doc.: ieee 802.15-0700-00-003c submission may 7, 2006 ismail lakkis, tensorcomslide 1 project:...

39
May 7, 2006 Ismail Lakkis, TensorCom Slide 1 doc.: IEEE 802.15-0700- 00-003c Submiss ion Project: IEEE P802.15 Working Group for Wireless Personal Area Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Networks (WPANs) Submission Title: [TensorCom Physical Layer Proposal] Date Submitted: [ 7 May, 2007] Source: [Ismail Lakkis] Company [TensorCom] Address [10875 Rancho Bernardo Rd #108, San Diego, CA, USA] Voice:[858-676-0200], FAX: [858-676-0300], E-Mail:[ [email protected] ] Re: [This submission is in response to the TG3C call for Proposals (IEEE P802.15-07-0586-02-003c)] Abstract: [This document describes the TensorCom physical layer proposal for IEEE 802.15 TG3C.] Purpose: [For considereation and discussion by IEEE 802.15 TG3C.] Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Upload: reginald-allen

Post on 20-Jan-2018

215 views

Category:

Documents


0 download

DESCRIPTION

doc.: IEEE c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 3 Outline PHY key features Channelization Spreading codes Common Preamble/Frame format SC & OFDM Common mode Selected responses to the selection criteria Advnatges of each mode Summary

TRANSCRIPT

Page 1: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 1

doc.: IEEE 802.15-0700-00-003c

Submission

Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: [TensorCom Physical Layer Proposal]Date Submitted: [ 7 May, 2007]Source: [Ismail Lakkis] Company [TensorCom]

Address [10875 Rancho Bernardo Rd #108, San Diego, CA, USA]Voice:[858-676-0200], FAX: [858-676-0300], E-Mail:[ [email protected]]

Re: [This submission is in response to the TG3C call for Proposals (IEEE P802.15-07-0586-02-003c)]

Abstract: [This document describes the TensorCom physical layer proposal for IEEE 802.15 TG3C.]

Purpose: [For considereation and discussion by IEEE 802.15 TG3C.]

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Page 2: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 2

doc.: IEEE 802.15-0700-00-003c

Submission

TensorCom Physical Layer ProposalDual-Mode Single Carrier / OFDM

Ismail LakkisTensorCom

10875 Rancho Bernardo Rd, #108San Diego, CA, 92127

May 7, 2007

Page 3: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 3

doc.: IEEE 802.15-0700-00-003c

Submission

Outline

• PHY key features

• Channelization

• Spreading codes

• Common Preamble/Frame format

• SC & OFDM

• Common mode

• Selected responses to the selection criteria

• Advnatges of each mode

• Summary

Page 4: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 4

doc.: IEEE 802.15-0700-00-003c

Submission

PHY Key Features• Dual-mode SC (Single Carrier) / OFDM for different

classes of devices

• Low-complexity interoperability common mode for interoperability between different devices/networks

• Unified common frame format enabling a single HW supporting SC / OFDM

• Link Adaptation & Unequal Error Protection via low –complexity Structured Turbo LDPC / RS

• Balanced Channelization with multiple XTAL support

Page 5: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 5

doc.: IEEE 802.15-0700-00-003c

Submission

Channelization Desired Features• Use “free spectrums” of Japan, USA, Korea & EU

• Support for 4 channels in the available spectrum

• Channel Separation in the order of 2 GHz

• Single integer PLL that generates all necessary frequencies using direct synthesis

• Support of multiple PLL architectures (Direct conversion, double conversion)

• High Frequency Dividers should be in power of 2 : low-frequency dividers can be programmable

• Support of multiple crystals including at least one cell crystal & one high frequency crystal

Page 6: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 6

doc.: IEEE 802.15-0700-00-003c

Submission

Channelization

• Support Cell phone XTAL: 38.4 MHz & Other High frequency XTALs: 30.72, 46.08MHz, …• Very good balance between margins to 57/66 GHz & Good roll-off factor• Supports Multiple PLL Architectures even with the Cell phone XTAL• Dual PLL: High frequency PLL that generates carrier frequencies

