dna barcoding of mycosphaerella species of quarantine ......cpc 15143 eugenia uniflora alfenas...

15
© 2012 Nationaal Herbarium Nederland & Centraalbureau voor Schimmelcultures You are free to share - to copy, distribute and transmit the work, under the following conditions: Attribution: You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). Non-commercial: You may not use this work for commercial purposes. No derivative works: You may not alter, transform, or build upon this work. For any reuse or distribution, you must make clear to others the license terms of this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode. Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights. Persoonia 29, 2012: 101–115 www.ingentaconnect.com/content/nhn/pimj http://dx.doi.org/10.3767/003158512X661282 RESEARCH ARTICLE INTRODUCTION In order to manage phytosanitary risks in an ever growing and increasingly dynamic import and export market, the EU 7th Framework Program funded the Quarantine Barcoding of Life project to develop a quick, reliable and accurate DNA barcode- based diagnostic tool for selected species on the EPPO A1/A2 lists and EU Council Directive 2000/29/EC (www.QBOL.org). There are currently almost 350 pest and quarantine organ- isms, covering bacteria, phytoplasmas, fungi, parasitic plants, insects and mites, nematodes, virus and virus-like organisms on the EPPO A1 (currently absent from the EPPO region) and A2 (locally present but controlled in the EPPO region) lists of organisms that require standardised protocols against introduc- tion into, and spread within, the EPPO region. Under QBOL, informative loci from the selected quarantine species and their taxonomically related species were subjected to DNA barcoding from voucher specimens in order to produce reliable DNA bar- code sequences that are made publicly available through an online and searchable database called Q-bank (www.q-bank. eu) (Bonants et al. 2010). Within the QBOL project, the CBS- KNAW Fungal Biodiversity Centre (Utrecht, The Netherlands), was tasked with barcoding the Mycosphaerella complex (order Capnodiales, class Dothideomycetes) on the EPPO A1/A2 lists and their taxonomically related closest sister species (Table 1). A major problem with correctly identifying many of the EPPO A1/A2-listed fungi is the fact that individual species are often named for their particular morphs in separate publications. Dual nomenclature makes effective cooperation between scientists and the individual quarantine authorities very con- fused and complicated. The dual nomenclatural system was recently abandoned at the International Botanical Congress in Melbourne (Hawksworth et al. 2011, Wingfield et al. 2012). In accordance with this decision, the concept ‘one fungus = one name’ will be applied in this paper. The Mycosphaerella generic complex comprises one of the largest families within the phylum Ascomycota, whose spe- cies have evolved as either endophytes, saprophytes and symbionts. Mostly, Mycosphaerella s.l. consists of foliicolous plant pathogens which are the cause of significant economical losses in both temperate and tropical crops worldwide (Crous et al. 2001). The Mycosphaerella teleomorph morphology is relatively conserved, but is linked to more than 30 anamorph genera (Crous 2009). Although originally assumed to be mono- phyletic (Crous et al. 2001), phylogenetic analyses of numerous Mycosphaerella species and their anamorphs by Hunter et al. (2006) and Crous et al. (2007) have shown that the Myco- sphaerella complex is in fact polyphyletic. This has since led to taxonomic redistribution of most of the phylogenetic clades within the complex, although several clades remain unresolved due to limited sampling (Crous 2009, Crous et al. 2009a, c). During the 2011 Fungal DNA Barcoding Workshop in Amster- dam, The Netherlands, it was decided that the internal tran- scribed spacers region (ITS) of the nrDNA operon was to become the official primary fungal barcoding gene (Schoch et al. 2012). The ITS locus is easily amplified and gives a good species resolution in many fungal groups. Lack of sufficient ITS interspecies variation within some genera of Mycosphaerella- like fungi (e.g. Septoria, Cercospora and Pseudocercospora) DNA barcoding of Mycosphaerella species of quarantine importance to Europe W. Quaedvlieg 1,2 , J.Z. Groenewald 1 , M. de Jesús Yáñez-Morales 3 , P.W. Crous 1,2,4 1 CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; corresponding author e-mail: [email protected]. 2 Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands. 3 Colegio de Postgraduados, Km. 36.5 Carr, Mexico-Texcoco, Montecillo, Mpio. de Texcoco, Edo. de Mexico 56230, Mexico. 4 Wageningen University and Research Centre (WUR), Laboratory of Phyto- pathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands. Key words EPPO Lecanosticta Q-bank QBOL Abstract The EU 7th Framework Program provided funds for Quarantine Barcoding of Life (QBOL) to develop a quick, reliable and accurate DNA barcode-based diagnostic tool for selected species on the European and Mediter- ranean Plant Protection Organization (EPPO) A1/A2 quarantine lists. Seven nuclear genomic loci were evaluated to determine those best suited for identifying species of Mycosphaerella and/or its associated anamorphs. These genes included β-tubulin (Btub), internal transcribed spacer regions of the nrDNA operon (ITS), 28S nrDNA (LSU), Actin (Act), Calmodulin (Cal), Translation elongation factor 1-alpha (EF-1α) and RNA polymerase II second larg- est subunit (RPB2). Loci were tested on their Kimura-2-parameter-based inter- and intraspecific variation, PCR amplification success rate and ability to distinguish between quarantine species and closely related taxa. Results showed that none of these loci was solely suited as a reliable barcoding locus for the tested fungi. A combination of a primary and secondary barcoding locus was found to compensate for individual weaknesses and provide reliable identification. A combination of ITS with either EF-1α or Btub was reliable as barcoding loci for EPPO A1/A2-listed Mycosphaerella species. Furthermore, Lecanosticta acicola was shown to represent a species complex, revealing two novel species described here, namely L. brevispora sp. nov. on Pinus sp. from Mexico and L. guatemalensis sp. nov. on Pinus oocarpa from Guatemala. Epitypes were also designated for L. acicola and L. longispora to resolve the genetic application of these names. Article info Received: 8 October 2012; Accepted: 2 November 2012; Published: 13 December 2012.

Upload: others

Post on 25-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: DNA barcoding of Mycosphaerella species of quarantine ......CPC 15143 Eugenia uniflora Alfenas JX902122 JX901561 JX901666 JX902244 JX901998 FJ493188 JX901875 CPC 15159 Δ Eugenia uniflora

© 2012 Nationaal Herbarium Nederland & Centraalbureau voor Schimmelcultures

You are free to share - to copy, distribute and transmit the work, under the following conditions:Attribution: Youmustattributetheworkinthemannerspecifiedbytheauthororlicensor(butnotinanywaythatsuggeststhattheyendorseyouoryouruseofthework).Non-commercial: Youmaynotusethisworkforcommercialpurposes.Noderivativeworks: Youmaynotalter,transform,orbuilduponthiswork.Foranyreuseordistribution,youmustmakecleartoothersthelicensetermsofthiswork,whichcanbefoundathttp://creativecommons.org/licenses/by-nc-nd/3.0/legalcode.Anyoftheaboveconditionscanbewaivedifyougetpermissionfromthecopyrightholder.Nothinginthislicenseimpairsorrestrictstheauthor’smoralrights.

Persoonia 29, 2012: 101–115www.ingentaconnect.com/content/nhn/pimj http://dx.doi.org/10.3767/003158512X661282RESEARCH ARTICLE

INTRODUCTION

In order to manage phytosanitary risks in an ever growing and increasingly dynamic import andexportmarket, theEU7thFramework Program funded the Quarantine Barcoding of Life projecttodevelopaquick,reliableandaccurateDNAbarcode-based diagnostic tool for selected species on the EPPO A1/A2 listsandEUCouncilDirective2000/29/EC(www.QBOL.org).There are currently almost 350pest andquarantine organ-isms, covering bacteria, phytoplasmas, fungi, parasitic plants, insects and mites, nematodes, virus and virus-like organisms ontheEPPOA1(currentlyabsentfromtheEPPOregion)andA2(locallypresentbutcontrolledintheEPPOregion)listsoforganismsthatrequirestandardisedprotocolsagainstintroduc-tioninto,andspreadwithin,theEPPOregion.UnderQBOL,informativelocifromtheselectedquarantinespeciesandtheirtaxonomicallyrelatedspeciesweresubjectedtoDNAbarcoding fromvoucherspecimensinordertoproducereliableDNAbar-codesequencesthataremadepubliclyavailablethroughanonlineandsearchabledatabasecalledQ-bank(www.q-bank.eu)(Bonantsetal.2010).WithintheQBOLproject,theCBS-KNAWFungalBiodiversityCentre(Utrecht,TheNetherlands),was tasked with barcoding the Mycosphaerellacomplex(orderCapnodiales, class Dothideomycetes)ontheEPPOA1/A2listsandtheirtaxonomicallyrelatedclosestsisterspecies(Table1).

AmajorproblemwithcorrectlyidentifyingmanyoftheEPPOA1/A2-listed fungi is the fact that individual species are often named for their particularmorphs in separate publications.Dual nomenclaturemakes effective cooperation betweenscientistsandtheindividualquarantineauthoritiesverycon-fusedandcomplicated.Thedualnomenclaturalsystemwasrecently abandoned at the International Botanical Congress in Melbourne(Hawksworthetal.2011,Wingfieldetal.2012).Inaccordance with this decision, the concept ‘one fungus = one name’willbeappliedinthispaper.The Mycosphaerella generic complex comprises one of the largest families within the phylum Ascomycota, whose spe-cies have evolved as either endophytes, saprophytes and symbionts.Mostly,Mycosphaerella s.l. consists of foliicolous plantpathogenswhicharethecauseofsignificanteconomicallossesinbothtemperateandtropicalcropsworldwide(Crousetal.2001).TheMycosphaerella teleomorph morphology is relativelyconserved,butislinkedtomorethan30anamorphgenera(Crous2009).Althoughoriginallyassumedtobemono-phyletic(Crousetal.2001),phylogeneticanalysesofnumerousMycosphaerella species and their anamorphs by Hunter et al.(2006)andCrousetal.(2007)haveshownthattheMyco­sphaerella complexisinfactpolyphyletic.Thishassinceledto taxonomic redistribution of most of the phylogenetic clades within the complex, although several clades remain unresolved duetolimitedsampling(Crous2009,Crousetal.2009a,c).Duringthe2011FungalDNABarcodingWorkshopinAmster-dam, The Netherlands, it was decided that the internal tran-scribed spacers region (ITS) of the nrDNAoperonwas tobecometheofficialprimaryfungalbarcodinggene(Schochetal.2012).TheITSlocusiseasilyamplifiedandgivesagoodspeciesresolutioninmanyfungalgroups.LackofsufficientITSinterspecies variation within some genera of Mycosphaerella-likefungi(e.g.Septoria, Cercospora and Pseudocercospora)

DNA barcoding of Mycosphaerella species of quarantine importance to EuropeW.Quaedvlieg1,2,J.Z.Groenewald1,M.deJesúsYáñez-Morales3,P.W.Crous1,2,4

1 CBS-KNAWFungalBiodiversityCentre,Uppsalalaan8,3584CTUtrecht,The Netherlands;

correspondingauthore-mail:[email protected],DepartmentofBiology,UtrechtUniversity,Padualaan8,3584CHUtrecht,TheNetherlands.

