doc.: ieee 802.15-03/119r5 submission september, 2003 oki, crl, uwb consortiumslide 1 project: ieee...

50
September, 2003 Oki, CRL, UWB Consortium Slide 1 doc.: IEEE 802.15- 03/119r5 Submiss ion Project: IEEE P802.15 Working Group for Wireless Personal Area Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Networks (WPANs) Submission Title: [Joint Proposal of Millimeter wave WPAN and Microwave UWB WPAN: Optimized Soft-Spectrum UWB PHY Proposal Update for IEEE 802.15.3a] Date Submitted: [16 September, 2003] Source: [Reed Fisher(1), Ryuji Kohno(2), Hiroyo Ogawa(2), Honggang Zhang(2), Kenichi Takizawa(2)] Company [ (1) Oki Industry Co.,Inc., (2)Communications Research Laboratory (CRL) & CRL-UWB Consortium ]Connector’s Address [(1)2415E. Maddox Rd., Buford, GA 30519,USA, (2)3-4, Hikarino-oka, Yokosuka, 239-0847, Japan] Voice:[(1)+1-770-271-0529, (2)+81-468-47-5101], FAX: [(2)+81-468-47- 5431], E-Mail:[(1)[email protected], (2)[email protected], [email protected], [email protected] ] Re: [IEEE P802.15 Alternative PHY Call For Proposals, IEEE P802.15- 02/327r7] Abstract: [Joint proposal of Oki&CRL’s millimeter WPAN and CRL’s microwave UWB WPAN is briefly introduced. Then, recent optimization of CRL’s Soft-Spectrum Adaptation(SSA) are described after brief review of SSA. We perform various SSA schemes as cases with optimized kernel functions and pulse shaping, which are able to be introduced to implement either single-band or multiband systems. Moreover, various harmonization based on SSA are investigated considering co-existence, interference avoidance, matching with regulatory spectral mask, and high data rate.] Purpose: [For investigating joint millimeter & microwave bands WPAN and the characteristics of High Rate Alternative PHY standard in

Upload: rhoda-matthews

Post on 17-Jan-2018

214 views

Category:

Documents


0 download

DESCRIPTION

doc.: IEEE /119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 3 Outline of Presentation 0. Joint Structure between Oki&CRL’s Millimeter wave band main frame and CRL’s Microwave band UWB dedicated short range frame  Summary of pervious Soft-Spectrum Adaptation (SSA) proposals of CRL-UWB Consortium  Optimized Soft-Spectrum Adaptation (SSA) 2.1 Optimized pulse shaping for SSA 2.2 Optimized modulation scheme 2.3 Channel coding and decoding 2.4 Realization of SSA transceiver 2.5 Applicable antennas 2.6 Pre-equalization for pulse shape calibration 2.7 Link budget estimation 3. Harmonization based on SSA with SXI and MBOA UWB systems 3.1 Harmonization with XSI’s DS-UWB proposal 3.2 Harmonization with MBOA’s proposal 4.Concluding remarks and Backup materials

TRANSCRIPT

Page 1: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 1

doc.: IEEE 802.15-03/119r5

Submission

Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)Submission Title: [Joint Proposal of Millimeter wave WPAN and Microwave UWB WPAN: Optimized Soft-Spectrum UWB PHY Proposal Update for IEEE 802.15.3a] Date Submitted: [16 September, 2003]Source: [Reed Fisher(1), Ryuji Kohno(2), Hiroyo Ogawa(2), Honggang Zhang(2), Kenichi Takizawa(2)] Company [ (1) Oki Industry Co.,Inc.,(2)Communications Research Laboratory (CRL) & CRL-UWB Consortium ]Connector’s Address [(1)2415E. Maddox Rd., Buford, GA 30519,USA, (2)3-4, Hikarino-oka, Yokosuka, 239-0847, Japan] Voice:[(1)+1-770-271-0529, (2)+81-468-47-5101], FAX: [(2)+81-468-47-5431],E-Mail:[(1)[email protected], (2)[email protected], [email protected], [email protected] ]Re: [IEEE P802.15 Alternative PHY Call For Proposals, IEEE P802.15-02/327r7]Abstract: [Joint proposal of Oki&CRL’s millimeter WPAN and CRL’s microwave UWB WPAN is briefly introduced. Then, recent optimization of CRL’s Soft-Spectrum Adaptation(SSA) are described after brief review of SSA. We perform various SSA schemes as cases with optimized kernel functions and pulse shaping, which are able to be introduced to implement either single-band or multiband systems. Moreover, various harmonization based on SSA are investigated considering co-existence, interference avoidance, matching with regulatory spectral mask, and high data rate.]Purpose: [For investigating joint millimeter & microwave bands WPAN and the characteristics of High Rate Alternative PHY standard in 802.15TG3a, based on Soft-Spectrum Adaptation, pulse waveform shaping and Soft-Spectrum transceiver.]Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Page 2: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 2

doc.: IEEE 802.15-03/119r5

Submission

Joint Proposal of Millimeter Wave WPAN and Microwave UWB WPAN

:Optimized Soft-Spectrum UWB PHY Proposal for IEEE 802.15.3a

Reed Fisher, Oki Electric Industry Co., Ltd.,Ryuji Kohno, Hiroyo Ogawa, Honggang Zhang,

