1.25 2.5 10 50 200

OCDD 0.1 1 2.5 5 20 100 400

OCDF 0.1 1 2.5 5 20 100 400

APGC Dioxins

Dilution 1/10 of CSL (10-100 fg/ul), 1 ul injection

Comparing APGC vs HRMS

APGC HRMS

EURL 0.85 0.83 2%

(pg/g lipids) 0.69 0.72 -3%

1.24 1.31 -6%

1.07 1.14 -7%

1.86 1.89 -2%

3.46 3.39 2%

MTM 6.1 5.8 5%

(pg/PUF) 13.9 14.0 -1%

45.6 47.7 -5%

63.8 62.0 3%

172 168 3%

17.3 16.2 7%

CSIC/IUPA 2.19 2.12 3%

(pg/g) 0.40 0.41 -2%

0.62 0.59 4%

238 228 4%

3640 3470 5%

96.2 89.4 7%

2014-12-16 20

Favorable ionization for OCDD

2014-12-16 21

CS4_H2O

m/z310 320 330 340 350 360 370 380 390 400 410 420 430 440 450

%

0

100

m/z310 320 330 340 350 360 370 380 390 400 410 420 430 440 450

%

0

100

DIOXINS0065 6062 (30.654) MS2 AP+ 3.00e7

443.70

423.74407.74

405.74372.04355.01329.08315.08

301.23342.08 388.90

439.71445.69

446.71

DIOXINS0006 6054 (30.614) MS2 AP+ 3.00e7

443.68

441.68

439.69

423.73

422.72407.73

404.95385.78373.85371.12329.91314.95 333.02 348.96

436.71

445.67

446.69

448.67

H2O

N2

2014-12-16 24

Additional POPs

PCBs and organochlorine pesticides

2014-12-16 25

Instrumental comparison

APGC vs high resolution GC/MS

N=8

03-Nov-200910 ng/ul pestmix 13 coneflow at 30

Time9.00 9.50 10.00 10.50 11.00 11.50 12.00 12.50 13.00 13.50 14.00 14.50

%

0

100

XTQ_021109_010 1: MS2 AP+ TIC

2.62e8

11.96

11.66

9.26

9.19

10.91

10.47

9.66

9.53 10.17

10.03

10.67

11.16

11.54

11.70

12.48

12.14

12.38

13.39

13.0812.88

12.75

14.2314.06

13.95

14.75

Pest mix 13, 10 ng/ul, no modifier, fullscan APGC

Stockholm Convention POP mix (APCI) Pesticide-Mix 13

PCB No. 28

PCB No. 52

PCB No. 101

PCB No. 138

PCB No. 153

PCB No. 180

Aldrin

cis-Chlordane

trans-Chlordane

oxy-Chlordane

2,4’-DDD

4,4’-DDD

2,4’-DDE

4,4’-DDE

2,4’-DDT

4,4’-DDT

Dieldrin

alpha-Endosulfan

beta-Endosulfan

Endrin

alpha-HCH

beta-HCH

gamma-HCH

delta-HCH

epsilon-HCH

Heptachlor

cis-Heptachlor

Several halogenated Non-BDE Replacement Flame Retardants were

analysed using APGC by Reiner et al. (2010)

2014-12-16 27

Brominated flame retardants (BFRs)

- 2,2',4,4',5,5'-Hexabromobiphenyl (BB-153)

- Hexabromocylcododecane (HBCD) (α, β, γ)

- Tetrabromobisphenyl-A (TBBPA)

- Allyl 2,4,6-tribromophenyl ether (ATE)

- 2-Bromoallyl-2,4,6-tribromophenyl ether (BATE)

- 2,3-Dibromopropyl-2,4,6-tribromophenyl ether (DPTE)

- Octabromotrimethylphenylindane (OBIND)

- Pentabromoethylbenzene (PBEB)

- Hexabromobenzene (HBB)

- 1,2-Bis(2,4,6-tribromophenoxy) ethane (BTBPE)

- Decabromodiphenylethane (DBDPE)

- Dechlorane Plus (DP) (anti, syn)

- Hexachlorocyclopentadienyl-dibromocyclooctane (HCDBCO)

- 2-Ethylhexyl-2,3,4,5-tetrabromobenzoate (EHTeBB)

- Bis(2-ethly-1-hexyl)tetrabromophthalate (BEHTBP)

- 2,2',3,3',4,5,5',6,6'-Nonabromo-4'-chlorodiphenyl ether (4PC-BDE208)

- Dechloranes – 602, 603, 604

Polybrominated diphenyl ethers (PBDEs)