3 ColegiodePostgraduados,Km.36.5Carr,Mexico-Texcoco,Montecillo,Mpio.deTexcoco,Edo.deMexico56230,Mexico.

4WageningenUniversityandResearchCentre(WUR),LaboratoryofPhyto-pathology,Droevendaalsesteeg1,6708PBWageningen,TheNetherlands.

Key words

EPPOLecanostictaQ-bankQBOL

Abstract TheEU7thFrameworkProgramprovidedfundsforQuarantineBarcodingofLife(QBOL)todevelopaquick,reliableandaccurateDNAbarcode-baseddiagnostictoolforselectedspeciesontheEuropeanandMediter-raneanPlantProtectionOrganization(EPPO)A1/A2quarantinelists.Sevennucleargenomiclociwereevaluatedto determine those best suited for identifying species of Mycosphaerellaand/oritsassociatedanamorphs.Thesegenes included β-tubulin(Btub),internaltranscribedspacerregionsofthenrDNAoperon(ITS),28SnrDNA(LSU),Actin(Act),Calmodulin(Cal),Translationelongationfactor1-alpha(EF-1α)andRNApolymeraseIIsecondlarg-estsubunit(RPB2).LociweretestedontheirKimura-2-parameter-basedinter-andintraspecificvariation,PCRamplificationsuccessrateandabilitytodistinguishbetweenquarantinespeciesandcloselyrelatedtaxa.Resultsshowedthatnoneoftheselociwassolelysuitedasareliablebarcodinglocusforthetestedfungi.Acombinationofa primary and secondary barcoding locus was found to compensate for individual weaknesses and provide reliable identification.AcombinationofITSwitheitherEF-1α or Btub was reliable as barcoding loci for EPPO A1/A2-listed Mycosphaerellaspecies.Furthermore,Lecanosticta acicola was shown to represent a species complex, revealing two novel species described here, namely L. brevisporasp.nov.onPinussp.fromMexicoandL. guatemalensis sp.nov.onPinus oocarpafromGuatemala.EpitypeswerealsodesignatedforL. acicola and L. longispora to resolve thegeneticapplicationofthesenames.

Article info Received:8October2012;Accepted:2November2012;Published:13December2012.

Page 2: DNA barcoding of Mycosphaerella species of quarantine ......CPC 15143 Eugenia uniflora Alfenas JX902122 JX901561 JX901666 JX902244 JX901998 FJ493188 JX901875 CPC 15159 Δ Eugenia uniflora

102 Persoonia – Volume 29, 2012Ta

ble

1Isolatesusedduringthisstudy.Isolatesmarkedwithanasterisk(*)aretype.Isolatesmarkedingreyarequarantinespecies.Isolatesusedforthesubsettrees(F

ig.1)aremarkedwithadelta(Δ

).

GenBankAccessionno2

Spe

cies

Is

olat

e no

1 H

ost

Loca

tion

C

olle

cted

by

A

CT

CA

L

EF-

Btub

RPB2

ITS

LSU

Cer

cosp

orel

la v

irgau

reae

CBS113304

Erig

eron

ann

ueus

H.D.S

hin

JX902067

JX901506

JX901618

JX902189

JX901944

GU214658

JX901820

Dot

hist

rom

a pi

ni

CB

S 1

2101

1 P

inus

pal

lasi

ana

Russia

A.C.U

sichenko

JX902068

JX901507

JX901619

JX902190

JX901945

JX901734

JX901821

CBS116487

Pin

us n

igra

USA

G.Adams

JX902069

JX901508

JX901620

JX902191

JX901946

GU214532

JX901822

CBS116486

Pin

us n

igra

USA

G.Adams

JX902070

JX901509

JX901621

JX902192

JX901947

JX901735

JX901823

CBS116484

Pin

us n

igra

USA

G.Adams

JX902071

JX901510

JX901622

JX902193

JX901948

JX901736

JX901824

CBS116483

Pin

us n

igra

USA

G.Adams

JX902072

JX901511

JX901623

JX902194

JX901949

JX901737

JX901825

CBS117609

Pin

us p

alla

sian

a Russia

A.C.U

sichenko

JX902073

JX901512

JX901624

JX902195

JX901950

JX901738

JX901826

CBS116485

Pin

us n

igra

USA

G.Adams

JX902074

JX901513

JX901625

JX902196

JX901951

JX901739

JX901827

CBS121005Δ

Pin

us p

alla

sian

a Russia

T.S.B

ulgakov

JX902075

JX901514

JX901626

JX902197

JX901952

JX901740

JX901828

D. s

epto

spor

um

CBS128782

Pin

us m

ugo

TheNetherlands

W.Q

uaedvlieg

JX902076

JX901515

JX901627

JX902198

JX901953

JX901741

JX901829

CPC16799

Pin

us m

ugo

TheNetherlands

W.Q

uaedvlieg

JX902077

JX901516

JX901628

JX902199

JX901954

JX901742

JX901830

CBS543.74

Pin

us p

inas

ter

Brazil

T.Nam

ekata

JX902078

JX901517

JX901629

JX902200

JX901955

JX901743

JX901831

CBS383.74

Pin

us c

oulte

ri France

M.M

orelet

JX902079

JX901518

JX901630

JX902201

JX901956

EU167578

JX901832

CBS112498Δ

Pin

us ra

diat

a Ecuador

P.W.C

rous

JX902080

JX901519

JX901631

JX902202

JX901957

JX901744

JX901833

Lec

anos

ticta

aci

cola

LN

PV

241

Pin

us ra

diat

a France

P.Chandelier

JX902081

JX901520

JX901632

JX902203

JX901958

JX901745

JX901834

LN

PV

242

Pin

us m

uric

ata

France

P.Chandelier

JX902082

JX901521

JX901633

JX902204

JX901959

JX901746

JX901835

WPF4.12*

Pin

us s

trobu

m

USA

B.O

strofsky

KC013004

KC013010

KC013001

KC013007

KC013013

KC012998

KC013016

CBS133791=WPF13.12

Pin

us s

trobu

m

USA

B.O

strofsky

KC013005

KC013011

KC013002

KC013008

KC013014

KC012999

KC013017

WPF73.12

Pin

us s

trobu

m

USA

J.W

einer

KC013006

KC013012

KC013003

KC013009

KC013015

KC013000

KC013018

LN

PV

244

P. a

ttenu

ata

× ra

diat

a France

P.Chandelier

JX902083

JX901522

–JX902205

JX901960

JX901747

JX901836

LN

PV

245

P. a

ttenu

ata

× ra

diat

a France

P.Chandelier

JX902084

JX901523

–JX902206

JX901961

JX901748

JX901837

LN

PV246

P. a

ttenu

ata

× ra

diat

a France

P.Chandelier

JX902085

JX901524

JX901634

JX902207

JX901962

JX901749

JX901838

LN

PV247

P. ra

diat

a France

P.Chandelier

JX902086

JX901525

JX901635

JX902208

JX901963

JX901750

JX901839

LN

PV248

P. a

ttenu

ata

× ra

diat

a France

P.Chandelier

JX902087

JX901526

JX901636

JX902209

JX901964

JX901751

JX901840

LN

PV

249

P. a

ttenu

ata

× ra

diat

a France

P.Chandelier

JX902088

JX901527

JX901637

JX902210

JX901965

JX901752

JX901841

LN

PV

250

Pin

us s

p.

France

P.Chandelier

JX902089

JX901528

JX901638

JX902211

JX901966

JX901753

JX901842

LN

PV

251

P. a

ttenu

ata

× ra

diat

a France

P.Chandelier

JX902090

JX901529

–JX902212

JX901967

JX901754

JX901843

LN

PV

252

P. a

ttenu

ata

× ra

diat

a France

P.Chandelier

JX902091

JX901530

JX901639

JX902213

JX901968

JX901755

JX901844

LN

PV253

P. p

alus

tris

USA

C.A

ffeltranger

JX902092

JX901531

JX901640

JX902214

JX901969

JX901756

JX901845

LN

PV

254

Pin

ussp.

France

P.Chandelier

JX902093

JX901532

JX901641

JX902215

JX901970

JX901757

JX901846

LN

PV

255

Pin

ussp.

France

P.Chandelier

JX902094

JX901533

JX901642

JX902216

JX901971

JX901758

JX901847

LN

PV256

Pin

ussp.

France

P.Chandelier

JX902095

JX901534

JX901643

JX902217

JX901972

JX901759

JX901848

LN

PV257

Pin

us ra

diat

a France

P.Chandelier

JX902096

JX901535

JX901644

JX902218

JX901973

JX901760

JX901849

CBS133790=LA

773A

P

inus

mug

o Lithuania

S.M

arkovskaja,A

.Kačergius

JX902097

JX901536

JX901645

JX902219

JX901974

HM367708

JX901850

&A.Treigienė

LA

773B

P

inus

mug

o Lithuania

S.M

arkovskaja,A

.Kačergius

JX902098

JX901537

JX901646

JX902220

JX901975

HM367707

JX901851

&A.Treigienė

LN

PV243Δ

P. p

inas

ter

France

P.Chandelier

JX902099

JX901538

JX901647

JX902221

JX901976

JX901761

JX901852

CBS871.95Δ

Pin

us ra

diat

a France

M.M

orelet

JX902100

JX901539

–JX902222

JX901977

GU214663

JX901853

CBS133789=CPC17822Δ

Pin

ussp.

Mexico

J.Y.Morales

JX902101

JX901540

JX901648

JX902223

JX901978

JX901762

JX901854

L. b

revi

spor

a CBS133601=CPC18092*Δ

Pin

ussp.

Mexico

J.Y.Morales

JX902102

JX901541

JX901649

JX902224

JX901979

JX901763

JX901855

L. g

uata

mal

ensi

s IMI281598*Δ

P

inus

ooc

arpa

Guatemala

H.C.E

vans

JX902103

JX901542

JX901650

JX902225

JX901980

JX901764

JX901856

L. l

ongi

spor

a

CPC17940Δ

Pin

ussp.

Mexico

J.Y.Morales

JX902104

JX901543

JX901652

JX902226

JX901981

JX901765

JX901857

CBS133602=CPC17941*Δ

Pin

ussp.

Mexico

J.Y.Morales

JX902105

JX901544

JX901651

JX902227

JX901982

JX901766

JX901858

Myc

osph

aere

lla e

llips

oide

a CBS110843*Δ

E

ucal

yptu

s cl

adoc

alyx

SouthAfrica

P.W.C

rous

JX902106

JX901545

JX901653

JX902228

JX901983

AY725545

JX901859

M. e

ndop

hytic

a CBS114662*

Euc

alyp

tussp.

SouthAfrica

P.W.C

rous

JX902107

JX901546

JX901654

JX902229

JX901984

DQ302953

JX901860

CBS111519*

Euc

alyp

tussp.