Low frequency PLL that generates the ADC/DAC & ASIC frequencies

ChannelNumber

Low Freq.(GHz)

Center Freq.(GHz)

High Freq.(GHz)

3 dB BW(MHz)

Roll-OffFactor

1 57.13920 58.24512 59.35104 1720.32 0.2862 59.35104 60.45696 61.56288 1720.32 0.2863 61.56288 62.66880 63.77472 1720.32 0.2864 63.77472 64.88064 65.98656 1720.32 0.286

1 2 4

139 MHz

13 MHz1228.8 MHz

1720.32 MHz

2211.84 MHz

3

57 58 59 60 61 62 63 64 65 66

fGHz

Page 7: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 7

doc.: IEEE 802.15-0700-00-003c

Submission

Channelization: PLL Reference DiagramXTAL Oscillator Phase

Detector LPF VCO

÷ Q

fXfc× P

fM

fS

÷ N÷ M

PhaseDetector LPF VCO Example:

fADC = 3440.64 MHz

÷ 64x7

÷ R1

÷ R2

÷ 16x7

fc (GHz) fX (MHz) fs (GHz) fM (MHz) R1 N M P Q R258.24512 7.68 14.56128 696.72 5 3 79 4 8 560.45696 7.68 15.11424 629.76 5 3 82 4 8 562.66880 7.68 15.66720 652.80 5 3 85 4 8 564.88064 7.68 16.22016 675.84 5 3 88 4 8 558.24512 7.68 19.41504 696.72 5 1 79 3 32 560.45696 7.68 20.15232 629.76 5 1 82 3 32 562.66880 7.68 20.88960 652.80 5 1 85 3 32 564.88064 7.68 21.62688 675.84 5 1 88 3 32 558.24512 30.72 14.56128 3640.32 1 1 79 4 4 160.45696 30.72 15.11424 3778.56 1 1 82 4 4 162.66880 30.72 15.66720 3916.80 1 1 85 4 4 164.88064 30.72 16.22016 4055.04 1 1 88 4 4 1

ADC/DAC options:1720.32 MHz2580.48 MHz3440.64 MHz

Page 8: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 8

doc.: IEEE 802.15-0700-00-003c

Submission

Spreading Codes: Desired Features• Quasi-perfect code: Low SLL (Side Lobe Level) and wide ZCZ

(Zero Correlation Zone) for improved Detection

• Perfect code for channel estimation, i.e. zero SLL

• Binary codes (1 bit DAC versus multi-bit DAC)

• Zero-mean codes for improved DC offset cancellation

• Selected code should support a parallel Low complexity matched filter architecture

• Maximum code length of 128 for multiple XTALs support (up to 50 ppm, ±25 ppm @ Tx/Rx).

• Should support SC & OFDM

Page 9: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 9

doc.: IEEE 802.15-0700-00-003c

Submission

Spreading Codes• Golay complementary codes of various length N (aN ,bN) are

the spreading codes of choice

• Each code has a low SLL and a wide ZCZ

• The combination of their periodic & aperiodic autocorrelation provides a perfect code

• Only 1 bit DAC & 1 bit ADC

• Admit a very low-complexity highly parallelizable architecture

• Key enabler for a low complexity synchronization, channel estimation & above all a common mode engine

Page 10: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 10

doc.: IEEE 802.15-0700-00-003c

Submission

Spreading codes

• Each Delay vector D and weight vector W specify a pair of complementary Golay codes

• Highly efficient Golay matched filter with only 14 adders for a length 128 code (“Budisin”)

• It provides simultaneous matched filtering with the two complementary codes at once.