Kenichi Takizawa Communications Research Laboratory(CRL)

& CRL-UWB Consortium

Page 3: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 3

doc.: IEEE 802.15-03/119r5

Submission

Outline of Presentation0. Joint Structure between Oki&CRL’s Millimeter wave band main frame

and CRL’s Microwave band UWB dedicated short range frame Summary of pervious Soft-Spectrum Adaptation (SSA) proposals of

CRL-UWB Consortium Optimized Soft-Spectrum Adaptation (SSA) 2.1 Optimized pulse shaping for SSA 2.2 Optimized modulation scheme 2.3 Channel coding and decoding 2.4 Realization of SSA transceiver 2.5 Applicable antennas 2.6 Pre-equalization for pulse shape calibration 2.7 Link budget estimation3. Harmonization based on SSA with SXI and MBOA UWB systems 3.1 Harmonization with XSI’s DS-UWB proposal 3.2 Harmonization with MBOA’s proposal4. Concluding remarks and Backup materials

Page 4: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 4

doc.: IEEE 802.15-03/119r5

Submission

• Basic Ad-hoc system based on 802.15.3a applications

• Layered structure of Ad-hoc information distribution network(Layer 1: Infrastructure) ad-hoc coverage area using millimeter or UWB link(Layer 2: Short range) ad-hoc coverage area using millimeter or UWB link

Ref. Millimeter wave Interest Group

Layered Structure of Wireless Ad-hoc Network Using Both Millimeter Link and Microwave UWB Link

PNC

DEVDEV

DEV

APT1 APT2 APT3

MT

MT

MT(out of service)MT

Contents ServerIP network

Spot-type ad hocInformation

Distribution system

MT

Layer1: Millimeter or UWB Network

Layer2: Millimeter or UWB Network

Page 5: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 5

doc.: IEEE 802.15-03/119r5

Submission

Outline of Presentation0. Joint Structure between Oki&CRL’s Millimeter wave band main frame

and CRL’s Microwave band UWB dedicated short range frame Summary of pervious Soft-Spectrum Adaptation (SSA) proposals of

CRL-UWB Consortium Optimized Soft-Spectrum Adaptation (SSA) 2.1 Optimized pulse shaping for SSA 2.2 Optimized modulation scheme 2.3 Channel coding and decoding 2.4 Realization of SSA transceiver 2.5 Applicable antennas 2.6 Pre-equalization for pulse shape calibration 2.7 Link budget estimation3. Harmonization based on SSA with SXI and MBOA UWB systems 3.1 Harmonization with XSI’s DS-UWB proposal 3.2 Harmonization with MBOA’s proposal4. Concluding remarks and Backup materials

Page 6: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 6

doc.: IEEE 802.15-03/119r5

Submission

Major Contributors For This Proposal Update

Ryuji KOHNOShinsuke HARAShigenobu SASAKI

Tetsuya YASUIHonggang ZHANGKamya Y. YAZDANDOOSTKenichi TAKIZAWA Yuko RIKUTA

Yokohama National University Osaka UniversityNiigata University

CRL-UWB ConsortiumCRL-UWB ConsortiumCRL-UWB ConsortiumCRL-UWB ConsortiumCRL-UWB Consortium

Page 7: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 7

doc.: IEEE 802.15-03/119r5

Submission

CRL-UWB Consortium ●●    Organization UWB Technology Institute of CRL and associated over 30 Manufacturers and Academia.●● Aim

■ R&D and regulation of UWB wireless systems. ■ Channel measurement and modeling with experimental analysis of UWB system test-bed in band (960MHz, 3.1- 10.6GHz, 22-29GHz, and over 60GHz). ■ R&D of low cost module with higher data rate over 100Mbps. ■ Contribution in standardization with ARIB, MMAC, and MPHPT in Japan.

Page 8: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 8

doc.: IEEE 802.15-03/119r5

Submission

Major Members of CRL-UWB Consortium

Takahiro YAMAGUCHI Advantest CorporationTasuku TESHIROGI Anritsu CorporationHideaki ISHIDA CASIO Computer Co., Ltd.Hiroyo OGAWA Communications Research LaboratoryToshiaki MATSUI Communications Research LaboratoryAkifumi KASAMATSU Communications Research LaboratoryTomohiro INAYAMA Fuji Electric Co., Ltd.Toshiaki SAKANE Fujitsu LimitedYoichi ISO Furukawa Electric Co., Ltd.Yoshinori OHKAWA Hitachi Cable, Ltd. Yoshinori ISHIKAWA Hitachi Communication Technologies, Ltd.Masatoshi TAKADA Hitachi Kokusai Electric Inc.Satoshi SUGINO Matsushita Electric Works, Ltd.Makoto SANYA Matsushita Electric Industrial Co., Ltd.Tetsushi IKEGAMI Meiji University

Page 9: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 9

doc.: IEEE 802.15-03/119r5

Submission

Major Members of CRL-UWB Consortium (cont.)