SouthAfrica

P.W.C

rous

JX902108

JX901547

JX901655

JX902230

JX901985

DQ302952

JX901861

M. l

aric

is­le

ptol

epid

is

MAFF

410081

Larix

lept

olep

is

Japan

K.Ito

JX902109

JX901548

JX901656

JX902231

JX901986

JX901767

JX901862

MAFF

410632

Larix

lept

olep

is

Japan

T.Yokota

JX902110

JX901549

JX901657

JX902232

JX901987

JX901768

JX901863

MAFF

410633

Larix

lept

olep

is

Japan

T.Yokota

JX902111

JX901550

JX901658

JX902233

JX901988

JX901769

JX901864

MAFF

410234Δ

Larix

lept

olep

is

Japan

N.O

ta

JX902112

JX901551

JX901659

JX902234

JX901989

JX901770

JX901865

Page 3: DNA barcoding of Mycosphaerella species of quarantine ......CPC 15143 Eugenia uniflora Alfenas JX902122 JX901561 JX901666 JX902244 JX901998 FJ493188 JX901875 CPC 15159 Δ Eugenia uniflora

103W.Quaedvliegetal.:DNAbarcodingofMycosphaerella M

. lat

ebro

sa

CBS687.94

Ace

r pse

udop

lata

nus

TheNetherlands

G.V

erkley

JX902113

JX901552

JX901660

JX902235

JX901990

JX901771

JX901866

CBS183.97

Ace

r pse

udop

lata

nus

TheNetherlands

H.A.vanderAa

JX902114

JX901553

JX901661

JX902236

JX901991

AF362051

JX901867

CBS652.85

Ace

r pse

udop

lata

nus

TheNetherlands

H.A.vanderAa

JX902115

JX901554

JX901662

JX902237

JX901992

AF362067

JX901868

M. p

opul

icol

a CBS100042Δ

Pop

ulus

tric

hoca

rpa

USA

G.N

ewcombe

JX902116

JX901555

JX901663

JX902238

–JX901772

JX901869

Myc

osph

aere

llasp.

CBS111166

Euc

alyp

tus

clad

ocal

yx

SouthAfrica

P.W.C

rous

JX902117

JX901556

JX901664

JX902239

JX901993

JX901773

JX901870

CBS110501Δ

Euc

alyp

tus

glob

ulus

Australia

A.M

axwell

JX902118

JX901557

JX901665

JX902240

JX901994

EU167580

JX901871

M. s

umat

rens

is

CBS118501

Euc

alyp

tussp.

Indonesia

M.J.W

ingfield

JX902119

JX901558

–JX902241

JX901995

JX901774

JX901872

CBS118502

Euc

alyp

tussp.

Indonesia

M.J.W

ingfield

JX902120

JX901559

–JX902242

JX901996

JX901775

JX901873

CBS118499*Δ

E

ucal

yptu

ssp.

Indonesia

M.J.W

ingfield

JX902121

JX901560

–JX902243

JX901997

JX901776

JX901874

Pha

eoph

leos

pora

eug

enia

e CPC15143

Eug

enia

uni

flora

Brazil

Alfenas

JX902122

JX901561

JX901666

JX902244

JX901998

FJ493188

JX901875

CPC15159Δ

Eug

enia

uni

flora

Brazil

Alfenas

JX902123

JX901562

JX901667

JX902245

JX901999

FJ493189

JX901876

Pse

udoc

erco

spor

a an

gole

nsis

CBS244.94

Citr

ussp.

Zimbabw

eP.W.C

rous

JX902124

JX901563

JX901668

JX902246

JX902000

JX901777

JX901877

CBS112748

Citr

ussp.

Zimbabw

eP.W.C

rous

JX902125

JX901564

JX901669

JX902247

JX902001

JX901778

JX901878

CBS112933

Citr

ussp.

Zimbabw

eM.C.P

retorius

JX902126

JX901565

JX901670

JX902248

JX902002

AY260063

JX901879

CBS115645

Citr

ussp.

Zimbabw

eP.W.C

rous

JX902127

JX901566

JX901671

JX902249

JX902003

JX901779

JX901880

CBS149.53*Δ

C

itrus

sin

ensi

s Angola

T.deCarvalho&O.M

endes

JX902128

JX901567

JX901672

JX902250

JX902004

JQ324941

JX901881

P. a

ssam

ensi

s CBS122467

Mus

asp.

India

I.W.B

uddenhagen

JX902129

JX901568

JX901673

JX902251

JX902005

EU514281

JX901882

P. a

trom

argi

nalis

CPC11372

Sol

anun

nig

rum

RepublicofK

orea

H.D.S

hin

JX902130

–JX901674

JX902252

JX902006

JX901780

JX901883

P. c

erci

dis­

chin

ensi

s CPC14481

Cer

cis

chin

ensi

s RepublicofK

orea

H.D.S

hin

JX902131

–JX901675

JX902253

JX902007

DQ267602

JX901884

P. c

hian

gmai

ensi

s CBS123244*

Euc

alyp

tus

cam

aldu

rens

is

Thailand

R.C

heew

angkoon

JX902132

–JX901676

JX902254

JX902008

JX901781

JX901885

P. c

lem

atid

is

CPC11657Δ

Cle

mat

issp.

USA

M.P

alm

JX902133

JX901569

JX901677

JX902255

JX902009

DQ303072

JX901886

P. f

lavo

mar

gina

ta

CBS118824*

Euc

alyp

tus

cam

aldu

lens

is

China

M.J.W

ingfield

JX902134

–JX901678

JX902256

JX902010

JX901782

JX901887

P. g

raci

lis

CP

C 1

1144

E

ucal

yptu

ssp.

Indonesia

M.J.W

ingfield

JX902135

JX901570

JX901679

JX902257

JX902011

DQ302961

JX901888

CPC11181

Euc

alyp

tussp.

Indonesia

M.J.W

ingfield

JX902136

JX901571

JX901680

JX902258

JX902012

DQ302962

JX901889

CBS111189

Euc

alyp

tus

urop

hylla

M.J.W

ingfield

JX902137

JX901572

JX901681

JX902259

JX902013

DQ302960

JX901890

P. h

umul

i­jap

onic

i CPC11315

Hum

ulus

japo

nicu

s RepublicofK

orea

H.D.S

hin

JX902138

JX901573

JX901682

JX902260

JX902014

JX901783

JX901891

CPC11462

Ple

ctra

nthu

s RepublicofK

orea

H.D.S

hin

JX902139

JX901574

JX901682

JX902261

JX902015

JX901784

JX901892

P. m

adag

asca

riens

is

CBS124155*

Euc

alyp

tus

cam

aldu

lens

is

Madagascar

M.J.W

ingfield

JX902140

–JX901683

JX902262

JX902016

FJ790268

JX901893

P. n

orch

iens

is

CBS120738*

Euc

alyp

tussp.

Italy

W.G

ams

JX902141

JX901575

JX901684

JX902263

JX902017

JX901785

JX901894

P. p

arag

uaye

nsis

CBS111286Δ

Euc

alyp

tus

nite

ns

Brazil

P.W.C

rous

JX902142

–JX901685

JX902264

JX902018

DQ267602

JX901895

P. p

ini­d

ensi

flora

e CBS125139

Pin

us th

unbe

rgii

Japan

Sung-OuiSuh

JX902143

–JX901686

JX902265

JX902019

JX901786

JX901896

C

BS

125

140

Pin

us k

esiy

a Japan

Sung-OuiSuh

JX902144

–JX901687

JX902266

JX902020

JX901787

JX901897

CBS125138Δ

Pin

ussp.

Japan

Sung-OuiSuh

JX902145

–JX901688

JX902267

JX902021

JX901788

JX901898

P. p

seud

oeuc

alyp

toru

m

CPC12802

Euc

alyp

tus

glob

ulus

Portugal

A.P

hillips

JX902146

JX901576

JX901689

JX902268

JX902022

GQ852759

JX901899

CPC13769

Euc

alyp

tus

punc

tata

SouthAfrica

P.W.C

rous

JX902147

JX901577

JX901690

JX902269

JX902023

GQ852762

JX901900

CPC12568

Euc

alyp

tus

nite

ns

Tasm

ania

C.M

oham

med

JX902148

JX901578

JX901691

JX902270

JX902024

GQ852758

JX901901

P. p

yrac

anth

igen

a CPC10808Δ

Pyr

acan

tha

angu

stifo

lia

RepublicofK

orea

H.D.S

hin

JX902149

–JX901692

JX902271

JX902025

JX901789

JX901902

P. r

hoin

a CPC11464

Rhu

s ch

inen

sis

RepublicofK

orea

H.D.S

hin

––

JX901693

JX902272

JX902026

JX901790

JX901903

P. r

obus

ta

CBS111175*Δ

E

ucal

yptu

s ro

bur

Malaysia

M.J.W

ingfield

JX902150

JX901579

JX901694

JX902273

JX902027

DQ303081

JX901904

P. s

chiz

olob

ii C

BS

124

990

Euc

alyp

tus

cam

aldu

lens

is

Thailand

W.H

imam

an

JX902151

–JX901695

JX902274

JX902028

GQ852765

JX901905

P. s

phae

rulin

ae

CBS112621*

Euc

alyp

tussp.

P.W.C

rous

–JX901580

JX901696

JX902275

JX902029

JX901791

JX901906

P. s

ubul

ata

CBS118489

Euc

alyp

tus

botry

oide

s New

Zealand

M.D

ick

JX902152

JX901581

JX901697

JX902276

JX902030

JX901792

JX901907

P. t

eret

icor

nis

CPC13008

Euc

alyp

tus

tere

ticor

nus

Australia

A.J.C

arnegie

JX902153

JX901582

JX901698

JX902277

JX902031

GQ852769

JX901908

CPC13315

Euc

alyp

tus

tere

ticor

nus

Australia

P.W.C

rous

JX902154

JX901583

JX901699

JX902278

JX902032

GQ852771

JX901909

CBS124996Δ

Euc

alyp

tus

nite

ns

Australia

A.J.C

arnegie

JX902155

JX901584

JX901700

JX902279

JX902033

GQ852768

JX901910

CPC13299*

Euc

alyp

tus

tere

ticor

nus

Australia

A.J.C

arnegie

JX902156

JX901585

JX901701

JX902280

JX902034

GQ852770

JX901911

P. v

itis

CP

C 1

1595

Vi

tis v

inife

ra

RepublicofK

orea

H.D.S

hin

JX902157

JX901586

JX901702

JX902281

JX902035

DQ073923

JX901912

Sep

toria

abe

licea

e CBS128591

Zelk

ova

serr

ata

RepublicofK

orea

S.B.H

ong

JX902158

JX901587

JX901703

JX902282

JX902036

JX901793

JX901913

S. c

f. ch

rysa

nthe

mel

la

CBS483.63

Chr

ysan

them

umsp.