• Enables same preamble for SC, OFDM & interoperability common mode

DD(0) DD(1) DD(M-1)+ + +

+ + +

+ + +

- - -

0W 1W 1MW

input

nx

nn ax

nn bx

function [a,b] = golaySub(M,N,D,W);a = [1 zeros(1,N-1)];b = a;for m=1:M, ii = mod([0:N-1]-D(m),N); an = W(m)*a + b(ii+(1)); bn = W(m)*a - b(ii+(1)); a = an;b = bn;end;return;

Matlab Code

Page 11: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 11

doc.: IEEE 802.15-0700-00-003c

Submission

Spreading codes: Preamble• D = [64 32 8 2 16 1 4]; • W = [++++-++]• a = [05C99C5005369CAFFA3663AF05369CAF]• b = [F5396CA0F5C66C5F0AC6935FF5C66C5F]

-60 -40 -20 0 20 40 60

0

20

40

60

80

100

120

t/Tc

Cor

rela

tion

Val

ue

Matched Filter Ouput to a or b

-100 -50 0 50 100

0

50

100

150

200

250

t/Tc

Cor

rela

tion

Val

ue

Matched Filter to a + Matched filter to b

Page 12: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 12

doc.: IEEE 802.15-0700-00-003c

Submission

Spreading Codes: Common Mode• BPSK modulated data with code length 64• An extra bit per code can be obtained by selecting code a or code b• “00” transmit +a64 ; “01” transmit –a64

• “10” transmit +b64; “11” transmit –b64

0 20 40 60

0

20

40

60

t/Tc

Cor

rela

tion

Val

ue

Matched Filter Ouput with data +1 +1

0 20 40 60

0

20

40

60

t/Tc

Cor

rela

tion

Val

ue

Matched Filter Ouput with data +1 -1

0 20 40 60

0

20

40

60

t/Tc

Cor

rela

tion

Val

ue

Matched Filter Ouput with data +1 +j

0 20 40 60

0

20

40

60

t/TcC

orre

latio

n V

alue

Matched Filter Ouput with data +1 -j

Parameters

• D = [16 8 32 1 2 4]• W = [+-+-++]• a = [DE21212174748B74];• b = [2ED1D1D184847B84];

• Max SLL = 8• Rms SLL = 4.5

Page 13: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 13

doc.: IEEE 802.15-0700-00-003c

Submission

Short Spreading Codes

• For low spreading code length (8 and below), there are no good codes.• Use a varying spreading code generated by an LFSR

– SC time spreading and – OFDM frequency spreading

[x-1 x-2 … x-15] = [xx11 1111 1111 1111]Spreader seed ID = [0 0] or [0 1] or [1 0] or [1 1]

xn-1xn xn-14 xn-15

dn snSerial Data In Spread Data Out

D D D D@ rate R @ chip Rate

matlab codefunction [dataOut] = tcSpreader(dataIn,spreaderSeedId,Fast)shiftRegister = [spreaderSeedId ones(1,13)];for k = 0:length(dataIn) -1, feedback = xor( shiftRegister(13+(1)) , shiftRegister(14+(1)) ); dataOut(k+(1)) = mod(dataIn(k+(1))+feedback , 2); shiftRegister = [feedback shiftRegister([0:13]+(1))];end;return;

Page 14: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 14

doc.: IEEE 802.15-0700-00-003c

Submission

Preamble Structure

• Long robust preamble for far reach;• Short low-overhead preamble for HDR• CES filed for perfect multipath estimation up to 150ns• For Sectored antennas / Beamforming, repeat sync sequence in each direction• Golay sequences for all fields for low complexity and HW reuse

PLCP Preamble PLCP Header PSDU

Packet/Frame Sync Sequence(Long Preamble: 32 Codes, Short Preamble: 6 Codes)

SFDStart Frame

Delimiter

CESChannel Estimation Sequence

a128 a128 a128 -a128 a256a128

-a128

b128

-b128

aCP

Long: Tpreamble = 2.976sShort: Tpreamble = 1.042s

96

aCP

32

b256bCP bCP

For a channel of length 128 chips, a code length of 256 is needed to solve time ambiguity, i.e. start and end of channel

Maximum possible code length is 128 due to frequency offset up to 3MHz.

