doping & vacancy in solids

53
M. Reza Mohammadizadeh Department of Physics, University of Tehran Doping & Vacancy in Solids

Upload: others

Post on 27-May-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Doping & Vacancy in Solids

M. Reza Mohammadizadeh

Department of Physics, University of Tehran

Doping & Vacancy in Solids

Page 2: Doping & Vacancy in Solids

Outline

Important parameters in doping & vacancy study

Choose one compound (TiO2)

Some examples:

Hydrogenated Titania

Hydrogenated Titania surface

Summary

2

Page 3: Doping & Vacancy in Solids

Doping / vacancy study Concentration convenient supercell

symmetry

interstitial

Doping

Substitutional

Neutral / charged

Location relaxation

in depth (inside the bulk)

Surface # of layers

Vacuum thickness

Reconstruction

Which (001), (111), …

Which termination

Stability temperature

time (diffusion)

Correct magnetic ordering

Page 4: Doping & Vacancy in Solids

Concentration convenient supercell symmetry

ABO3 ABO2.5 A2B2O5

Page 5: Doping & Vacancy in Solids

Doping : interstitial / substitution

Page 6: Doping & Vacancy in Solids

Neutral / Charged

H ions in TiO2 with d= 150 nm, 10 keV, 4 keV

Page 7: Doping & Vacancy in Solids

Location relaxation

in depth (inside the bulk)

Surface # of layers

Vacuum thickness

Reconstruction

Which (001), (111), …

Which termination

Page 8: Doping & Vacancy in Solids

H ions in TiO2 with d= 150 nm, 10 keV, 4 keV

Abundance

Page 9: Doping & Vacancy in Solids

H ions in TiO2 with d= 150 nm, 10 keV, 4 keV

O vacancy

Ti vacancy

Which exactly doping/vacancy

Page 10: Doping & Vacancy in Solids

)101)، )100)، )001.)

Which direction?

Page 11: Doping & Vacancy in Solids

c

b

a

Ti

Which termination?

Page 12: Doping & Vacancy in Solids

-724.4

-724.3

-724.2

-724.1

-724

-723.9

-723.8

-723.7

0 5 10 15 20 25 30 35 40

En

erg

y (

Ry

)

Vacuum (Bohr)

-723.8600

-723.8400

-723.8200

-723.8000

-723.7800

8 12 16 20 24 28 32

vacuum

Page 13: Doping & Vacancy in Solids

After

relaxation

z

6842/1 Å

4969/0Å

6118/1 Å

Before

relaxation

z

Å 9936/1

Å 4101/0

Å 5835/1

O

Ti

Slab choosing

0.348

0.3485

0.349

0.3495

0.35

0.3505

0.351

0.3515

0.352

0 1 2 3 4 5 6 7

Su

rfac

e E

ner

gy

(eV

/(A

)2)

Number of Slabs

𝜎 =1

𝐴[𝐸𝑠𝑙𝑎𝑏 − 𝑛𝐸𝑏𝑢𝑙𝑘]

Page 14: Doping & Vacancy in Solids

Å 807/4

Surface reconstruction

(1x4)

Page 15: Doping & Vacancy in Solids

Stability temperature

time (diffusion)

Correct magnetic ordering

[J. Phys. Chem. Lett. 6, 4627 (2015)]

Page 16: Doping & Vacancy in Solids

Choose one compound (TiO2)

Page 17: Doping & Vacancy in Solids

Removal of organic pollutants, purifying of water, air Self-cleaning/deinfecting coatings (bacteria, viruses, cancer cells) Anti fogging surfaces Photoelectrochemical cells, solar cells Photocatalytic splitting of water, H-production White pigment Sunscreen Additives in foods

TiO2

Page 18: Doping & Vacancy in Solids

In ambient conditions

Page 19: Doping & Vacancy in Solids

[E. Shojaee, et al., Phys. Rev. B 83 (2011) 174302]

Page 20: Doping & Vacancy in Solids

[M. Abbasnejad, et al., Appl. Phys. Lett. 100 (2012) 261902]

Page 21: Doping & Vacancy in Solids

[M. Abbasnejad, et al., Europhys. Lett, 97 (2012) 56003]

The calculated bulk modulus confirms that the experimentally claimed structure

(cubic fluorite phase) can be Pca21-TiO2.