Yoshiaki KURAISHI NEC Engineering, Ltd.Makoto YOSHIKAWA NTT Advanced Technology CorporationYoshihito SHIMAZAKI Oki Electric Industry Co., Ltd. Masami HAGIO Oki Network LSI Co., Ltd.Toru YOKOYAMA OMRON CorporationHiroyuki NAGASAKA Samsung Yokohama Research InstituteSumio HANAFUSA SANYO Electric Co., Ltd.Makoto ITAMI Science University of TokyoHideyo IIDA Taiyo Yuden Co., Ltd.Eishin NAKAGAWA Telecom Engineering CenterTakehiko KOBAYASHI Tokyo Denki UniversityKiyomichi ARAKI Tokyo Institute of TechnologyJun-ichi TAKADA Tokyo Institute of Technology

Page 10: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 10

doc.: IEEE 802.15-03/119r5

Submission

Outline of Presentation1. Summary of pervious Soft-Spectrum Adaptation (SSA) proposals of

CRL-UWB Consortium2. Optimized Soft-Spectrum Adaptation (SSA) 2.1 Optimized pulse shaping for SSA 2.2 Optimized modulation scheme 2.3 Channel coding and decoding 2.4 Realization of SSA transceiver 2.5 Applicable antennas 2.6 Pre-equalization for pulse shape calibration 2.7 Link budget estimation3. Harmonization based on SSA with SXI and MBOA UWB systems 3.1 Harmonization with XSI’s DS-UWB proposal 3.2 Harmonization with MBOA’s proposal4. Concluding remarks and Backup materials

Page 11: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 11

doc.: IEEE 802.15-03/119r5

Submission

1. Summary of Previous CRL-UWB Consortium’s Proposal on Soft-Spectrum Adaptation(SSA) UWB

for IEEE802.15.3a WPANs

Page 12: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 12

doc.: IEEE 802.15-03/119r5

Submission

Soft-Spectrum Adaptation(SSA)

m1

0

1.1 What is Soft-Spectrum Adaptation UWB ?Basic Philosophy Soft-Spectrum Adaptation (SSA)

Design a proper pulse waveform with high frequency efficiency corresponding to any frequency mask.

Adjust transmitted signal’s spectra in flexible so as to minimize interference with coexisting systems.

Page 13: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 13

doc.: IEEE 802.15-03/119r5

Submission

N

kk tftf

1

)()(

Basic Formulation Example of Pulse Generator

N division

Feasible Solution: Pulse design satisfying Spectrum

Mask

Synthesize a proper pulse waveform

In case of multiband, a kernel function is a sinusoidal function.In case of impulse radio, a kernel functionis a Gaussian, Hermitian pulse function etc.

Divide (spread-and-shrink ) the whole bandwidth into several sub-bands Soft Spectrum (spectrum matching) Pulse synthesized by several pulses that have different spectra Soft Spectrum, M-ary signaling

Page 14: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 14

doc.: IEEE 802.15-03/119r5

Submission

Single-band Multi-band

In the future, if the restricting ruggedness of regional spectral mask (e.g. FCC mask) is eased, band allocation can be extended below 3.1 GHz or above 10.6 GHz.

Soft-Spectrum Adaptation (SSA) can correspond freely

Soft-Spectrum Adaptation (SSA) with Flexible Band Plan

N divisionP

ower

S

pect

rum

31 2 4 5 6 7 8 9 10 11 f [GHz]

5 GHz W-LAN

Dual- or Triple-band

N+α division

Page 15: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 15

doc.: IEEE 802.15-03/119r5

Submission

1.2 Soft-Spectrum Adaptation(SSA) Classification

(1) Free-Verse Type of SSA A kernel function is non-sinusoidal, e.g. Gaussian, Hermitian pulse etc. Single band, Impulse radio

(2) Geometrical Type of SSA A kernel function is sinusoidal with different frequency. Multiband with carriers and Multi-carrier

Page 16: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 16

doc.: IEEE 802.15-03/119r5

Submission

(1) Free-verse Type Soft-Spectrum Adaptation Freely design pulse waveforms by synthesizing pulses,

e.g. overlapping and shifting

K-3 Free-verse Soft-Spectrum Adaptation pulse(Note: band notches clearly happen at 2.4 and 5.2 GHz as well)

time frequency

2.4GHz 5.2GHz

m1

0

frequencytime

K-4 Free-verse Soft-Spectrum Adaptation pulse(Note: pulse waveform has more freedom)

Page 17: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 17

doc.: IEEE 802.15-03/119r5

Submission

Modified Hermitian : Free-verse Soft-Spectrum Adaptation pulse(Note: These pulses are mutually orthogonal)

Frequency [GHz]

-1.5 -1 -0.5 0 0.5 1 1.5x 10-9

-0.4-0.3-0.2-0.1

00.10.20.3

-1.5 -1 -0.5 0 0.5 1 1.5x 10-9

-0.2

-0.1

0

0.1

0.2

0.3

Time [nsec]3 4 5 6 7 8 9 10

x 109

-30

-25

-20

-15

-10

-5

0

Time [nsec] Frequency [GHz]3 4 5 6 7 8 9 10

x 109

-30

-25

-20

-15

-10

-5

0

Order 0 to 3 Order 0 to 3

Order 4 to 7 Order 4 to 7

Page 18: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 18

doc.: IEEE 802.15-03/119r5

Submission

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Triangular-type envelope Exponential-type envelope

Cosine-type envelope Gaussian-type envelope

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(2) Geometrical Type Soft-Spectrum Adaptation Freely design pulse waveforms using various geometrical type envelopes

Page 19: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 19

doc.: IEEE 802.15-03/119r5

Submission

(b) Simply eliminate the band if other services exist.