Page 15: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 15

doc.: IEEE 802.15-0700-00-003c

Submission

PLCP Header

• Robust Common mode SC/OFDM Long Header spread by a pair of Golay codes & transmitted at the LDR of 52Mbps

• Robust Short low-overhead mode specific header spread by a length 4 code (in time or frequency) transmitted at a MDR of 417 Mbps

• Header is further protected by a systematic RS(255,247)

PLCP Preamble PLCP Header PSDU

RS(N,K)Parity Bits8 octets

HCS2 octets

MACHeader

10 octets

PHYHeader4 octets

Long: THDR = 3.72sShort: THDR = 0.465sLong: Rate = 52MbpsShort: Rate = 417 Mbps

Length16b

Rate4b

PreambleType1b

Aggregation1b

ScramblerSeed2b

Sectorized/Beamforming

4b

CP/UWmode

3b#subFrames

4bReserved

5b

Page 16: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 16

doc.: IEEE 802.15-0700-00-003c

Submission

Unified Frame Format

PLCP Preamble PLCP Header Payload

SC Data Burst

Data SlotShortCES

aM

256 chips ~ 150s

ShortCES Data Slot Short

CES Data Slot

SC Data BurstaM SC Data BurstaM aM

Variable length: 0, 16, 32, 64 for SC & 16, 32, 64, & 128 for OFDM

OFDM Data BlockCP OFDM Data BlockCP OFDM Data BlockCP CP

512 chips ~ 300s

±a64

±b64

64 chips ~ 37s Common mode

OFDM mode

SC modes

FCS PadBits

32, 64, 128, or 256

Page 17: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 17

doc.: IEEE 802.15-0700-00-003c

Submission

Unified Frame Format: HDR• A short CES field is transmitted periodically to reacquire the channel in

both SC & OFDM

• Variable length Golay codes are used for this field;

• Preamble HW is reused during re-acquisition no extra cost

• Mode specific frequency/timing tracking– Pilot tones for OFDM– CP Known Golay codes for SC

• Highly complex channel tracking is no longer required

• Channel tracking of large delay spreads would require a very dense pilot overhead in OFDM

• The OFDM FFT(512) engine can be implemented as 2 small FFT(256) engines allowing HW reuse in SC mode with FDE (Frequency Domain Equalization) which requires FFT(256) than IFF(256).

Page 18: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 18

doc.: IEEE 802.15-0700-00-003c

Submission

Frame Format: SC• The modulation of choice for low complexity low power devices

• Support for 2 classes of devices:– Class I: Low-power, low-complexity Constant Envelope mode: limited p/2-

BPSK with data rates 50Mbps-1.3Gbps– Class II: Quasi-constant envelope (BPSK, QPSK, & 8PSK) with data rates

up to 4Gbps

• Medium size FFT(256) & iFFT(256) for FDE is enough for all environments

• Known Golay code of variable length will serve as CP. This puts the CP at works instead of being a Waste.

• The Golay CP will be used for timing, frequency and channel tracking if desired.

• Pilot CES are used to re-acquire the channel

Page 19: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 19

doc.: IEEE 802.15-0700-00-003c

Submission

Frame Format: OFDM• The modulation of choice for HDR (16-QAM and above),

• Data rates up to 5.3Gbps

• Allows future data rates extension without RF HW change

• FFT size of 512 allows operation in extremely harsh environments with very large delay spread

• Periodic pilot would alleviate the channel tracking task and reduces the sync engine tremendously

• SC with 16-QAM presents no advantages over OFDM

• We need both SC & OFDM for different applications!

Page 20: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 20

doc.: IEEE 802.15-0700-00-003c

Submission

Frame Format: Common Mode

• Common mode: necessary for interoperability between different devices & different networks

• It requires no additional circuitry to that used during preamble detection; it comes for free!

• Very low complexity with a single multiply and add (in serial implementation)

• Requires only Reed Solomon Code, already needed for the header!