TheNetherlands

H.A.vanderAa

JX902159

JX901588

JX901704

JX902283

JX902037

JX901794

JX901914

CBS351.58

Chr

ysan

them

um in

dicu

m

Germany

R.S

chneider

JX902160

JX901589

JX901705

JX902284

JX902038

JX901795

JX901915

S. c

itri

CBS315.37Δ

L.L.Huillier

JX902161

JX901590

JX901706

JX902285

JX902039

DQ897650

JX901916

S. c

ucur

bita

cear

um

CBS178.77Δ

Cuc

urbi

ta m

axim

a –

H.J.B

oesewinkel

JX902162

JX901591

JX901707

JX902286

JX902040

JX901796

JX901917

S. l

ycop

ersi

ci

CBS353.49

S.P.D

oolittle

JX902163

JX901592

JX901708

JX902287

JX902041

DQ841155

JX901918

CBS128654Δ

Lyco

pers

icon

esc

ulen

tum

RepublicofK

orea

S.B.H

ong

JX902164

JX901593

JX901709

JX902288

JX902042

JX901797

JX901919

S. m

alag

utii

CBS106.80Δ

Sol

anum

sp.

Peru

L.J.Turkensteen

JX902165

JX901594

JX901710

JX902289

JX902043

DQ841154

JX901920

S. m

atric

aria

e C

BS

109

000

Mat

ricar

ia d

isco

idea

TheNetherlands

G.V

erkley

JX902166

JX901595

JX901711

JX902290

JX902044

JX901798

JX901921

C

BS

109

001

Mat

ricar

ia d

isco

idea

TheNetherlands

G.V

erkley

JX902167

JX901596

JX901712

JX902291

JX902045

JX901799

JX901922

Page 4: DNA barcoding of Mycosphaerella species of quarantine ......CPC 15143 Eugenia uniflora Alfenas JX902122 JX901561 JX901666 JX902244 JX901998 FJ493188 JX901875 CPC 15159 Δ Eugenia uniflora

104 Persoonia – Volume 29, 2012

might make this locus less than ideal for resolving some an-amorph genera or cryptic species complexes within these genera(Verkleyetal.2004,Hunteretal.2006,Schochetal.2012).Tocompensateforthisperceivedlackofresolutionwithinthe ITS locus of Mycosphaerella-like species, seven loci were screened, which have individually or in combination been used in the past to successfully identify Mycosphaerella-likespecies.These include β-tubulin(Btub)(Feau etal. (2006)),internaltran-scribedspacer(ITS),Actin(Act)(Schubertetal.2007,Crousetal.Inpress),Translationelongationfactor1-alpha(EF-1α)(Schubertetal.2007,Crousetal.Inpress)and28SnrDNA(LSU)(Hunter etal. 2006),Calmodulin(Cal)(Groenewaldetal.2005)andRNApolymeraseIIsecondlargestsubunit(RPB2)(Quaedvlieg etal. (2011)).Theaimsofthisstudywereto1)identifytheclosestneighboursof seven Mycosphaerella-likespeciesofquarantineimportanceusingsequencesofboththeinternaltranscribedspacerregionsand5.8SnrRNAgeneofthenrDNAoperon(ITS).Theseisolateswerethen2)screenedwiththesevenpreviouslymentionedtestlocitodeterminethemostoptimalDNAbarcoderegion(s)basedonPCRefficiency,thesizeoftheK2Pbarcodegapsandthemolecularphylogeneticresolutionoftheindividualloci.Basedontheobtainedresultsandexistingliterature,3)thetaxonomicstatusofthesequarantinespecieswasthenrevisedemployingthe one fungus one name principle as stated by Hawksworth etal.(2011).

MATERIALS AND METHODS

Isolates and morphologyMostoftheDNAusedduringthisstudywereisolatedfrompurecultures that were either available at, or were made available to, theCBS-KNAWFungalBiodiversityCentre,Utrecht, theNetherlands(CBS).Referencestrainswereeithermaintainedin the culture collection of CBS, the Ministry of Agriculture, For-estryandFisheriesofJapanculturecollection(MAFF)and/orattheLNPV–Mycologie,Malzéville,France(LNPV)(Table1).Fresh collections were made from leaves of diverse hosts by placingmaterialindampchambersfor1–2d.Singleconidialcolonies were established from sporulating conidiomata on Petri dishescontaining2%maltextractagar(MEA)asdescribedearlierbyCrousetal.(1991).Coloniesweresub-culturedontopotato-dextroseagar(PDA),oatmealagar(OA),MEA(Crousetal.2009b),andpineneedleagar(PNA)(Lewis1998),andincubated at 25 °C under continuous near-ultraviolet light to promotesporulation.Morphologicaldescriptionsarebasedonslide preparations mounted in clear lactic acid from colonies sporulatingonPNA.ObservationsweremadewithaZeissV20Discoverystereo-microscope,andwithaZeissAxioImager2lightmicroscopeusingdifferentialinterferencecontrast(DIC)il-luminationandanAxioCamMRc5cameraandsoftware.Colonycharacters and pigment production were noted after 1 mo of growthonMEA,PDAandOA(Crousetal.2009b)incubatedat 25°C.Colony colours (surface and reverse)were ratedaccordingtothecolourchartsofRayner(1970).SequencesderivedinthisstudywerelodgedwithGenBank,thealignmentsinTreeBASE(www.treebase.org),andtaxonomicnoveltiesinMycoBank(www.MycoBank.org)(Crousetal.2004a).

Multi-locus DNA screeningGenomicDNAwasextractedfrommyceliumgrowingonMEA(Table1),usingtheUltraClean®MicrobialDNAIsolationKit(MoBioLaboratories,Inc.,SolanaBeach,CA,USA).Thesestrainswerescreenedforsevenloci(ITS,LSU,Act,Cal,EF-1α,RPB2andBtub)usingtheprimersetsandconditionslistedinTable2.ThePCRamplificationswereperformedinatotalvolumeof 12.5 µL solution containing 10–20ng of templateDNA,

GenBankAccessionno2

Spe

cies

Is

olat

e no

1 H

ost

Loca

tion

C

olle

cted

by

A

CT

CA

L

EF-

Btub

RPB2

ITS

LSU

S. m

usiv

a CBS130559

Hybridpoplar

Canada

J.LeB

oldus

JX902168

JX901597

JX901713

JX902292

JX902046

JX901800

JX901923

D7L2#

P. d

elto

ides

× P

. bal

sam

ifera

Canada

J.LeB

oldus

JX902169

JX901598

JX901714

JX902293

JX902047

JX901801

JX901924

CBS130560

Hybridpoplar

Canada

J.LeB

oldus

JX902170

JX901599

JX901715

JX902294

JX902048

JX901802

JX901925

CBS130561

P. d

elto

ides

× P

. bal

sam

ifera

Canada

J.LeB

oldus

JX902171

JX901600

JX901716

JX902295

JX902049

JX901803

JX901926

CBS130562

Hybridpoplar

Canada

J.LeB

oldus

JX902172

JX901601

JX901717

JX902296

JX902050

JX901804

JX901927

CBS130563

P. d

elto

ides

× P

. bal

sam

ifera

Canada

J.LeB

oldus

JX902173

JX901602

JX901718

JX902297

JX902051

JX901805

JX901928

CBS130564

Pop

ulus

del

toid

es

Canada

J.LeB

oldus

JX902174

JX901603

JX901719

JX902298

JX902052

JX901806

JX901929

CBS130565

Pop

ulus

del

toid

es

Canada

J.LeB

oldus

JX902175

JX901604

JX901720

JX902299

JX902053

JX901807

JX901930

CBS130566

Pop

ulus

del

toid

es

Canada

J.LeB

oldus

JX902176

JX901605

JX901721

JX902300

JX902054

JX901808

JX901931

CBS130567

Pop

ulus

del

toid

es

Canada

J.LeB

oldus

JX902177

JX901606

JX901722

JX902301

JX902055

JX901809

JX901932

CBS130568

Pop

ulus

del

toid

es

Canada

J.LeB

oldus

JX902178

JX901607

JX901723

JX902302

JX902056

JX901810

JX901933

CBS130569

Pop

ulus

del

toid

es

Canada

J.LeB

oldus

JX902179

JX901608

JX901724

JX902303

JX902057

JX901811

JX901934

CBS130570

Pop

ulus

del

toid

es

Canada

J.LeB

oldus

JX902180

JX901609

JX901725

JX902304

JX902058

JX901812

JX901935

CBS130571

Pop

ulus

del

toid

es

Canada

J.LeB

oldus

JX902181

JX901610

JX901726

JX902305

JX902059

JX901813

JX901936

CBS130558Δ

P. d

elto

ides

× P

. bal

sam

ifera

Canada

J.LeB

oldus

JX902182

JX901611

JX901727

JX902306

JX902060

JX901814

JX901937

S. o

besa

CBS354.58

Chr

ysan

them

um in

dicu

m

Germany

R.S

chneider

JX902183

JX901612

JX901728

JX902307

JX902061

AY489285

JX901938

CBS128759

Chr

ysan

them

um m

orifo

lium

RepublicofK

orea

S.B.H

ong

JX902184

JX901613

JX901729

JX902308

JX902062

JX901815

JX901939

CBS128623

Chr

ysan

them

um in

dicu

m

RepublicofK

orea

H.D.S

hin

JX902185

JX901614

JX901730

JX902309

JX902063

JX901816

JX901940

CBS128588

Arte

mis

ia la

vand

ulae

folia

RepublicofK

orea

S.B.H

ong

JX902186

JX901615

JX901731

JX902310

JX902064

JX901817

JX901941

S. p

opul

i CBS391.59Δ

Pop

ulus

pyr

amid

alis

Germany

R.S

chneider

JX902187

JX901616

JX901732

JX902311

JX902065

JX901818

JX901942

Ter

atos

phae

ria n

ubilo

sa

CPC12243Δ

Euc

alyp

tus

glob

ulus

Portugal

A.J.L.P

hillips

JX902188

JX901617

JX901733

JX902312

JX902066

JX901819

JX901943

1 CBS:C

entraalbureauvoorS

chimmelcultures,Utrecht,TheNetherlands;CPC:P

edroCrousworkingcollectionhousedatC

BS,LNPV:laboratoirenationaldelaprotectiondesvégétaux,A

ngers,France.MAFF

:MinistryofAgriculture,ForestryandFisheries,Tokyo,Japan.

2 ACT=Actin,B

tub=β-tubulin,C

AL=Calmodulin,LSU=28S

largesubunitofthenrRNAgene,R

PB2=RNApolymeraseIIsecondlargestsubunit,ITS=InternaltranscribedspacerandEF-1α

=Translationelongationfactor1-alpha.#isolateprovidedbyJ.LeB

oldus.

Tabl

e 1(cont.)