(a) Use of frequency band having low emission limit, but the same pulse energy is available by using wider bandwidth.

Multiband/OFDM:Only (b) is availableSSA:Both (a) and (b) are available

If more potential interferer should be considered, (b) does not work because it simply reduce the signal energy.

Soft-Spectrum Adaptation (SSA) approach provides more option to overcome future potential coexistence issue.

Global Coexistence with other Potential Interferences

Page 20: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 20

doc.: IEEE 802.15-03/119r5

Submission

Soft-Spectrum Adaptation (SSA) can adapt signal spectra to any spectral requirement by flexible pulse waveform shaping similar to Software Defined Radio (SDR). 1. Global regulation satisfaction: SSA can flexibly adjust UWB signal spectrum so as to match with spectral restriction in transmission power, i.e. spectrum masks.2. Interference avoidance for co-existence: SSA can adaptively avoid interference from and to co-existing systems in the same band and maximize spectral efficiency.3. Harmonization for various proposed systems: SSA is good for harmonization among different UWB systems because SSA includes various proposed UWB systems as its special case, e.g. XSI’s DS-CDMA as a case of Free-verse type SSA MBOA’s MB-OFDM as a case of Geometrical type SSA4. Future system version-up: SSA is so scalable as to accept future UWB systems with better performance like SDR.

1.3 Advantages of Soft-Spectrum Adaptation (SSA)

Page 21: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 21

doc.: IEEE 802.15-03/119r5

Submission

Harmonization Based on Soft-Spectrum Adaptation

Soft-Spectrum

Adaptation(SSA)

Geo-metrical

Free-verse

Kernel functions

SSA type

Sinusoidal

Multiband with carrier

Multi-carrierTI

Intel, Wisair

GA, Philips

TF Hopping

TF Coding

Optimized SSA

Dual-band XSI

Modulatedmodified Hermitian

Single-band

XSI Wavelet

MB

-OFD

M

Global Global standardstandard

Gaussian

Adaptive

ST Microelectronics

Mitsubishi

OFDM

Page 22: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 22

doc.: IEEE 802.15-03/119r5

Submission

Outline of Presentation1. Summary of pervious Soft-Spectrum Adaptation (SSA) proposals of CRL-

UWB Consortium2. Optimized Soft-Spectrum Adaptation (SSA) 2.1 Optimized pulse shaping for SSA 2.2 Optimized modulation scheme 2.3 Channel coding and decoding 2.4 Realization of SSA transceiver 2.5 Applicable antennas 2.6 Pre-equalization for pulse shape calibration 2.7 Link budget estimation3. Harmonization based on SSA with SXI and MBOA UWB systems 3.1 Harmonization with XSI’s DS-UWB proposal 3.2 Harmonization with MBOA’s proposal4. Concluding remarks and Backup materials

Page 23: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 23

doc.: IEEE 802.15-03/119r5

Submission

2.1. Optimized Pulse Shaping for SSA

• Mutually orthogonalMutually orthogonal– Available to Pulse shape multiple access Pulse shape modulation

• Available notchesAvailable notches– In order to reduce narrowband

interferences

• Non-spiky in both time and Non-spiky in both time and frequency domainfrequency domain

Low peak

Time [nsec] Frequency [GHz]

Optimized pulse shapeOptimized pulse shape

Ex.: Modified Hermitian PulsedSinusoidal Wavelets

notches

Pulse width and center frequency Pulse width and center frequency is adaptively changeable.is adaptively changeable.

Free-verse Type + Geometrical TypeFree-verse Type + Geometrical Type(Envelope) (Pulsed Sine)(Envelope) (Pulsed Sine)

Page 24: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 24

doc.: IEEE 802.15-03/119r5

Submission

• Narrowband interferences is reduced by appropriate selection of pulse-shapes.

Frequency [GHz]

Interference reductionInterference reduction

Not slected

Not use

Not use

Not use

Frequency [GHz]

Pulse shape orthogonality can be employed to 1) user / piconet Pulse shape orthogonality can be employed to 1) user / piconet multiple access and/or 2) multilevel (M-ary) data modulationmultiple access and/or 2) multilevel (M-ary) data modulation

Narrowband interferences

1) Pulse shape multiple access1) Pulse shape multiple access 2) Pulse shape modulation2) Pulse shape modulation

Piconet A

Piconet B

Piconet C

Piconet D

00

01

10

11

• Orthogonality is applied to identify user/piconet for multiple access

• Orthogonality is applied to increase level of M-ary data modulation for multilevel data transmission.

Page 25: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 25

doc.: IEEE 802.15-03/119r5

Submission

2.2 Optimized Modulation scheme

M-ary bi-orthogonal keying (M-ary BOK)M-ary bi-orthogonal keying (M-ary BOK)• Walsh-Hadamard (WH) codes with length 8• 2 WH codes are assigned to each piconet.• 4-ary BOK encodes 2 bits by using the assigned 2 WH codes

Pulse shape modulationPulse shape modulation• Simple mapping: Information binary bits are mapped into pulse shapes

• Pulse shape keying: Information binary bits are mapped into permutation of pulse shapes

00 01 10 11M-ary PSM can transmit log2M

bits/pulse.