Optimization of collision energy

2014-12-16 28

CE 20 V CE 45 V

Total ion chromatogram by

APGC-MS/MS

RRF and r2 of the calibration curve

0.04pg/uL 0.6pg/uL 4pg/uL 12pg/uL 60pg/uL average STD RSD(%) r r2

BDE#28 8.247 7.233 7.507 7.536 8.415 7.788 0.51 6.6 0.9990 0.9980

BDE#47 5.57 4.89 4.586 5.096 4.559 4.940 0.42 8.4 0.9991 0.9982

BDE#66 4.526 4.049 4.167 4.761 4.612 4.423 0.30 6.8 0.9996 0.9992

BDE#100 2.026 2.177 2.205 2.26 2.34 2.202 0.12 5.3 0.9998 0.9997

BDE#99 2.477 2.094 2.211 2.13 2.506 2.284 0.19 8.5 0.9981 0.9963

BDE#85 5.44 5.372 5.447 5.591 6.693 5.709 0.56 9.7 0.9973 0.9945

BDE#154 2.175 2.432 2.42 2.478 3.312 2.563 0.43 17 0.9938 0.9876

BDE#153 2.694 2.184 2.233 2.522 3.001 2.527 0.34 13 0.9965 0.9930

BDE#138 1.692 1.731 1.663 1.877 2.074 1.807 0.17 9.4 0.9984 0.9969

2014-12-16

2014-12-16

Comparison on PBDEs concentrations

analyzed by APGC-MS/MS and HRGC/HRMS

Important to include BDE# 209

2014-12-16 J. Muñoz-Arnanz et al. / Environment International 37 (2011) 572–576

2014-12-16 33

PBDE analysis on APGC

• Problems in sample transfer – GC-MS

interface – probably activation of GC column

section in the interface region (atmospheric

conditions, cold spots), uneven heat

distribution.

• Sensitive compounds (DBDPE, octa-

decaBDEs) exhibit significant peak

broadening and delays

APGC problem solving

APGC problem solving

APGC problem solving

• Siltek deactivation showed promising

• Siltek deactivated capillary (0.25 mm id, same as column) and

Siltek pressfits (a bit tricky to connect)

• BDE#209 peaks ~15s wide, broadening after 40+ injection

APGC problem solving

APGC problem solving

Siltek capillary 0.25mm id, Siltek pressfit, after 35 injections,

He flow 3ml/min, interface 360C

Siltek capillary 0.25mm id, Siltek pressfit, after 76 injections,

He flow 3ml/min, interface 360C

APGC Final Settings

• Use of Siltek treated capillaries and unions (thermally resistant up to

min. 380°C)

• High column carrier gas flows and high temperatures (to overcome

uneven heat distribution and minimize “dwell time” of analytes in

interface region)

Optimized APGC Conditions

GC

Column Rtx®-1614, 15 m ×

0.25 mm, 0.10 μm

Carrier gas Helium 3 mL/min

Injector mode Pulsed Splitless,

450 kPa (1 min)

Column pneumatics Constant flow

Injection volume(μL) 1

Injector temp(℃) 280

2014-12-16

MS

Ionization APGC with Dry N2

Corona current(μA) 2.5

Source offset(V) 70

Cone voltage(V) 30

Source temp(℃) 150

Cone gas flow(L/hr) 160

Collision gas Argon at 3.5·10-3 mbar

Acquisition Multiple Reaction Monitoring

(MRM)

Transfer line

Column Siltek®-Deactivated Guard, 0.25mm(ID), 0.37±0.04 mm(OD)

Temp (℃) 360 Make up gas flow(L/hr) 350

RRF and r2 of the calibration curve

0.04pg/µL 0.6pg/µL 4pg/µL 12pg/µL 30pg/µL average STD RSD(%) r r2

BDE#28 8.612 8.886 9.425 10.217 9.832 9.394 0.66 7.0 0.9997 0.9994

BDE#47 8.72 7.867 7.677 9.536 8.378 8.436 0.74 8.8 0.9979 0.9954

BDE#66 6.401 6.605 6.775 7.377 7.32 6.896 0.43 6.3 0.9997 0.9994

BDE#100 5.22 5.182 5.791 5.747 6.13 5.614 0.41 7.2 0.9994 0.9989

BDE#99 4.981 4.923 5.765 5.437 5.635 5.348 0.38 7.1 0.9998 0.9995

BDE#85 2.623 2.835 2.937 3.562 3.363 3.064 0.39 13 0.9988 0.9975

BDE#154 2.139 2.245 2.308 2.69 2.541 2.385 0.23 9.5 0.9992 0.9983

BDE#153 1.76 1.802 1.861 2.294 2.077 1.959 0.22 11 0.9982 0.9965

BDE#138 1.375 1.435 1.578 1.869 1.649 1.581 0.19 12 0.9981 0.9961

BDE#183 1.056 1.098 1.193 1.376 1.337 1.212 0.14 12 0.9992 0.9985

BDE#209 1.018 1.089 1.06 1.099 1.041 1.061 0.03 3.2 0.9997 0.9994

2014-12-16

PBDE results summarized

1. The APGC Xevo TQ-S is a higly sensitive instrument for

the analysis of PBDEs. The results of the APGC-MS/MS

on osprey eggs samples were in very good comparison

with the high res results from tri to hexa-BDEs.