Page 5: DNA barcoding of Mycosphaerella species of quarantine ......CPC 15143 Eugenia uniflora Alfenas JX902122 JX901561 JX901666 JX902244 JX901998 FJ493188 JX901875 CPC 15159 Δ Eugenia uniflora

105W.Quaedvliegetal.:DNAbarcodingofMycosphaerella

1 ×PCRbuffer,0.7µLDMSO(99.9%),2mMMgCl2,0.4µMofeachprimer,25µMofeachdNTPand1.0UBioTaqDNApolymerase (BiolineGmbH, Luckenwalde,Germany).PCRamplificationconditionsweresetasfollows:aninitialdenatura-tiontemperatureof96°Cfor2min,followedby40cyclesofdenaturationtemperatureof96°Cfor45s,primerannealingatthetemperaturestipulatedinTable3,primerextensionat72°Cfor90sandafinalextensionstepat72°Cfor2min.TheresultingfragmentsweresequencedusingthePCRprimerstogetherwithaBigDyeTerminatorCycleSequencingKitv.3.1(AppliedBiosystems,FosterCity,CA).Sequencingreactionswere performed as described by Cheewangkoon etal.(2008).

Phylogenetic analysisAbasicalignmentoftheobtainedsequencedatawasfirstdoneusingMAFFTv.6(http://mafft.cbrc.jp/alignment/server/index.html(Katohetal.2002)andifnecessary,manuallyimprovedinBioEdit v.7.0.5.2 (Hall 1999).Bayesiananalyses (criticalvalueforthetopologicalconvergencediagnosticsetto0.01)wereperformedontheindividuallociusingMrBayesv.3.2.1(Huelsenbeck&Ronquist2001)asdescribedbyCrous etal.(2006b).SuitablemodelswerefirstselectedusingModelsofnucleotide substitution for each gene as determined using MrModeltest (Nylander 2004), and included for each genepartition.ThesubstitutionmodelsforeachlocusareshowninTable3.Teratosphaeria nubilosa(CPC12243)wasusedasoutgroupforallphylogeneticanalyses.

Kimura-2-parameter valuesInter-and intraspecificdistances foreach individualdatasetwerecalculatedusingMEGAv.4.0(Tamuraetal.2007)usingtheKimura-2-parameter(pair-wisedeletion)model.

RESULTS

Identification of the ideal DNA barcodeThe dataset of the seven test loci was individually tested for threefactors,namelyamplificationsuccess,Kimura-2-parame-tervalues(barcodegap)andmolecularphylogeneticresolution.

Amplification successTheamplificationsuccessscoresoftheseventestlocionthe118strainsvariedfrom100%amplificationsuccessforbothITSandLSUtoonly90%forCal.Theotherfourtestloci(EF-1α,Act,RPB2andBtub)gaveamplificationsuccessscoresofrespectively97,98,99and100%(Table3).ThetestedCalprimersfailedtoamplifythequarantinespeciesPseudocerco­spora pini­densiflorae and several other associated Pseudocer­cosporaspecies.Consequently,Calisconsideredunsuitableasabarcodinglocusforthisquarantinedataset.Althoughithadaveryhighoverallamplificationsuccessrate(99%),RPB2 failed to amplify inM. populicola.AlthoughM. populicola is not a quarantine species, it is very closelyrelated andmorphologically similar to the quarantine spe-cies Septoria musiva.Thisdeficit,combinedwiththefactthatRPB2amplificationwithin thedatasetwasnot robust (oftenmultiplePCRand/or sequencing runswere needed to getgoodsequencingreads),makesRPB2unsuitabletoserveasabarcodinglocusforthequarantinedataset.Theremainingfivetestlocisuccessfullyamplifiedallquarantinespecies.

Molecular phylogeniesGeneral informationper locus for theanalysis, suchas thenumber of characters used per dataset and the selected model aredisplayedinTable3.ThetreesresultingfromtheBayesiananalyses of the seven individual loci showed that most loci have difficultydiscriminatingbetweencloselyrelatedSeptoria and Pseudocercosporaspecies.Decidingthesequencedifference

Locus Primer Primersequence5’to3’: Annealing Orientation Reference temperature (°C)

Actin ACT-512F ATGTGCAAGGCCGGTTTCGC 52 Forward Carbone&Kohn(1999)Actin ACT2Rd ARRTCRCGDCCRGCCATGTC 52 Reverse Groenewaldetal.(Inpress)Calmodulin CAL-235F TTCAAGGAGGCCTTCTCCCTCTT 50 Forward PresentstudyCalmodulin CAL2Rd TGRTCNGCCTCDCGGATCATCTC 50 Reverse Groenewaldetal.(Inpress)Translation elongation factor-1α EF1-728F CATCGAGAAGTTCGAGAAGG 52 Forward Carbone&Kohn(1999)Translation elongation factor-1α EF-2 GGARGTACCAGTSATCATGTT 52 Reverse O’Donnelletal.(1998)β-tubulin T1 AACATGCGTGAGATTGTAAGT 52 Forward O’Donnell&Cigelnik(1997)β-tubulin β-Sandy-R GCRCGNGGVACRTACTTGTT 52 Reverse Stukenbrocketal.(2012)RNApolymeraseIIsecondlargestsubunit fRPB2-5F GAYGAYMGWGATCAYTTYGG 49 Forward Liuetal.(1999)RNApolymeraseIIsecondlargestsubunit fRPB2-414R ACMANNCCCCARTGNGWRTTRTG 49 Reverse Quaedvliegetal.(2011)LSU LSU1Fd GRATCAGGTAGGRATACCCG 52 Forward Crousetal.(2009a)LSU LR5 TCCTGAGGGAAACTTCG 52 Reverse Vilgalys&Hester(1990)ITS ITS1 GAAGTAAAAGTCGTAACAAGG 52 Forward Whiteetal.(1990)ITS ITS4 TCCTCCGCTTATTGATATGC 52 Reverse Whiteetal.(1990)

Table 2Primersusedinthisstudyforgenericamplificationandsequencing.

Locus Act Cal EF1 RPB2 Btub ITS LSU

Amplificationsucces(%) 98 90 97 99 100 100 100Q-amplificationsucces(%) 100 86 100 100 100 100 100Numberofcharacters 615 385 800 337 430 658 751Uniquesitepatterns 235 228 551 165 290 214 120Sampledtrees 198 686 716 148 238 728 406Numberofgenerations(×1000) 150 642 857 123 168 433 272Substitutionmodelused GTR-I-gamma HKY-I-gamma HKY-I-gamma GTR-I-gamma HKY-I-gamma GTR-I-gamma GTR-I-gamma

Table 3Amplificationsuccess,phylogeneticdataandthesubstitutionmodelsusedinthephylogeneticanalysis,perlocus.

Page 6: DNA barcoding of Mycosphaerella species of quarantine ......CPC 15143 Eugenia uniflora Alfenas JX902122 JX901561 JX901666 JX902244 JX901998 FJ493188 JX901875 CPC 15159 Δ Eugenia uniflora

106 Persoonia – Volume 29, 2012

Fig. 1SubsetofBayesian50%majorityruleconsensustreesoftheindividualtestlociincorporatingallMycosphaerellaceaequarantinespecies(markedingrey)andtheirclosestneighbourspeciesasdeterminedfromthefull-scaleindividuallocitreescontainingthecompletedataset(availableassupplementarydatainTreeBASE).Thefollowingabbreviationswereusedforthegenera:T = Teratosphaeria, M = Mycosphaerella, Ph = Phaeophleospora, P = Pseudocer­cospora, D = Dothistroma and S = Septoria.Astoprule(setto0.01)forthecriticalvalueforthetopologicalconvergencediagnosticwasusedfortheBayesiananalyses.ThetreeswereallrootedtoTeratosphaeria nubilosa(CPC12243).Thescalebarindicates0.1expectedchangespersite.

TEF1

0.97

0.55

0.78

0.67

0.93

0.81

0.72

1

0.99

1

1

1

Teratosphaeria nubilosa CPC 12243

L. guatemalensis IMI 281598

Mycosphaerella sp. CBS 111166

L. acicola CBS 871.95

L. acicola CBS 133789

L. acicola LNPV 243

L. longispora CPC 17940

L. longispora CBS 133602

L. brevispora CBS 133601

D. septosporum CPC 16798

D. pini CBS 116484

M. ellipsoidea CBS 110843

M. laricis-leptolepidis MAFF 410633

M. sumatrensis CBS 118501

P. angolensis CBS 149.53

P. sphaerulinae CBS 112621

S. citri CBS 315.37

S. malagutii CBS 106.80

M. populicola CBS 100042

S. musiva CBS 130558

P. pini-densiflorae CBS 125138

P. pyracanthigena CPC 10808

0.1

743/745 nt

744/745 nt

747/747 nt

747/747 nt

737/747 nt

LSU

0.78

0.73

0.58

0.97

1

1

1

0.96

1

1

0.74

0.83

1

1

Teratosphaeria nubilosa CPC 12243

P. angolensis CBS 149.53

P. pini-densiflorae CBS 125139

P. pyracanthigena CPC 10808

M. endophytica CBS 111519

M. ellipsoidea CBS 110843

M. sumatrensis CBS 118501

M. laricis-leptolepidis MAFF 410633

P. clematidis CPC 11657

L. brevispora CBS 133601

D. pini CBS 116484

D. septosporum CBS 383.74

L. guatemalensis IMI 281598

L. longispora CPC 17940

L. longispora CBS 133602

S. malagutii CBS 106.80

S. cucurbitacearum CBS 178.77

S. musiva CBS 130558

M. populicola CBS 100042

L. acicola CBS 133789

L. acicola CBS 871.95

L. acicola LNPV 243

0.1

488/495 nt

465/471 nt

411/436 nt

473/474 nt

462/466 nt

ITS

1

0.92

0.75

0.8

0.95

1

0.98

0.91

0.99

0.58

1

0.75

0.99

0.96 1 1

Teratosphaeria nubilosa CPC 12243

Ph. eugeniae CPC 15159

L. brevispora CBS 133601

P. angolensis CBS 149.53

M. sumatrensis CBS 118502

M. laricis-leptolepidis MAFF 410234

M. ellipsoidea CBS 110843

S. malagutii CBS 106.80

S. lycopersici CBS 354.49

S. musiva CBS 130556

S. populi CBS 391.59

P. clematidis CPC 11657

D. septosporum CBS 543.74

D. pini CBS 116484

L. acicola CBS 871.95

L. longispora CPC 17940

P. pini-densiflorae CBS 125138

P. pyracanthigena CPC 10808

L. acicola CBS 133789

L. acicola LNPV 243

L. guatemalensis IMI 281598

L. longispora CBS 133602

0.1

310/322 nt

336/337 nt

326/337 nt

1

1

0.99

0.6

0.73

1

0.77

1

1

0.71

1

Teratosphaeria nubilosa CPC 12243

M. laricis-leptolepidis MAFF 410234

S. populi CBS 391.59

S. citri CBS 315.37

M. ellipsoidea CBS 110843

P. clematidis CPC 11657

P. angolensis CBS 149.53

S. musiva CBS 130556

M. populicola CBS 100042

S. lycopersici CBS 354.49

S. malagutii CBS 106.80

D. septosporum CBS 383.74

D. pini CBS 116484

L. brevispora CBS 133601

P. pyracanthigena CPC 10808

P. pini-densiflorae CBS 125138

L. guatemalensis IMI 281598

L. acicola CBS 133789

L. longispora CPC 17940

L. longispora CBS 133602

L. acicola CBS 871.95

L. acicola LNPV 243

0.1

1

453/462 nt

371/387 nt

275/316 nt

RPB2 - alpha

LSU ITS

RPB2 TEF1-alpha

Page 7: DNA barcoding of Mycosphaerella species of quarantine ......CPC 15143 Eugenia uniflora Alfenas JX902122 JX901561 JX901666 JX902244 JX901998 FJ493188 JX901875 CPC 15159 Δ Eugenia uniflora

107W.Quaedvliegetal.:DNAbarcodingofMycosphaerella

that constitutes a positive discrimination threshold between spe-ciesisarbitrary.Ifathresholdvalueofatleastfivebasepairsdifference is accepted as successfully discriminating between species, then only EF-1α discriminated between all tested Q-species(Fig.1).Ifwesetthethresholdvaluetofourbasepairs difference, then Cal, EF-1α and Btub successfully discrimi-natedbetweenalltestedspecies(Fig.1).The ITS, LSU, Act and

RPB2 lociwere unable to discriminate among the various Q-speciesandcloselyrelatedneighbours.