0000

1111

M-ary pulse shape keying can transmit floor(log2(M !)) bits/pulse.・・・・

Page 26: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 26

doc.: IEEE 802.15-03/119r5

Submission

Targetdate rate

Bit RateOuter

KeyingInner

KeyingPRI*2

ChannelBit rate

CodingRate*3

55 Mbps 62.5 Mbps 4-ary BOK - 2.25 ns 125 Mbps 1/2

110 Mbps 125 Mbps 4-ary BOK 4-ary PSM 2.25 ns 250 Mbps 1/2

200 Mbps*1 222 Mbps 4-ary BOK 4-ary PSM 2.25 ns 333 Mbps 2/3

480 Mbps*1 500 Mbps 4-ary BOK 8-ary PSM 2.25 ns 1 Gbps 1/2

*1: In 200 and 480 Mbps, Pulse shape Keying is applied.*2: Pulse repetition interval: PRI*3: K=3 convolutional code

Supported bit rates with SSASupported bit rates with SSA

Page 27: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 27

doc.: IEEE 802.15-03/119r5

Submission

• Combined Iterative demapping/decoding (CIDD)Combined Iterative demapping/decoding (CIDD)– The structure of coded UWB systems can be viewed as serially

concatenation code

– Based on this viewpoint, iterative decoding strategy is available

– CIDD is available to any UWB systems including XSI’s DS-UWB and MBOA’s MB-OFDM systems

FECencoder interleaver

M-ary pulse mapper

(MBOK+PSM, MBOK, OFDM, …)

Serially concatenation

FECdecoder

deinterleaverM-ary Pulsedemapper

interleaver

Iterative decoding

2.3. Channel Coding and Decoding

Page 28: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 28

doc.: IEEE 802.15-03/119r5

Submission

Performance of CIDDPerformance of CIDD

Complexity of CIDDComplexity of CIDD*1*1

*1: P.H.Y. Wu, “On the complexity of turbo decoding algorithm,” Proc. of IEEE VTC’01-Spring, vol.2, pp.1439-1443, May 2001.

• K=3 complexity is 1/8 less than K=7

• M-ary pulse shape demapper complexity is 1/10 less than K=7

1st iteration2nd iteration3rd iteration4th iteration

Eb/N0 [dB]

Bit

Erro

r Rat

e

Turbo decodingK=3, [5,7]8,4th iter.

CIDD

Viterbi decodingK=7, [171, 133]8,

0 1 2 3 4 5 610-5

10-4

10-3

10-2

10-1

100

• 4-ary BOK and 4-ary PSM (125Mbps)• K=3 convolutional coding• Random bit-wise interleaver• Interleaver length is 512 bits• Single user and AWGN channel

Complexity (x103)

Bit

Err

or R

ate 1st iter.

1st iter.

2nd iter.

2nd iter.

3rd iter.

3rd iter.4th iter.

4th iter.

K=3 Turbo

K=3 CIDD

K=7 soft-decision ViterbiEb/N0=3.0dB

0 50 100 150 200 25010-6

10-5

10-4

10-3

10-2

10-1

100

CIDD provides the best BER performance !CIDD provides the best BER performance !gaingain

CIDD is less complexity than turbo CIDD is less complexity than turbo and K=7 convolutional decoder.and K=7 convolutional decoder.

Less complexity

Page 29: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 29

doc.: IEEE 802.15-03/119r5

Submission

Freq. Hopping Synthesizer

(LO Sin Demod.)

LNA XX

XXOutputDriver

BaseBand

Processor

GCAGCA A/D

T/R SW

Free-verse TemplateGenerator

XX

XX

2.4. Realization of Soft-Spectrum Adaptation Transceiver

Detector of the SSA transceiver consists of mixer with local sine generator and correlator with template, in sequence. Both free-verse type and geometrical type pulses can be detected by this SSA transceiver. That’s why we call this receiving architecture as a universal detector.

Page 30: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 30

doc.: IEEE 802.15-03/119r5

Submission

2.5. Applicable Antennas

Single-band Multi-band

N division

Pow

er

Spe

ctru

m

31 2 4 5 6 7 8 9 10 11 f [GHz]

5 GHz W-LAN

Dual- or Triple-band

Two types of novel antenna for UWB systems are designed. Type A --- Novel ultra-wideband antenna

which covers almost whole frequency ranges Type B --- Novel wideband antenna with dual frequency

which has dual resonant frequency with wide bandwidth Both antennas can be applied to any band segmentations, such as single-, dual- and multi-bands.