Page 21: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 21

doc.: IEEE 802.15-0700-00-003c

Submission

FEC: Reed Solomon

r0 r1 r2 r3 r14 r15

g1 g2 g3 g15g0

Message block Input: m0, m1, m2, … , m238

First to enter encoder

Last to enter encoder

Code Word Output: m238, … , m2 , m1 , m0, r15, …, r0

First out from encoder Last out from encoder

X Y

X YX

Y

matlab codedata = round(rand(8,239))data = (2.^[0:7])*dataparity = rsenc(gf(data,8),255,239);parity = parity(:,end-15:end);parity = reshape(de2bi(parity,8)',1,128);code = [data parity];

• Systematic Encoding for an RS(255,238) over GF(28)– Primitive polynomial: P(z) = z8 + z4 + z3 + z2 + 1– Root z = 00000010– Generator polynomial: g(x) = ∏i=1:16(x-zi)

Page 22: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 22

doc.: IEEE 802.15-0700-00-003c

Submission

STLDPC• Supports rate ½, ¾, and 7/8

• Very low complexity systematic encoder

• Low complexity highly parallelizable decoder

• Throughput matched to that of RS

• 1 RS and 1 LDPC Decoder engine is needed for Class I devices

• Throughput of 1720 Mbps with Master clock of 215 MHz (BW/8) and 64 iterations

Rate 1/2 3/4 7/8KK 288 432 504NN 576 576 576

Page 23: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 23

doc.: IEEE 802.15-0700-00-003c

Submission

STLDPC• Parity check matrix H is specified by an exponent matrix E, i.e. H = JE

• Matrix J is the cyclic shift of the 18x18 Identity matrix, i.e.