Kimura-2-parameter valuesTheKimura-2-parameterdistributiongraphs(Fig.2)visualisetheinter-andintraspecificdistancesperlocuscorrespondingtothebarcodinggap(Hebertetal.2003).Agoodbarcodinglocus

301/317 nt

300/307 nt

307/315 nt

305/322 nt

307/311 nt

0.8

1

0.95

1

0.9

1

1

1

1

0.52

1

0.98

1

1

Teratosphaeria nubilosa CPC 12243

S. lycopersici CBS 354.49

S. malagutii CBS 106.80

M. populicola CBS 100042

S. musiva CBS 130566

Mycosphaerella sp. CBS 111166

D. pini CBS 116484

D. septosporum CBS 16798

L. brevispora CBS 133601

M. laricis-leptolepidis MAFF 410234

M. sumatrensis CBS 118501

P. angolensis CBS 149.53

P. vitis CPC 11595

L. guatemalensis IMI 281598

L. longispora CPC 17940

L. longispora CBS 133602

P. pini-densiflorae CBS 125138

P. paraguayensis CBS 111286

L. acicola CBS 133789

L. acicola CBS 871.95

L. acicola LNPV 243

0.1

1

0.72

1

0.98

1

0.97

0.65

1

1

1

0.76

Teratosphaeria nubilosa CPC 12243

S. lycopersici CBS 128654

S. malagutii CBS 106.80

L. guatemalensis IMI 281598

L. brevispora CBS 133601

M. laricis-leptolepidis MAFF 410234

M. sumatrensis CPC 118501

L. acicola CBS 133789

P. angolensis CBS 149.53

P. tereticornis CPC 13315

L. acicola CBS 871.95

L. acicola LNPV 243

L. longispora CPC 17940

L. longispora CBS 133602

M. ellipsoidea CPC 110843

M. populicola CPC 100042

S. musiva CBS 130566

D. pini CBS 116484

D. septosporum CPC 16798

0.1

257/261 nt

282/303 nt

287/302 nt

294/304 nt

1

0.65

0.6

0.82

1

0.83

1

1

0.98

1

1

1

Teratosphaeria nubilosa CPC 12243

L. guatemalensis IMI 281598

L. brevispora CBS 1336012

M. laricis-leptolepidis MAFF 410234

M. sumatrensis CPC 118501

L. acicola CBS 871.95

L. acicola LNPV 243

L. acicola CBS 133789

L. longispora CPC 17940

L. longispora CBS 133602

D. pini CBS 116484

D. septosporum CPC 16798

P. angolensis CBS 149.53

P. clematidis CPC 11657

P. pini-densiflorae CBS 125138

P. paraguayensis CBS 111286

S. musiva CBS 130566

M. populicola CBS 100042

S. malagutii CBS 106.80

S. lycopersici CBS 354.49

0.1

0.6

535/537 nt

530/540 nt

536/545 nt

294/304 nt

- tubuli

Calmoduli 1

0.98

0.92

0.99

Teratosphaeria nubilosa CPC 12243

L. guatemalensis IMI 281598

L. brevispora CBS 133601

L. acicola LNPV 241

L. longispora CPC 17940

L. longispora CBS 133602

L. acicola CBS 133789

L. acicola LNPV243

L. acicola LNPV 242

L. acicola LNPV 247

L. acicola LNPV 250

L. acicola CBS 871.95

L. acicola LNPV 248

L. acicola CBS 133791

L. acicola WPF 4.12

L. acicola WFP 73.12

L. acicola LNPV 246

L. acicola LNPV 249

L. acicola LNPV 252

L. acicola LNPV 253

L. acicola LA773B

L. acicola CBS 133790

0.1

2x

Lecanosticta guatemalensis

Lecanosticta acicola

Lecanosticta longispora

Lecanosticta brevisporaFig. 1(cont.)

β-tubulin Actin

Calmodulin

Lecanosticta7xmultigene

Page 8: DNA barcoding of Mycosphaerella species of quarantine ......CPC 15143 Eugenia uniflora Alfenas JX902122 JX901561 JX901666 JX902244 JX901998 FJ493188 JX901875 CPC 15159 Δ Eugenia uniflora

108 Persoonia – Volume 29, 2012

shouldnot overlapbetween inter- and intraspecificKimura-2-parameterdistances.The individual test loci showed varying degrees of overlap in theirKimura-2-parameterdistributiongraphs.Forexample,Act,ITSandLSUhadmuchhigheroverlapthanRPB2,EF-1α, Cal andBtub,whichhadminimaloverlap.Theprimarycauseforthe existing Kimura-2-parameter overlap within the test loci is thelowinterspecificvariationbetweenthePseudocercospora speciesusedinthisdataset.ExcludingthePseudocercospora

speciesfromtheanalyses(datanotshown)removedtheexist-ingKimura-2overlapforRPB2,EF-1α and Btub, while reduc-ingitsignificantlyinAct.ExcludingthesePseudocercospora species had only negligible effect on the ITS and LSU Kimura-2-parameteroverlap(i.e.theirlackofvariationismoreuniver-sal).BecauseCalhadavery lowamplificationsuccessratewithin the negatively affecting Pseudocercospora species used inthisdataset,itsKimura-2-parametergraphissubsequentlymuch less negatively affected (i.e. noKimura-2-parameter

Fig. 2Frequency distribution of Kimura-2-parameter distances for theseventestloci.

0102030405060708090

100

Actin

Distance

Freq

uenc

y

05

1015202530354045

0.01

0.04

0.07

0.10

0.13

0.16

0.19

0.22

0.25

0.28

0.31

0.34

0.37

0.40

0.43

Calmodulin

intra

inter

Distance

0

20

40

60

80

100

120TEF 1-alpha

intra

inter

Distance

0

20

40

60

80

100

120

0.01

0.04

0.07 0.

1

0.13

0.16

0.19

0.22

0.25

0.28

0.31

0.34

0.37 0.

4

0.43

0.46

β-tubulin

intra

inter

Distance

0

20

40

60

80

100

120

0.02

0.06 0.

1

0.14

0.18

0.22

0.26 0.

3

0.34

0.38

0.42

0.46 0.

5

0.54

0.58

0.62

RPB2

intra

inter

Distance

0

10

20

30

40

50

60

70

80

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

ITS

intra

inter

Distance

010

30

60708090

100

0.00

0.01

0.01

0.02

0.02

0.03

0.03

0.04

0.04

0.05

0.05

0.06

0.06

0.07

0.07

0.08

0.08

0.09

0.09

0.10

LSU

intra

inter

Distance

5040

20

intra

inter

Freq

uenc

y

Freq

uenc

y

Freq

uenc

y

Freq

uenc

y

Freq

uenc

yFr

eque

ncy

. ........... ..

..... .. ...... ...

β-tubulin

TEF1-alpha

Actin Calmodulin

ITS

RPB2

LSU

Page 9: DNA barcoding of Mycosphaerella species of quarantine ......CPC 15143 Eugenia uniflora Alfenas JX902122 JX901561 JX901666 JX902244 JX901998 FJ493188 JX901875 CPC 15159 Δ Eugenia uniflora

109W.Quaedvliegetal.:DNAbarcodingofMycosphaerella

overlap)thantheotherfourprotein-codingtestloci.TheITSand LSU loci, either with or without the Pseudocercospora dataset, showed a generally large Kimura-2-parameter over-lap.BasedonKimura-2-parametervalues, theRPB2,Btub,Act, Cal and EF-1α loci are not ideally suited for identifying Pseudocercospora species, but havea sufficient barcodinggap to successfully serve as the barcoding locus for the other speciesinthisdataset.BothITSandLSUarenotsuitabletoserveasbarcodinglociforthisdataset.

Taxonomy

Dothistroma septosporum (Dorog.)M.Morelet(as‘septos­pora’), Bull.Soc.Sci.Nat.Archéol.ToulonVar.177:9.1968

Basionym.Cytosporina septospora Dorog.,Bull.Trimestriel Soc.Mycol.France27:106.1911. ≡Septoriella septospora(Dorog.)Sacc.apudTrotter,Syll.Fung.25:480.1931. ≡Septoria septospora(Dorog.)Arx,Proc.Kon.Ned.Akad.Wetensch. C 86,1:33.1983. ≡Dothistroma septosporum var. keniense(M.H.Ivory)B.Sutton,inSut-ton,Thecoelomycetes.Fungiimperfectiwithpycnidiaacervuliandstromata(Kew):174.1980. = Actinothyrium marginatum Sacc., NuovoGiorn.Bot.Ital.27: 83.1920. = Dothistroma pinivar. lineare Thyr&C.G.Shaw, Mycologia 56:107.1964. = Dothistroma pinivar.kenienseM.H.Ivory(as‘keniensis’),Trans.Brit.Mycol.Soc.50:294.1967. = Mycosphaerella piniRostr., inMunk,DanskBot.Ark.17,1:312.1957. ≡Eruptio pini (Rostr.) M.E.Barr, Mycotaxon 60:438.1996. = Scirrhia pini A.Funk&A.K.Parker, Canad.J.Bot.44:1171.1966. ≡Mycosphaerella pini (A.Funk&A.K.Parker)Arx, Proc.Kon.Ned.Akad.Wetensch.C86,1:33.1983(nom.illegit.,Art.53).

Specimens examined.Brazil, São Paulo, Santo Antonio do Pinhal, on needles of Pinus pinaster, 1974,T. Namekata,CBS543.74. –Ecuador, on needles of P. radiata,CPC3779=CBS112498.–FrancE, Meurthe et Moselle,Arboretumd’Amance,onneedlesofP. coulteri, 27Feb.1970,CBS383.74.–ThE nEThErlands, Lunteren,PinetumDennenhorst, onneedlesof Pinus mugo ‘Rostrata’,1June2009,W. Quaedvlieg,CPC16799,CPC16798=CBS128782.