Page 31: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 31

doc.: IEEE 802.15-03/119r5

Submission

PatchPatch

Substrate

Patch Patch

Antenna Design

Type A: Novel ultra-wideband antenna Bow-tie printed antenna --- covers the required bandwidth for UWB system

Type B: Novel wideband antenna with dual frequency Planar monopole antenna --- divides UWB frequency band into 2 sub-bands

Feed

Type A

Type B

Page 32: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 32

doc.: IEEE 802.15-03/119r5

Submission

Antenna Characteristics (Type A):Novel Ultra-Wideband Antenna

Frequency [GHz]3 4 5 6 7 8 9 10 11

-25

-20

-15

-10

-5

0

Ret

urn

Loss

[dB

]

Frequency [GHz]3 4 5 6 7 8 9 10 11

1

2

3

4

5

Gai

n [d

Bi]

Frequency [GHz]3 4 5 6 7 8 9 10 111

2

3

4

5

6

VS

WR

Satisfying the antenna requirement of IEEE 802.15 TG3a (WPANs)

< 3.1GHz > < 9.1GHz >Radiation pattern (vertical plane, =90)

Return Loss < -6dB

VSWR < 3

Gain > 2dBi

Omni-directional pattern

030

60

90

120

150180210

240

270

300

3300

30

60

90

120

150180210

240

270

300

330

Page 33: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 33

doc.: IEEE 802.15-03/119r5

Submission

Antenna Characteristics (Type B):Novel Wideband Antenna with Dual Frequency

Suitable for Soft-Spectrum Adaptation (SSA) applications.

Suppress the interference where other services exist.

-30

-25

-20

-15

-10

-5

0

2 4 6 8 10 12

Ret

urn

Loss

[dB

]

Frequency [GHz]

Omni-directional pattern can be obtained.

Page 34: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 34

doc.: IEEE 802.15-03/119r5

Submission

2.6. Pre-equalization for Pulse Shape Calibration

Efforts for pulse design is rewarded !Efforts for pulse design is rewarded ! Pre-equalizer calibrates the Pre-equalizer calibrates the

pulse shape by pre-distortionpulse shape by pre-distortion

Pulse shape in both time and frequency domain is strongly affected by Tx and Rx antennas and channel characteristics.

Xpost=Y C-1 Ar-1Xpre=X At -1 At C Ar

Yantenna channel antennapre-equalizerXpre

At C Ar

YXantenna channel antenna

X post-equalizerXpost

Page 35: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 35

doc.: IEEE 802.15-03/119r5

Submission

Parameters Value (>110Mbps) Value (>200Mbps)

Value (>480Mbps)

Data rate 125 Mbps 222 Mbps 500 Mbps

Average TX Power

-5.07 dBm -5.07 dBm -5.07 dBm

Path Loss 20.00 dB@ 10 m

12.04 dB@ 4 m

6.02 dB@ 2 m

Average RX Power

-74.10 dBm -66.14 dBm -60.12 dBm

Noise Figure 7.0 dB 7.0 dB 7.0 dB

Average Noise Power

-93.0 dBm -90.5 dBm -87.1 dBm

Minimum Eb/N0 2.8 dB 3.4 dB 3.6 dB

Implementation Loss

3.0 dB 3.0 dB 3.0 dB

Link margin 6.14 dB 11.0 dB 13.3 dBRX Sensitivity

Level-87.2 dBm -84.1 dBm -80.5 dBm

Assumption: AWGN, 0dBi TX/RX antenna gain2.7. Link Budget

Page 36: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 36

doc.: IEEE 802.15-03/119r5

Submission

ParametersOptimized SSA

3-band Geometrical

Free-verseK-4

Data rate 125 Mbps 125 Mbps 125 MbpsAverage TX

Power-5.07 dBm -7.38 dBm -7.39 dBm

Path Loss 20.00 dB@ 10 m

66.52 dB@ 10 m

64.48 dB@ 10 m

Average RX Power

-74.10 dBm -73.91 dBm -71.87 dBm

Noise Figure 7.0 dB 7.0 dB 7.0 dBAverage Noise

Power-93.0 dBm -89.1 dBm -83.7 dBm

Minimum Eb/N0 2.8 dB 3.2 dB 3.2 dBImplementation

Loss3.0 dB 3.0 dB 3.0 dB

Link margin 6.1 dB 5.0 dB 4.6 dBRX Sensitivity

Level-87.2 dBm -82.9 dBm -77.5 dBm

Assumption: AWGN, 0dBi TX/RX antenna gainComparison with other SSA systemsComparison with other SSA systems

Page 37: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 37

doc.: IEEE 802.15-03/119r5

Submission

3. Harmonization Based on SSA with XSI and MBOA UWB Systems

Global Harmonization is the everlasting aim and basic philosophy of CRL-UWB Consortium.

CRL’s Soft-Spectrum Adaptation has a wide capability to harmonize various proposed UWB systems including XSI’s and MBOA’s proposals.

Just changing the kernel functions and shapes of Soft-Spectrum Adaptation pulse waveforms.

Page 38: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 38

doc.: IEEE 802.15-03/119r5

Submission

3.1. Harmonization with XSI’s DS-UWB Proposal

Optimized SSAOptimized SSA XSI’s proposal by CRLXSI’s proposal by CRL XSI’s proposalXSI’s proposal

Pulse Pulse shapeshape

• Single band • Dual-band • Dual-band• Designed wavelet pulse shape

Low band

High band

Ex.: Modulated order-0 modified Hermitian pulse

Ex.: Modulated Hermitian pulses

Time [nsec]

5 6 7 8 9 10 11x 109

-30

-20

-10

0

-1 -0.5 0 0.5 1x 10-9

-0.5

0

0.5

2 2.5 3 3.5 4 4.5 5 5.5 6x 109

-30

-20

-10

0

-1 -0.5 0 0.5 1x 10-9

-0.5

0

0.5

Low band

High band

Page 39: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 39

doc.: IEEE 802.15-03/119r5

Submission

Optimized SSAOptimized SSA XSI proposal by CRLXSI proposal by CRL XSI’s original proposalXSI’s original proposal