• J = 0; J0 = I; J18 = I

11 3 6 13 15 10 13 15 17 9 2 16 5 11 3 14 17 7 6 16 0 0 8 6 13 10 10 9 17

13 11 3 6 15 15 10 13 16 17 9 2 14 5 11 14 16 17 7 6 6 0 0 8 9 13 10 10 11 17

6 13 11 3 13 15 15 10 2 16 17 9 3 14 5 11 6 16 17 7 8 6 0 0 10 9 13 10 1 11 17

3 6 13 11 10 13 15 15 9 2 16 17 11 3 14 5 7 6 16 17 0 8 6 0 10 10 9 13 0 1 11 17

E78: Rate 7/8

11 3 15 13 9 16 5 11 17 7 0 8 13 9 0 1

6 13 10 15 17 2 3 14 6 16 0 6 10 10 17 11

11 3 15 13 16 9 5 11 17 7 0 8 9 13

13 6 15 10 17 2 14 3 16 6 6 0 10

11 3 13 15 16 9 5 11 17 8 0 9 13 1

6 13 15 10 2 17 3 14 7 6 0 10 10 11

3 11 13 15 9 16 11 5 6 8 0 9 13

6 13 10 15 2 17 3 14 16 0 6 10 10

E34: Rate 3/4

00100

010

0

0100010

1818

J

Page 24: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 24

doc.: IEEE 802.15-0700-00-003c

Submission

STLDPC

3 15 16 5 17 8 13 0

11 13 9 11 7 0 9 1

6 10 17 3 6 6 10 17

13 15 2 14 16 0 10 11

3 15 16 5 17 8 13 0

11 13 9 11 7 0 9 1

6 10 17 3 6 6 10 17

13 15 2 14 16 0 10 11

3 15 16 5 17 8 13 0

11 13 9 11 7 0 9 1

6 10 17 3 6 6 10 17

13 15 2 14 16 0 10 11

3 15 16 5 17 8 13 0

11 13 9 11 7 0 9 1

6 10 17 3 6 6 10 17

13 15 2 14 16 0 10 11

E12: Rate 1/2

Page 25: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 25

doc.: IEEE 802.15-0700-00-003c

Submission

SC Parameters

SC Parameters

Chip       Spreading     Data  

Rate Duration Modulation Block CP Length LDPC RS Rate Device

MHz ns Scheme Length Length (chips) Rate Rate Mbps Class

1720.32 0.581 8PSK 256 16 1 0.875 0.937 3967.962 II

1720.32 0.581 QPSK 256 16 1 0.875 0.937 2645.308 II

1720.32 0.581 QPSK 256 16 1 0.750 0.937 2267.407 II

1720.32 0.581 QPSK 256 16 1 0.500 0.937 1511.605 II

1720.32 0.581 QPSK 256 16 2 0.500 0.937 755.802 II1720.32 0.581 QPSK 256 16 4 0.500 0.937 377.901 II

1720.32 0.581 QPSK 256 16 8 0.500 0.937 283.426 II

1720.32 0.581 BPSK 256 16 1 0.875 0.937 1322.654 I

1720.32 0.581 BPSK 256 16 1 0.500 0.937 755.802 I

1720.32 0.581 BPSK 256 16 2 0.750 0.937 566.852 I1720.32 0.581 BPSK 256 16 2 0.500 0.937 377.901 I

1720.32 0.581 BPSK 256 16 4 0.500 0.937 188.951 I

1720.32 0.581 BPSK 256 16 8 0.500 0.937 94.475 I

1720.32 0.581 BPSK/Ortho 64 0 64 1.000 0.969 52.073 I

Mode 1Mode 2

Mode 3

Mode 4

Page 26: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 26

doc.: IEEE 802.15-0700-00-003c

Submission

OFDM Parameters

OFDM Parameters

Chip         Spreading     Data  

Rate Duration Modulation Block CP # Info Length LDPC RS Rate Device

MHz ns Scheme Length Length Tones (chips) Rate Rate Mbps Class

1720.32 0.581 16QAM 512 16 495 1 0.875 0.937 5290.616 II1720.32 0.581 16QAM 512 16 495 1 0.750 0.937 4534.814 II

1720.32 0.581 QPSK 512 16 495 1 0.875 0.937 2645.308 II

1720.32 0.581 QPSK 512 16 495 1 0.750 0.937 2267.407 II

1720.32 0.581 QPSK 512 16 495 1 0.500 0.937 1511.605 II

1720.32 0.581 QPSK 512 16 495 2 0.500 0.937 755.802 II1720.32 0.581 QPSK 512 16 495 4 0.500 0.937 377.901 II

1720.32 0.581 QPSK 512 16 495 8 0.500 0.937 188.951 II

1720.32 0.581 BPSK 512 16 495 1 0.875 0.937 1322.654 I

1720.32 0.581 BPSK 512 16 495 1 0.500 0.937 755.802 I

1720.32 0.581 BPSK 512 16 495 2 0.750 0.937 566.852 I1720.32 0.581 BPSK 512 16 495 2 0.500 0.937 377.901 I

1720.32 0.581 BPSK 512 16 495 4 0.500 0.937 188.951 I

1720.32 0.581 BPSK 512 16 495 8 0.500 0.937 94.475 I

1720.32 0.581 BPSK/Ortho 64 0 495 64 1.000 0.969 201.378 I

Page 27: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 27

doc.: IEEE 802.15-0700-00-003c

Submission

Simulation Results

Page 28: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 28

doc.: IEEE 802.15-0700-00-003c

Submission

Simulation Assumptions• Channel Bandwidth = 1720.32 MHz

• AWGN, CM13, CM23, CM31 (Golden Set)

• Omnidirectional antennas at both ends

• 50 ppm XTAL (±25 ppm @ each side)

• Simulation includes– Coarse/fine frequency acquisiton & tracking– Channel estimation– Frequency domain MMSE Equalizer– Soft bit generation– TLDPC & RS decoding

Page 29: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 29

doc.: IEEE 802.15-0700-00-003c

Submission

Long Preamble Miss Detection & False Alarm

-18 -16 -14 -12 -100

5

10

15

20

25

EcN0dB

Pro

babi

lity

of M

iss

PM for a target PF = 1%

AWGNCM13CM31CM23

-18 -16 -14 -12 -100

5

10

15

20

25

EcN0dB

Pro

babi

lity

of M

iss

PM for a target PF = 2%

AWGNCM13CM31CM23

-18 -16 -14 -12 -100

5

10

15

20

25

EcN0dB

Pro

babi

lity

of M

iss

PM for a target PF = 3%

AWGNCM13CM31CM23

-18 -16 -14 -12 -100

5

10

15

20

25

EcN0dB

Pro

babi

lity

of M

iss

PM for a target PF = 5%

AWGNCM13CM31CM23

Page 30: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 30

doc.: IEEE 802.15-0700-00-003c

Submission

Simulation Results: AWGN

1 2 3 4 5 6 710

-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

EbN0dB

BE

R

SC/OFDM AWGN

mode 4mode 3mode 2mode 1

1 2 3 4 5 6 710

-5

10-4

10-3

10-2

10-1

100

EbN0dB

PE

R

SC/OFDM AWGN

mode 4mode 3mode 2mode 1

Page 31: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 31

doc.: IEEE 802.15-0700-00-003c

Submission

Simulation Results: CM13 (CP=0)