Notes — Dothistroma septosporum is the causal agent of Dothistromaneedleblight (Redbanddiseaseofpine).Thisdisease is endemic to virtually all continents and occurs on a small number of Pinus and Larixspp.where itcancausevarying degrees of needle blight depending on humidity and temperature.Periodsofhigherhumidityandtemperatureleadtomoreseveresymptoms(Evans1984,Barnesetal.2004,EPPO2012).BasedonLSUdata,isolatesofM. pini cluster with D. pini and M. africana(Crousetal.2009c,2011b)anda large number of Passalora-likespecies (Videiraetal.un-publ.data).Because thegenusMycosphaerella is linked to Ramularia(Verkleyetal.2004,Crousetal.2009c),thenameDothistroma should be used for this clade, and D. septosporum forthisspecies.

Lecanosticta acicola(Thüm.)Syd.,Ann.Mycol.22:400. 1924.—Fig.3

Basionym.Cryptosporium acicolaThüm.,Flora178.1878. ≡Septoria acicola(Thüm.)Sacc.,Syll.Fung.3:507.1884. ≡Dothistroma acicola (Thüm.)Schischkina&Tzanava,NovostiSist.Nizsh.Rast.1967:277.1967. = Lecanosticta piniSyd.,Ann.Mycol.20:211.1922. = Oligostroma acicolaDearn.,Mycologia18:251.1926. ≡Scirrhia acicola(Dearn.)Sigg.,Phytopathology29:1076.1939. = Systremma acicola(Dearn.)F.A.Wolf&Barbour,Phytopathology 31:70.1941. = Mycosphaerella dearnessiiM.E.Barr,Contr.Univ.MichiganHerb.9:587.1972.

On PNA: Conidiomataacervular,erumpent,brown,upto600µmdiam,openingbymeansoflongitudinalslit.Conidiophores subcylindrical, densely aggregated, dark brown, verruculose, unbranchedorbranchedatbase,1–3-septate,20–60×4–6µm.Conidiogenous cells terminal, integrated, subcylindrical, brown, verruculose, 8–20× 3–4.5 µm; proliferating sev-eraltimespercurrentlynearapex.Conidia solitary, straight to curved, subcylindrical with obtusely rounded apex, base trun-cate,brown,guttulate,verruculose,(0–)3(–8)-septate,base2.5–3.5µmdiam,withminutemarginalfrill,(17–)30–45(–55)×(3–)4(–4.5)µm. Culture characteristics — Colonies erumpent, spreading, with sparse aerial mycelium, surface folded, with smooth, lobatemargin; colonies reaching 7mmdiamafter 2wk at25°C.OnMEAsurfaceolivaceous-greytoiron-grey,reverseolivaceous-grey.OnPDAsurfaceolivaceous-greywithdiffuseumberpigmentinagar,reversepaleolivaceous-grey.OnOAsurfaceolivaceous-greywithdiffuseumberpigment.

Specimens examined.FrancE,Gironde,LeTeich,onneedlesofPinus radiata,Apr.1995,M. Morelet,CBSH-21114,cultureCBS871.95.–liThu-ania, on needles of Pinus mugo, 2009, S. Markovskaja, A. Kačergius & A. Treigienė,CBSH-21109, cultures LA773A& LA773B=CBS133790. –MExico, on needles of a Pinussp.,30Nov.2009,M. de Jesús Yáñez­Morales, CBSH-21112,culturesCPC17822=CBS133789.–USA,SouthCarolina,Aiken, needles of Pinus caribaea,1876,H.W. Ravenel,IMI91340,isotypeofCryptosporium aciculaexPadovaNo1484;Arkansas,PikeCity,alt.700ft,needles of Pinus(palustris or taeda),24Apr.1918,coll.J.A. Hughes,det.Sydow, syntype of Lecanostricta pini,BPI393329,BPI393331;Florida,SilverSpring, needles of Pinus palustris,27Feb.1919,coll.Geo G. Hedgcock, det.J. Dearness, type of Oligostroma acicola,BPI643015;Maine,Bethel,on needles of P. strobus,14June2011,coll.B. Ostrofsky,det.K. Broders, WPF4.12;ibid.,onneedlesofP. strobus,15June2011,coll.B. Ostrofsky, det.K. Broders,WPF13.12;NewHampshire,Blackwater, onneedles of P. strobus,25June2011,coll.J. Weimer,det.K. Broders,WPF13.12,epitypedesignatedhereCBSH-21113,cultureex-epitypeCBS133791.

Notes — Lecanosticta acicola is the causal agent of brown spot needle blight on Pinus spp.This disease is endemicto North and Central America, the central EPPO region and Eastern Asia where it causes yellowish, resin-soaked lesions withaprominentorangeborderon infectedneedles.As thedisease progresses, lesions coalesce and cause defoliation and dieback.Overseveralyearsthismayleadtobranchandtreedeath(Evans1984,Barnesetal.2004,EPPO2012).Basedon LSU data, L. acicolaclustersinauniquecladewithintheMycosphaerellaceae, for which Crous etal.(2009c)chosethegeneric name Lecanosticta(basedonL. acicola).ThenameMycosphaerella dearnessii is no longer applicable, as Myco­sphaerella s.str.islinkedtothegenusRamularia(Verkleyetal.2004,Crousetal.2009c).Thecorrectnameforthisspeciesshould therefore be Lecanosticta acicola.

Lecanosticta brevispora Quaedvlieg & Crous, sp. nov. — MycoBankMB801940;Fig.4

Etymology.Namedafteritsrelativelyshortconidia.

On PNA: Conidiomata acervular, erumpent, brown, up to 500 µmdiam,openingbymeansoflongitudinalslit.Conidiophores subcylindrical, densely aggregated, dark brown, verruculose, unbranched or branched at base, 0–2-septate, 10–25 ×3–4µm.Conidiogenous cells terminal, integrated, subcylindrical, brown,verruculose,5–8×2–3µm;proliferatingseveraltimespercurrentlynearapex.Conidia solitary, subcylindrical to nar-rowly fusoid-ellipsoidal, with subobtusely rounded apex, base truncate,brown,verruculose,frequentlywithmucoidsheath,(0–)1-septate, base 2 µmdiam,withminutemarginal frill,(11–)13–15(–18)×3(–4)µm. Culture characteristics — Colonies flat to somewhat erum-pent, spreading, with sparse aerial mycelium, surface folded,

Page 10: DNA barcoding of Mycosphaerella species of quarantine ......CPC 15143 Eugenia uniflora Alfenas JX902122 JX901561 JX901666 JX902244 JX901998 FJ493188 JX901875 CPC 15159 Δ Eugenia uniflora

110 Persoonia – Volume 29, 2012

Fig. 3 Lecanosticta acicola.a–c.Needleswithascomata,asciandascospores(BPI643015);d–j.needleswithacervuli,conidiaandspermatia(BPI39329);k.colonyonPDA;l.colonyonSNA;m–p.conidiaformedonPNA(k–p=CPC12822).—Scalebars=10µm.

cb

d

a

g

h

i j

k m

n

l

e f

o p

Fig. 4 Lecanosticta brevispora(CPC18092).a,b.Conidiogenouscellsgivingrisetoconidia;c–e.conidia(notemucoidsheath).—Scalebars=10µm.

cb da e

Page 11: DNA barcoding of Mycosphaerella species of quarantine ......CPC 15143 Eugenia uniflora Alfenas JX902122 JX901561 JX901666 JX902244 JX901998 FJ493188 JX901875 CPC 15159 Δ Eugenia uniflora

111W.Quaedvliegetal.:DNAbarcodingofMycosphaerella

with smooth, lobate margin; colonies reaching 15 mm diam after 2wkat25°C.OnMEAsurfacedirtywhitewithpatchesofpaleolivaceous-grey, reverse olivaceous-grey in centre, luteous in outerregion.OnPDAsurfacedirtywhiteincentre,isabellineinouterregion,andisabellineinreverse.OnOAsurfacedirtywhitewithdiffuseumberouterregion.

Specimen examined.MExico, on needles of a Pinussp.,24Oct.2009,M. de Jesús Yáñez­Morales, holotype CBS H-21110, cultures ex-type CPC 18092=CBS133601.

Notes — Lecanosticta brevispora is distinguished from the other taxa within the genus by either Btub or EF-1α.Mor-phologically it is distinct in having much smaller conidia than L. acicola; with narrower and less septate conidia than L. ci­nereum (1–3-septate,(12–)14–18(–20)×(3.5–)4–5µm,withobtuseapices),andL. gloeospora(1–3-septate,(9.5–)10.5–14.5(–17)×3.5–4.5µm,withobtuseapices)(Evans1984).

Lecanosticta guatemalensis Quaedvlieg & Crous, sp. nov. — MycoBankMB801941;Fig.5

Etymology.Namedafterthecountrywhereitwascollected,Guatemala.

On PNA: Conidiomata acervular, erumpent, brown, up to 500 µmdiam,openingbymeansoflongitudinalslit.Conidiophores subcylindrical, densely aggregated, brown, verruculose, un-branchedorbranchedatbase,0–3-septate,15–25×3–4µm.Conidiogenous cells terminal, integrated, pale brown, finelyverruculose, subcylindrical to narrowly ampulliform, 6–15× 2.5–3.5µm;proliferatingseveraltimespercurrentlynearapex.Conidia solitary, straight to curved, subcylindrical with subob-tusely rounded apex, tapering towards truncate base, pale brown,finelyverruculose,(0–)1(–2)-septate,base2–2.5µmdiam,withminutemarginalfrill,(12–)15–20(–23)×3(–3.5)µm. Culture characteristics — Colonies erumpent, spreading, with sparse aerial mycelium, surface folded, with smooth, lobate margin, exceptonPDA,wheremargin is feathery; coloniesreaching30mmdiamafter2wkat25°C.OnMEAsurfacedirtywhite, reverse cinnamon with patches of isabelline, olivaceous-greytoiron-grey,reverseolivaceous-grey.OnPDAsurfaceandreverseolivaceous-grey.OnOAsurfacebuff.

Specimen examined.GuaTEMala, on needles of Pinus oocarpa,28Apr.1983,H.C. Evans,holotypeCBSH-21108,cultureex-typeIMI281598.

Notes — Lecanosticta guatemalensis can easily be distin-guished from the other taxa presently known within the genus by either Btub or EF-1α.Morphologicallyitisdistinguishedbyhaving conidia that are smaller than those of L. acicola, but larger than those of L. brevispora.