ModulationModulation• 4-ary biorthogonal keying by 8-chip 2 WH codes

•M-ary biorthogonal keying • 24-chip Ternary code sequence• 8 code sequences per piconet

•M-ary biorthogonal keying •24-chip Ternary code sequence• 8 code sequences per piconet

FEC codingFEC coding

•Half rate K=3 convolutional code•4-iteration of combined iterative demapping and decoding

•Half rate K=3 convolutional code•4-iteration of combined iterative demapping and decoding

•K=7 convolutional code• (255, 223)-Reed Solomon code• Concatenated code

Page 40: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 40

doc.: IEEE 802.15-03/119r5

Submission

Target Rate

Target Rate Data Mapping FEC Fc GHz Link margin@ 4m

RX Sensitivity

110 Mbps114 Mbps114 Mbps125 Mbps

4-BOK4-BOK

4-ary PSM and 4-BOK

1/2 rate convolutional1/2 rate convolutional1/2 rate convolutional

8.18.1

6.75

10.6 dB9.3dB

13.7 dB

-82.7 dBm-80.9 dBm-86.8 dBm

200 Mbps

228 Mbps228 Mbps199 Mbps222 Mbps

8-BOK16-BOK4-BOK

4-ary PSM and 4-BOK

2/3 rate convolutional1/2 rate convolutional

RS (255,223)2/3 rate convolutional

8.18.18.1

6.75

9.5 dB10.5 dB4.7dB

11.0 dB

-81.6 dBm--82.6 dBm-76.3 dBm-84.1 dBm

High Band Symbol Rates and Link BudgetHigh Band Symbol Rates and Link Budget

Txpow=-6.9 dBm; Coded Eb/No=9.6 dB, 3 dB implementation loss, 0 dB RAKE gain, NF=5.1 dBRequired Eb/N0: half rate conv + 16-BOK: 3.2dB, half rate conv + 4-BOK: 6.1dB, 2/3 rate conv.+8-BOK: 4.2dB

Green: XSI’s proposal powered by SSABlue: XSI’s original proposalRed: Optimized SSA

Note that: In the link budgets of the optimized SSA, NF is set to 7dB.

Page 41: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 41

doc.: IEEE 802.15-03/119r5

Submission

Low Band Symbol Rates and Link BudgetLow Band Symbol Rates and Link Budget

Txpow=-9.9 dBm; Coded Eb/No=9.6 dB, 3 dB implementation loss, 0 dB RAKE gain, NF=4.2 dB Required Eb/N0: half rate conv + 16-BOK: 3.2dB, half rate conv + 4-BOK: 6.1dB

Green: XSI’s proposal powered by SSABlue: XSI’s original proposalRed: Optimized SSA

Target Rate

Target Rate Data Mapping FEC Fc GHz Link margin@ 10m

RX Sensitivity

55 Mbps57 Mbps57 Mbps

62.5 Mbps

4-BOK4-BOK4-BOK

1/2 rate convolutional1/2 rate convolutional1/2 rate convolutional

8.18.16.75

8.7 dB8.4 dB8.9 dB

-82.7 dBm-80.9 dBm-86.8 dBm

110 Mbps114 Mbps114 Mbps125 Mbps

16-BOK8-BOK

4-ary PSM and 4-BOK

1/2 rate convolutional2/3 rate convolutional1/2 rate convolutional

8.18.16.75

8.6 dB6.7 dB

6.14 dB

-81.6 dBm-76.3 dBm-87.2 dBm

Note that: In the link budgets of the optimized SSA, NF is set to 7dB.

Page 42: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 42

doc.: IEEE 802.15-03/119r5

Submission

3.2. Harmonization with MBOA’s Proposal

100bits

X

X

X

S/P GI X

T-H code

tfc2cos

IDFT

tfj 02exp Interleaver

FEC

coding ・・・・・

2bit

QPSK mapping

tfj 12exp

tfjsN

2exp

・・・

QPSK mapping

QPSK mapping

MBOA’s Multiband OFDM

Page 43: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 43

doc.: IEEE 802.15-03/119r5

Submission

CRL’s MB-OFDM based on SSA

100bits

X

X

X

S/P GI X

T-H code

tfc2cos

SSA Inner encoder

tfj 02exp Interleaver

FEC

coding

1bit

PSM mapping tfj 12exp

tfjsN

2exp

・・・

SSA Outer encoder

・・・

・・・

Harmonization with MBOA’s OFDM Proposal (Cont.)