2. All target compounds were successfully detected in the

low level standards in a single run.

3. Excellent linearity was obtained for all compounds over

the range 40fg/µL to 30 pg/µL.

4. The detection of higher brmomated compounds in osprey

eggs looks promising.

2014-12-16

What is new?

Dave Stalling et al. 1982

PBDD/F

2014-12-16 46

Overlaid chromatograms of

three consecutive injections of

500 fg TBDD on column

Precursor ion Product

ion

Area Time

499.7 392.8 792 8.25

499.7 392.8 739 8.25

499.7 392.8 760 8.25

Std dev (area) 26.7

RSD (area) 3.5%

PBDD/Fs 0.5-50 pg on column

2014-12-16 48

Late eluters

2014-12-16 49

2 µl – 1 050 000

1 µl – 570 000

3 µl – 1 520 000

4 µl – 2 000 000

APGC – Injection volume vs area

FTOH – APCI+

2014-12-16 52

70 V

30 V

[M-HF]+

[M-H]+

[M+H]+

100 fg FTOH on column

2014-12-16 53

FOSA/FOSE – APCI-

2014-12-16 54

Universal MS platform

UPLC analysis of PFASs

2014-12-16 55

Perfluoroalkylcarboxylic acids (PFCAs):

PFBA (C4)

PFPePA (C5)

PFHxA (C6)

PFHpA (C7)

PFOA (C8)

PFNA (C9)

PFDA (C10)

PFUnDA (C11)

PFDoDA (C12)

PFTrDA (C13)

PFTDA (C14)

Perfluoroalkylsufonic acids

(PFSAs):

PFBuS (C4)

PFHxS (C6)

PFOS (C8)

PFDS (C10)

Structural PFOS isomers:

L-PFOS (linear PFOS)

1-PFOS

6/2-PFOS

3/4/5-PFOS

4.4/4.5/5.5-PFOS

Fluorotelomer carboxylic acids (FTCA)

3:3 FTCA

5:3 FTCA

7:3 FTCA

Fluorotelomer unsaturated acids (FTUCA)

6:2 FTUCA

8:2 FTUCA

10:2 FTUCA

Polyfluoroalkyl phosphate surfactants (PAPS)

6:2 monoPAP, 8:2 monoPAP, 10:2 monoPAP 6:2 diPAP (including isomers 4:2/8:2, 2:2/10:2), 6:2/8:2 diPAP (including isomers 4:2/10:2) 8:2 diPAP (including isomers 6:2/10:2, 4:2/12:2), 8:2/10:2 diPAP (including isomer 6:2/12:2) 10:2 diPAP (including isomers 8:2/12:2, 6:2/14:2),

• APCI

– Similar to electrospray

– Soft ionisation

– Efficient ionisation

– Two mechanisms

• Charge transfer

• Protonation

– Interface

• TOF (High Res)

• MS/MS

• Universal instrumentation

for POPs analysis and

related compounds

– APGC • Dioxins (PCDD/Fs,

PBDD/Fs)

• PCBs

• Organochlorine pesticides

• Brominated flame retardants (PBDEs)

– UPLC-ESI • PFCAs/PFSAs

• FTCA/FTUCA

• PAPS

56

Conclusions

Acknowledgements

2014-12-16 57

MTM research centre, Örebro University

Bert van Bavel, Dawei Geng, Filip Bjurlid

RECETOX; Petr Kukucka

Waters Corporation: Jody Dunstan, Keith Worrall, Rhys Jones

Laura Cherta, Jaime Nácher-Mestre, Tania Portolés, Manuela Ábalos, Jordi Sauló, Esteban

Abad, Jody Dunstan, Rhys Jones, Alexander Kotz, Helmut Winterhalter, Rainer Malisch, Wim

Traag, Joaquim Beltran, Félix Hernández

Thank you for your time!

Ingrid Ericson Jogsten

[email protected]

MTM research centre, Örebro University

2014-12-16 58


Top Related