Page 22: Doping & Vacancy in Solids

Photocatalytic activity

22

2

2).(

OOe

OHHOHh

ehhTiOPhotoCat

cb

vb

cbvb

hydroxyl

superoxide

Page 23: Doping & Vacancy in Solids

23

Examples CN¯ + h+ → CN•

2CN• → (CN)2

(CN)2 + 2OH•¯ → CN¯ +CNO ¯ +H2O

CNO¯ + 8OH•¯+ 8 h+ → NO3¯ + CO2 + 4H2O

NO decomposition & NO2

2NO2 + 2OH•¯→ H2 + 2NO3-

NO + O2•¯ → NO3

-

Page 24: Doping & Vacancy in Solids

Anatase & Rutile

Photoinduced superhydrophilicity UV

24

Page 25: Doping & Vacancy in Solids
Page 26: Doping & Vacancy in Solids

TiO2; transition metal oxide

Photoactivated

Thermal & Chemical stability

Cheap

Nontoxic

Various applications

Eg ~ 3.2 eV

4th metal & 9th element; abundance

Page 27: Doping & Vacancy in Solids

Red shift

387.5 nm

Page 28: Doping & Vacancy in Solids

28

[X. Chen, et al., Science, April 2011, 1200448] in a 20 bar H2 atmosphere at about 200 C for 5 days

Page 29: Doping & Vacancy in Solids

Temperature enhanced DC Plasma

29

Current (mA) Time (min) Temp. (oC) Pressure

(mTorr)

H Flow Rate (Lit/min)

05 60 25-150-250-

300-350

20 0.2

Page 30: Doping & Vacancy in Solids

H doping with DC plasma

[M. Bagheri, et al., Appl. Sur. Sci. 350 (2015) 43]

Page 31: Doping & Vacancy in Solids

Hydrogen Irradiation with MBM

Multi-Casp Magnetic Field

Page 32: Doping & Vacancy in Solids

[S. Hidari, et al., Appl. Phys. A 121 (2015) 149]

Page 33: Doping & Vacancy in Solids

Computational Details

Spin-polarized Density Functional Theory Calculations

PBE Exchange Correlation Functional

Hubbard U Correction for Ti 3d orbital and O 2p orbital electrons

Norm conserving Ti (3s, 3p, 3d, 4s) and O Pseudopotentials

MP grid of 6×6×2 K-points

Energy Cutoff of 100Ry for the Wave function

www.quantum-espresso.org.

This work Expt.

a (Å) 3.78 3.78

C (Å) 9.53 9.51

Eg(eV) 3.27 3.2

[J. Am. Chem. Soc 118, 6716 (1996)]

H-doping & Oxygen vacancy in Anatase TiO2 (bulk)

Page 34: Doping & Vacancy in Solids

Adiabatic Charge Transition Levels

34

Page 35: Doping & Vacancy in Solids

Thermodynamic Behavior

35

Page 36: Doping & Vacancy in Solids

Phase Diagram

36

Page 37: Doping & Vacancy in Solids

Electronic Structure

High Concentration

(0.125 )

Low Concentration

(0.0625 )

37

nTi

nH

nTi

nH

Page 38: Doping & Vacancy in Solids

Electronic Structure(High Concentration)

38

[S. Ataei, et al., J. Phys. Chem. C (2016) in press.]

Page 39: Doping & Vacancy in Solids

[001] surface of Anatase TiO2

Page 40: Doping & Vacancy in Solids
Page 41: Doping & Vacancy in Solids
Page 42: Doping & Vacancy in Solids
Page 43: Doping & Vacancy in Solids

(1×4) anatase surface

0

1

2

3

4

5

G X M

En

erg

y (

eV

)

EF

0

50

100

150

EFTotal

0 0.5

1 1.5

Surface Ti-d

0 1 2 3

E

lectr

on

ic d

en

sity

of

state

s (S

tate

s/eV

)

Deep Ti-d

0 0.5

1 1.5

Deep O-p

0 1 2 3

-4 -2 0 2 4 6

Energy (eV)

Surface O-p

Page 44: Doping & Vacancy in Solids

Bonds Doping energy* in perpendicular

arrangement (eV)

Doping energy in parallel

arrangement (eV)

H-O2c 0.83 1.78

H-O3c 1.52 1.54

Deep H-doped 1.70 2.24

*The difference energy between the doped system and the clean one with an additive H.