Page 44: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 44

doc.: IEEE 802.15-03/119r5

Submission

Parameters Value (>110Mbps) Value (>200Mbps) Value (>480Mbps)

Data rate 125 Mbps 222 Mbps 500 Mbps

Average TX Power -5.07 dBm -5.07 dBm -5.07 dBm

Path Loss 20.00 dB @ 10 m 12.02 dB @ 4 m 6.02 dB @ 2 m

Average RX Power -74.10 dBm -66.14 dBm -60.12 dBm

Noise Figure 7.0 dB 7.0 dB 7.0 dB

Average Noise Power -93.0 dBm -90.5 dBm -87.1 dBm

Minimum Eb/N0 2.8 dB 3.4 dB 3.6 dB

Implementation Loss 3.0 dB 3.0 dB 3.0 dB

Link margin 6.14 dB 11.0 dB 13.3 dBRX Sensitivity Level -87.2 dBm -84.1 dBm -80.5 dBm

Comparison of MBOA’s and SSA’s Link Budget

CRL’s OptimizedSSA

Parameter Value Value Value

Information Data Rate 110 Mb/s 200 Mb/s 480 Mb/s

Average TX Power -10.3 dBm -10.3 dBm -10.3 dBm

Path Loss 20.0dB @ 10 m 12.02 dB @ 4 m 6.02 dB @ 2 m

Average RX Power -74.5 dBm -66.5 dBm -60.5 dBm

Noise Power Per Bit -93.6 dBm -91.0 dBm -87.2 dBm

CMOS RX Noise Figure 6.6 dB 6.6 dB 6.6 dB

Total Noise Power -87.0 dBm -84.4 dBm -80.6 dBm

Required Eb/N0 4.0 dB 4.7 dB 4.9 dB

Implementation Loss 2.5 dB 2.5 dB 3.0 dB

Link Margin 6.0 dB 10.7 dB 12.2 dBRX Sensitivity Level -80.5 dBm -77.2 dBm -72.7 dB

MBOA’s OFDM

Page 45: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 45

doc.: IEEE 802.15-03/119r5

Submission

CRL’s SSA has been optimized and will be able to be modified in future.

CRL’s SSA approach provides more options and flexibility to achieve co-existence, interference avoidance, matching with regulatory spectral mask, and high data rate.

CRL’s SSA has a superior capability to harmonize various proposed UWB systems: XSI’s, MBOA’s and others.

That’s why SSA is the best solution for the standard!

4. Concluding Remarks

Page 46: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 46

doc.: IEEE 802.15-03/119r5

Submission

Backup Materials

Page 47: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 47

doc.: IEEE 802.15-03/119r5

Submission

Pulse pre-equalization taking into account different kinds of UWB antennas and filters (1)

Transient transmission model based on antenna’s transfer function

)()(1),,(2

,,, 0

cr

dttdV

Zca

rcZ

rtE ttttrad

Radiated pulse waveforms and their corresponding spectra would be inevitably changed by the antenna’s transfer function, and FCC spectral mask may no longer be satisfied as ever.

: transient response of transmitter antenna & filter: transmitter voltage of input pulse signal

),,( ttta

)(tVt

0Z cZ: free space impedance : reference impedance at the antenna connector

)()()(),,( )( FunctionTransfereAAa jttttt

:Group delay of antenna’s transfer functiondffd

dd

delay

2)()(

Page 48: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 48

doc.: IEEE 802.15-03/119r5

Submission

Pulse pre-equalization taking into account different kinds of UWB antennas and filters (2)

Pulse-antenna co-design based on pre-equalization, so as to realize FCC spectral mask matching and waveform optimization.

)()()()(

)()()( 1

XAXX

AXX

tprerad

tpre

Pulse pre-equalization can compensate this deterioration, even in the case of serious pulse waveform distortion.

Pre-equalizer could be adaptively re-designed by software approach, corresponding to arbitrary input pulse waveforms, antenna types, angle of incidence, load impedance, polarization, and TR matching/shaping networks.

Pre-equalizer could be further extended to consider the multipath fading channel, including pre-combining LOS and NLOS multipath components of variable amplitudes and possible polarity reversals.

Page 49: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 49

doc.: IEEE 802.15-03/119r5

Submission

Output

Freq. Hopping Synthesizer

LNA

Q

IX

I

Q

X+

OutputDriver

GCA

GCA

IGCAGCA A/D

A/D QGCAGCA BaseBand

Processor

I

Q

T/R SW

• Geometrical Rx

• Multi-band OFDM RF: 27 mW PLL: 50 mW

ADC: 35 mW

AFE:AFE:187187mWmW

AFE:112mW

Power consumption (Receiver)

Pre-SelectFilter

LNA

sin (2fct)

cos(2fct)

Syn

chro

niza

tion

Rem

ove

CP

FFT

FEQ

Rem

ove

Pilo

ts

Vite

rbi

Dec

oder

De-

scra

mbl

er

AGCCarrierPhaseand

TimeTracking

De-

Inte

rleav

er

I

Q

LPF

LPF

VGA

VGA

ADC

ADC

Data

Page 50: Doc.: IEEE 802.15-03/119r5 Submission September, 2003 Oki, CRL, UWB ConsortiumSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks

September, 2003

Oki, CRL, UWB ConsortiumSlide 50

doc.: IEEE 802.15-03/119r5

Submission

Freq. Hopping

Synthesizer

LNA

Q

IX

I

Q

X+

OutputDriver

GCA

GCA

IGCAGCA A/D

A/D QGCAGCA BaseBand

Processor

I

Q

T/R SW

• Geometrical Tx

• Multi-band OFDM

RF: 15 mW PLL: 50 mW

AFE:160mW

AFE:65mW

Power consumption (Transmitter)

DACScrambler ConvolutionalEncoder Puncturer Bit

InterleaverConstellation

Mapping

IFFTInsert Pilots

Add CP & GI

Time Frequency Code

cos(2fct)

InputData