Transcript

Automatic Identification of Age-Appropriate Ratings of Song Lyrics

1. The problem

Media age-appropriateness: suitability of consumption of a

song, book, film, videogame, etc., by a child of a given age.

2. The corpus

3. The experiment

• Ordinal class labels: classification via regression (Frank

et al., 1998) using M5P classifier (Wang and Witten,

1997)

• SMOTE oversampling (Chawla et al., 2002)

• 4-fold cross validation

• Features:

• Vector space model (tf-idf weight)

• MRC Psycholinguistic Database (Coltheart 1981):

• Age of acquisition

• Familiarity

• Imageability

• Concreteness

• GloVe (Pennington et al. 2014): 50 dim. pre-

trained vectors (6B tokens: Wikipedia 2014 +

Gigaword 5)

Example:

4. Results

Experiment 1: varying granularity of class labels & instances. VSM

features only:

Experiment 2: focus on per-album granularity. Vary feature

combinations:

3-year old

??

?

Oh, I love trash!

Anything dirty or dingy or dusty

Anything ragged or rotten or rusty

Yes, I love trash

Do you want to build a snowman?

Come on, let’s go and play

I never see you anymore

Come out the door

It’s like you’ve gone away

Don't you ever say I just walked away

I will always want you

I can't live a lie, running for my life

I will always want you

Age # Tracks # Albums Group #Tracks # Albums

2 696 5.7% 119 6.6%Toddler 826 6.7% 142 7.9%

3 130 1.1% 23 1.3%

4 251 2.1% 46 2.6%Pre-schooler 455 3.7% 77 4.3%

5 204 1.7% 31 1.7%

6 281 2.3% 41 2.3%Middle

childhood 11,293 10.6% 230 12.8%7 358 2.9% 71 3.9%

8 654 5.3% 118 6.6%

9 237 1.9% 50 2.8%Middle

childhood 22,407 19.7% 408 22.7%10 1,590 13.0% 253 14.1%

11 580 4.7% 105 5.8%

12 1,849 15.1% 253 14.1%

Young teen 5,069 41.4% 672 37.4%13 1,767 14.4% 242 13.5%

14 1,453 11.9% 177 9.8%

15 653 5.3% 116 6.5%

Teenager 1354 11.1% 196 10.9%16 521 4.3% 64 3.6%

17 180 1.5% 16 0.9%

>17 838 6.8% 73 4.1% Adult 838 6.8% 73 4.1%

Total 12,242 100.0% 1,798 100.0% 12,242 100.0% 1,798 100.0%

Beyond mere censorship:

behavioral, sociological,

psychological, cultural norms.

w1 w2 … wnAOA FAM IMG CNC

- 233 563 274

- 483 628 465

303 311 619 569

- 588 541 599

303 404 588 477

GloVe01 … GloVe50

-0.070292 … 0.71087

0.11891 … 0.92121

-0.13886 … 0.2898

-0.64487 … -1.0992

-0.183778 … 0.20567

Words

oh

i

love

trash

Features used Target: Age Group Target: Year

VSM 70.60% 57.15%

VSM + MRC 71.02% 56.80%

VSM + GloVe 70.58% 57.68%

VSM + GloVe + MRC 70.47% 57.85%

Using human judgments, can we

train a classifier to distinguish age

appropriate song lyrics?

Sample granularity Target: Age Group Target: Year

Per track 69.77% 58.58%

Per album 70.60% 57.15%

Anggi Maulidyani & Ruli ManurungFaculty of Computer Science, Universitas Indonesia

[email protected], [email protected]

AOA FAM IMG CNC

dog 169 610 598 636

sun 181 617 635 639

actuality 586 247 361 213

absolution 608 241 372 256

sex 450 512 617 584

Label

2

w1 w2 … wnAOA FAM IMG CNC

- 276 609 247

- 370 632 400

- 302 606 361

- 199 613 220

- 402 554 399

- 201 632 217

292 608 307

GloVe01 … GloVe50

0.29605 … 0.96954

-0.001091 … 1.1316

0.13627 … 0.51921

0.68047 … -0.26044

1.2426 … -0.19918

0.21705 … 0.1796

0.42855 … 0.390055

Words

do

you

want

to

build

a

Label

5

• Psycholinguistic features provide very slight accuracy

increase (not statistically significant).

• Novel task, still MUCH to be explored (readability metrics,

acoustic features?)

• What is human competence and agreement on this task?

(All works are copyrighted to their respective owners)

Top Related