1 2 3 4 5 6 710

-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

EbN0dB

BE

R

SC/OFDM CM13

mode 4mode 3mode 2mode 1

1 2 3 4 5 6 710

-5

10-4

10-3

10-2

10-1

100

EbN0dB

PE

R

SC/OFDM CM13

mode 4mode 3mode 2mode 1

Page 32: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 32

doc.: IEEE 802.15-0700-00-003c

Submission

Simulation Results: CM31 (CP=64)

4 6 8 10 12 1410

-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

EbN0dB

BE

R

SC/OFDM CM31

mode 4mode 3mode 2mode 1

4 6 8 10 12 1410

-4

10-3

10-2

10-1

100

EbN0dB

PE

R

SC/OFDM CM31

mode 4mode 3mode 2mode 1

Page 33: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 33

doc.: IEEE 802.15-0700-00-003c

Submission

Simulation Results: CM23 (CP=64)

5 10 1510

-8

10-7

10-6

10-5

10-4

10-3

10-2

EbN0dB

BE

R

SC/OFDM CM23

mode 4mode 3mode 2mode 1

5 10 1510

-4

10-3

10-2

10-1

100

EbN0dB

PE

R

SC/OFDM CM23

mode 4mode 3mode 2mode 1

Page 34: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 34

doc.: IEEE 802.15-0700-00-003c

Submission

Link Budget: AWGN (8%PER)AssumptionsRadio Noise Figure 8.0 dBTx Antnna Gain 6.0 dBRx Antenna Gain 6.0 dBHigh Data Rate Implementation Loss 0.0 dBMedium/Low Data Rate Implementation Loss 0.0 dB

PARAMETERS value value value value UnitTransmitter

Information Data Rate (Rb) 3967.962 2645.308 1511.605 755.802 MbpsGeometric mean [fg = sqrt(fmin x fmax] 60.000 60.000 60.000 60.000 GHz

Bandwidth (BW) 1.7203 1.7203 1.7203 1.7203 GHzSpectral DensityLimit -22.36 -22.36 -22.36 -22.36 dBm/ MHzTx Antenna Gain (GT) 6.0 6.0 6.0 6.0 dBTx Average Power (PT) 10.00 10.00 10.00 10.00 dBm

ReceiverRx Noise Figure Referred to the Antenna Terminal (NF) 8.0 8.0 8.0 8 dB

Eb/ N0 (8% PER) 5.5 4.8 2.9 2.3 dBImplementation Losses 0.0 0.0 0.0 0.0 dBRx Antenna Gain (GR) 6.0 6.0 6 6

SensitivityPropagation Loss Index 2 2 2 2

Path Loss at 1m (L1) 68.00 68.00 68.00 68.00 dBMinimum Rx Sensitivity Level (Smin) -64.5 -67.0 -71.3 -74.9 dBm

Link Margin (M) 1.0 1.0 1.0 1.0 dBRx Power Caluclations

Path Loss Ld = PR - (PT + GT + GR + M) 85.51 87.98 92.31 95.92 dBRange d(m) 7.51 9.97 16.41 24.86 m

Different Modes

Page 35: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 35

doc.: IEEE 802.15-0700-00-003c

Submission

Link Budget: CM31 (8%PER)AssumptionsRadio Noise Figure 8.0 dBTx Antnna Gain 6.0 dBRx Antenna Gain 6.0 dBHigh Data Rate Implementation Loss 0.0 dBMedium/Low Data Rate Implementation Loss 0.0 dB