The doping energy of the six calculated H-doped systems.

Page 45: Doping & Vacancy in Solids

-4

-2

0

2

4

6

G X M

En

erg

y (

eV)

EF

50 100

Electronic density of states (states/eV)

EF

H-doped

0 50 100 150

EF

pure

0 50

100 150

EFTotal

0 0.5

1 1.5

H-s

0 1 2

Surface Ti-d

0 0.5

1 1.5

E

lectr

onic

densi

ty o

f st

ate

s (S

tate

s/eV

)

Deep Ti1-d

0 0.5

1 1.5

Deep Ti2-d

0 0.5

1 1.5

Deep O-p

0 1 2 3

-4 -2 0 2 4 6

Energy (eV)

Surface O-p

Page 46: Doping & Vacancy in Solids

-4

-2

0

2

4

6

G X M

En

erg

y (

eV

)

EF

50 100

Electronic density of states (States/eV)

EF

O vacancy

0 50 100 150

EF

Clean

0 50

100 150

EFTotal

0 1 2 3

Surface Ti1-d

0 1 2 3

Surface Ti2-d

0 1 2

E

lectr

onic

densi

ty o

f st

ate

s (S

tate

s/eV

)

Deep Ti1-d

0 0.5

1 1.5

Deep Ti2-d

0 0.5

1 1.5

Deep O-p

0 1 2 3

-4 -2 0 2 4 6

Energy (eV)

Surface O-p

Page 47: Doping & Vacancy in Solids

-4

-2

0

2

4

6

G X M

Ene

rgy

(eV

)

EF

50 100

Electronic density of states (states/eV)

EF

H-doped and O vacancy

0 50 100 150

EF

Pure

0 50

100 150

EFTotal

0 0.5

1 1.5

H-s

0 1 2

Surface Ti-d

0 0.5

1 1.5

E

lectr

onic

densit

y o

f sta

tes

(Sta

tes/

eV

)

Deep Ti1-d

0 1 2

Deep Ti2-d

0 0.5

1 1.5

Deep O-p

0 1 2 3

-4 -2 0 2 4 6

Energy (eV)

Surface O-p

Page 48: Doping & Vacancy in Solids

0.52 eV

-4

-2

0

2

4

6

G X M

En

erg

y (

eV

)

EF

50 100

Electronic density of states (States/eV)

EF

H-deep doped and O vacancy

0 50 100 150

EF

Clean

0 50

100 150

EFTotal

0 0.5

1 1.5

H-s

0 1 2

Surface Ti1-d

0 1 2 3

Surface Ti2-d

0 1 2

E

lectr

onic

densi

ty o

f st

ate

s (S

tate

s/eV

)

Deep Ti-d

0 0.5

1 1.5

Deep O-p

0 1 2 3

-4 -2 0 2 4 6

Energy (eV)

Surface O-p

Page 49: Doping & Vacancy in Solids

[M. Sotudeh, et al., AIP Advances 4 (2014) 027129]

16.5

17

17.5

18

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

-0.61 -0.22

2A

g (

Ry

)

mO (Ry)O

-po

or

O-r

ich

Clean

H doped

O vacancy

O vacancy with H-surface doped

O vacancy with H-deep doped

Page 50: Doping & Vacancy in Solids

Summary Interstitial hydrogen is the most stable defect.

The positively charged Hi is thermodynamically stable with respect to pure Titania.

Different kinds of defects and also the concentration, correspond to different electronic structure.

There are midgap states located 0.7-0.9 eV below the CBM, in presence of neutral defects with lower

concentration.

Our results explain discrepancies between different experiments.

High concentration of HO as a particularly promising system for photocatalytic applications.

50

Page 51: Doping & Vacancy in Solids

Doping / vacancy study Concentration convenient supercell

symmetry

interstitial

Doping

Substitutional

Neutral / charged

Location relaxation

in depth (inside the bulk)

Surface # of layers

Vacuum thickness

Reconstruction

Which (001), (111), …

Stability temperature

time (diffusion)

Correct magnetic ordering