PARAMETERS value value value value UnitTransmitter

Information Data Rate (Rb) 3967.962 2645.308 1511.605 755.802 MbpsGeometric mean [fg = sqrt(fmin x fmax] 60.000 60.000 60.000 60.000 GHz

Bandwidth (BW) 1.7203 1.7203 1.7203 1.7203 GHzSpectral DensityLimit -22.36 -22.36 -22.36 -22.36 dBm/ MHzTx Antenna Gain (GT) 16.0 16.0 16.0 16.0 dBTx Average Power (PT) 10.00 10.00 10.00 10.00 dBm

ReceiverRx Noise Figure Referred to the Antenna Terminal (NF) 8.0 8.0 8.0 8 dB

Eb/ N0 (8% PER) 11.6 9.9 6.3 5.8 dBImplementation Losses 0.0 0.0 0.0 0.0 dBRx Antenna Gain (GR) 16.0 16.0 16 16

SensitivityPropagation Loss Index 2.5 2.5 2.5 2.5

Path Loss at 1m (L1) 68.00 68.00 68.00 68.00 dBMinimum Rx Sensitivity Level (Smin) -58.4 -61.9 -67.9 -71.5 dBm

Link Margin (M) 5.0 5.0 5.0 5.0 dBRx Power Caluclations

Path Loss Ld = PR - (PT + GT + GR + M) 95.41 98.88 104.91 108.47 dBRange d(m) 2.61 3.59 6.25 8.68 m

Different Modes

Page 36: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 36

doc.: IEEE 802.15-0700-00-003c

Submission

PHY-SAP Throughput

• Assumptions:– MPDU (MAC frame body + FCS) length = 16384 Octets– SIFS = 2.5 s– MIFS = 0.5 s

MPDULength

Throughput @ 756Mbps

Throughput @ 1512Mbps

Throughput @ 2605Mbps

Throughput @ 3968Mbps

16384 586 1172 2020 3077

Page 37: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 37

doc.: IEEE 802.15-0700-00-003c

Submission

Aggregation Mode

• PHY aggregation mode is highly efficient, minimizes the memory requirement at the device and is compliant with IEEE802.15.3b MAC

• MAC should support very lengthy MSDUs (and consequently very long MPDUs) or aggregated MPDUs,;• PHY will fragment the frame into subframes, protect each subframe with its own CRC and allow

retransmission of a subframe rather than the entire frame.

• The number of subframes can be negotiated between different devices. Once these parameters are negotiated they stay the same during one session. This reduces the overhead and these parameters need not be transmitted every frame or before each subframe.

• If errors occur at the receiving device, the receiving device will request from the transmitting device the retransmission of only those subframes in error and not the entire MPDU. This will increase the overall efficiency and capacity of the system.

MPDU-1

Prea

mbl

e

MAC

& P

HYHe

ader

s

Subframe 1CR

C-1

Subframe 2 Subframe N

Block ACK(corresponding

To the N subframes)

SIFS

CRC-

2

CRC-

2

MPDU-2 MPDU-M

Page 38: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 38

doc.: IEEE 802.15-0700-00-003c

Submission

Summary

• Dual-mode SC (Single Carrier) / OFDM for different classes of devices

• SC is the mode of choice for low complexity medium data rate

• OFDM is the modulation of choice of very high data rate

• Low-complexity interoperability common mode for interoperability between different devices/networks

• Unified common frame format enabling a single HW supporting SC / OFDM

• Link Adaptation & Unequal Error Protection via low –complexity Structured Turbo LDPC / RS

• Balanced Channelization with multiple XTAL support

Page 39: Doc.: IEEE 802.15-0700-00-003c Submission May 7, 2006 Ismail Lakkis, TensorComSlide 1 Project: IEEE…

May 7, 2006

Ismail Lakkis, TensorComSlide 39

doc.: IEEE 802.15-0700-00-003c

Submission

802.15.3c Early Merge Work

• Tensorcom has agreed to create a joint submission with COMPA

• A Formal Joint submission would be made in July Meeting in San Francisco

• Objectives:– “Best” Technical Solution– ONE solution– Fast Time To Market

• We encourage participation by any party who can help us reach our goal