Lecanosticta longisporaMarm.,Mycotaxon76:395.2000.—Fig.6

On PNA: Conidiomataacervular,erumpent,brown,upto600µmdiam,openingbymeansoflongitudinalslit.Conidiophores subcylindrical, densely aggregated, brown, verruculose, un-branched or branched at base, 0–4-septate, 15–55 × 3–4µm.Conidiogenous cells terminal, integrated, subcylindrical, brown, verruculose, 10–15 ×2–3.5µm;proliferatingseveraltimespercurrentlynearapex.Conidia solitary, subcylindrical with subobtusely rounded apex, base truncate, brown, gut-tulate,verruculose,1–3-septate,base2µmdiam,withminutemarginalfrill,(16–)30–45(–50)×3(–4)µm. Culture characteristics — Colonies flat, somewhat erum-pent, spreading, with sparse aerial mycelium, surface folded, withsmooth,lobatemarginonMEA,butfeatheryonPDAandOA;coloniesreaching20mmdiamafter2wkat25°C.OnMEAsurfacepaleolivaceous-greywithpatchesofolivaceous-grey.OnPDAsurfaceolivaceous-grey, reverse iron-grey.OnOAsurface dirty white in centre, with patches of pale olivaceous-greyandolivaceous-grey.

Specimens examined.MExico,NuevoLeón,Galeana,CerrodelPotosí,on Pinus culminicola, J.G. Marmolejo, 6June1993,holotypeCFNL;Mi-choacanState,Zinapecuaroarea,onneedlesofaPinussp.,24Oct.2009, M. de Jesús Yáñez-Morales & C. Méndez-Inocencio, epitype designated here CBSH-21111,culturesex-epitypeCPC17941,CPC17940=CBS133602.

Notes — Lecanosticta longispora is distinguished from the other taxa within the genus by either Btub or EF-1α.Morpho-logically it is similar to L. acicola in conidial length, but distinct inthatconidiahave1–3septa(Marmolejo2000).

Mycosphaerella laricis-leptolepidis Kaz.Itô,K.Satô&M.Ota(as‘larici­leptolepis’),Bull.Gov.ForestExp.Sta.96:84.1957

Specimens examined. Japan, Yamagata, on needles of Larix leptolepis, 1954–1955, K. Itô,MAFF410081;Hokkaidou,onneedlesofL. leptolepis, 1954–1955, T. Yokota,MAFF410632,MAFF410633;Yamagata,onneedlesof L. leptolepis, May 1954, N. Ota,MAFF410234.

Fig. 5 Lecanosticta guatemalensis(IMI281598).a.ColonysporulatingonPDA;b.colonysporulatingonSNA;c–e.conidiogenouscellsgivingrisetoconidia;f,g.conidia.—Scalebars=10µm.

cb

d

a

ge f

Page 12: DNA barcoding of Mycosphaerella species of quarantine ......CPC 15143 Eugenia uniflora Alfenas JX902122 JX901561 JX901666 JX902244 JX901998 FJ493188 JX901875 CPC 15159 Δ Eugenia uniflora

112 Persoonia – Volume 29, 2012

Notes — Mycosphaerella laricis­leptolepidis is the causal agentofneedlecastofJapanese larch.Thisdisease isen-demic to East Asia and Japan where it occurs on indigenous Larixspecies.Itcausesbrownnecroticlesionsontheneedlesthat coalesce, leading to defoliation, stunted growth and even host plant death (Kobayashi 1980,EPPO2012).BasedonLSU data, M. laricis­leptolepidis clusters in a clade described as ‘Polythrincium’byCrous etal.(2009c).AlthoughthegenusMycosphaerellas.str.isdistinctfromthe‘Polythrincium’clade,the name M. laricis­leptolepidis is retained until more data becomesavailable.

Pseudocercospora angolensis(T.Carvalho&O.Mendes) Crous&U.Braun,Sydowia55:301.2003

Basionym.Cercospora angolensisT.Carvalho&O.Mendes,Bol.Soc.Brot.27:201.1953. ≡Phaeoramularia angolensis (T.Carvalho&O.Mendes)P.M.Kirk,Mycopathologia94:177.1986. ≡Pseudophaeoramularia angolensis(T.Carvalho&O.Mendes)U.Braun,Cryptog.Mycol.20:171.1999.

Specimens examined.anGola,Bié,fromCitrus sinensis,Dec.1953,T. de Carvalho & O. Mendes, holotype IMI56597,ex-typeCBS149.53.–ziMBaBwE, from Citrussp.,March1993,P.W. Crous,CPC751=CBS244.94;ibid., from Citrussp.,2002,P.W. Crous,CPC4111=CBS112748;ibid., from Citrus sp.,Sept.2002,M.C. Pretorius,CBSH-20851,CPC4118=CBS112933;ibid., from Citrussp.,2002,P.W. Crous,CPC4117=CBS115645.

Notes — Pseudocercospora angolensis is the causal agent ofCitrus leafspot (Citrus fruitspot)and isendemic tosub-SaharanAfrica,whereitoccursonallmajorCitrusspecies.Itcauses greenish yellow lesions on leaves and fruit that coalesce and turn necrotic, leading to defoliation or abscission of young fruit(Timmeretal.2000,Crous&Braun2003,EPPO2012).Based on LSU data, P. angolensis clusters within the Pseu­docercosporaclade(Pretoriusetal.2003,Crousetal.2009c,Inpress).As thegenusPseudocercospora is taxonomically correct and in current use, Pseudocercospora angolensis is thecorrectnameforthecausalagentofCitrusfruitleafspot.

Pseudocercospora pini-densiflorae (Hori&Nambu)Deigh-ton,Trans.Brit.Mycol.Soc. 88:390.1987

Basionym.Cercospora pini­densifloraeHori&Nambu,TokyoJ.PlantProtection 4:353.1917. ≡Cercoseptoria pini­densiflorae (Hori&Nambu)Deighton, Mycol.Pap. 140:167.1976. = Mycosphaerella gibsoniiH.C.Evans,Mycol.Pap.153:61.1984.

Specimens examined.Japan, from needles of Pinus thunbergii,1971,Sung­Oui Suh,CBS125139;fromneedlesofPinus kesiya,1971,Sung­Oui Suh, CBS 125140; from needles of a Pinussp.,1971,Sung­Oui Suh, CBS 125138.

Notes — Pseudocercospora pini­densiflorae is the causal agentofbrownneedleblightofpine(Cercosporapineblight).This disease is mostly endemic to the tropics and subtropics inBrazil,sub-SaharanAfrica,India,SoutheastandEastAsia,where it may infect indigenous Pinus spp. It causesbrownnecrotic lesions on the needles leading to defoliation and is especially damaging on young saplings, on which defoliation leadstostuntedgrowthandhostplantdeath(Deighton1987,Lewis 1998,EPPO2012).Based on LSUdata, isolates of P. pini­densiflorae cluster within the Pseudocercospora clade (Crousetal.Inpress),confirmingitsgenericplacementasre-portedbyDeighton(1987).ThegenericnameMycosphaerella is considered a synonym of the genus Ramularia(Verkleyetal.2004,Crousetal.2009c),andthereforeMycosphaerella should not be used for the pathogen associated with brown needle blightofpine.TheapplicationofthenamePseudocercospora pini­densifloraeisthereforecorrect.

Septoria malagutii E.T.Cline,Mycotaxon98:132.2006

= Septoria lycopersici var. malagutiiCiccar.&Boerema,Phytopathol.Medit. 17:87.1978;nom.inval.,Art.37.1

Specimen examined.pEru,Dep.Junin,Huasahuasi, fromaSolanum spp., 1975,L.J. Turkensteen,holotypeCBSH-18113,cultureex-typeCBS106.80.

Notes — Septoria malagutii is the causal agent of Septoria leafspot(angularleafspot)ofpotato,andisendemictoCentraland South America, where it occurs on leaves of potato and other tuber-bearing Solanumspecies.Itcausesleaflesionsthatcoalesce until the leaves turn necrotic, leading to defoliation andseverelossesincropproduction(Stevenson2001,EPPO2012).BasedonLSUdata,S. malagutii clusters within Septoria s.str.asdefinedbyQuaedvlieg etal. (2011).Thecorrectnamefor this species is therefore Septoria malagutii(Cline&Ross-man2006).

Septoria musiva Peck,Ann.Rep.NewYorkStateMus.Nat.Hist.35:138.1884

= Mycosphaerella populorumG.E.Thomps.,Phytopathology31:246.1941. ≡Davidiella populorum(G.E.Thomps.)Aptroot,inAptroot,Mycosphae-rellaanditsanamorphs:2.ConspectusofMycosphaerella:164.2006.

Specimens examined.canada, Quebec City, from leaf of Populus del­toides, J. LeBoldus,MAC=CBS130564,LP3=CBS130565,PPP=CBS130566,PP=CBS130567,LPR=CBS130568,RCL=CBS130569,SA=CBS130570,RPN=CBS130571,D2L2=CBS130558;Alberta,fromleavesof P. deltoides × P. balsamifera, J. LeBoldus,D2L2=CBS130558,NW3L1=CBS130563,NW2L2=CBS130561,D7L2;Alberta,fromleavesofhybridPopulusspp.,J. LeBoldus,APC=CBS130559,APH1=CBS130560,APH3=CBS130562.

Fig. 6 Lecanosticta longispora(CPC17940).a–d.Conidiogenouscellsgivingrisetoconidia;e.conidia.—Scalebars=10µm

cb da e

Page 13: DNA barcoding of Mycosphaerella species of quarantine ......CPC 15143 Eugenia uniflora Alfenas JX902122 JX901561 JX901666 JX902244 JX901998 FJ493188 JX901875 CPC 15159 Δ Eugenia uniflora

113W.Quaedvliegetal.:DNAbarcodingofMycosphaerella

NameonEPPOA1andA2lists NameinEUCouncilDirective Validtaxonomicname EPPO-listedidentification Reference method

Mycosphaerella populorum / Mycosphaerella populorum Septoria musiva Fruitingbodymorphology Bier(1939),Peace(1962), Septoria musiva Waterman(1954)

Mycosphaerella gibsonii / Cercoseptoria pini­densiflorae Pseudocercospora pini­densiflorae Fruitingbodymorphology Deighton(1987) Cercoseptoria pini­densiflorae

Mycosphaerella laricis­leptolepidis / Mycosphaerella larici­leptolepis Mycosphaerella larici­leptolepis Fruitingbodymorphology Peace(1962) Phyllosticta laricis

Phaeoramularia angolensis Cercospora angolensis Pseudocercospora angolensis Fruitingbodymorphology Kirk(1986)

Septoria lycopersici / Septoria lycopersici / Septoria malagutii Fruitingbodymorphology Cline&Rossman(2006) Spegazzinivar.malagutii Spegazzinivar. malagutii

Mycosphaerella dearnessii / Scirrhia acicola Lecanosticta acicola Fruitingbodymorphology/ Barnesetal.(2004) Lecanosticta acicola ITS-RFLP

Mycosphaerella pini / Scirrhia pini Dothistroma septosporum Fruitingbodymorphology/ Evans(1984),Barnesetal. Dothistroma septospora ITS-RFLP (2004)

Table 4EPPOandEUCouncilDirective-listedMycosphaerellaspeciesofquarantineimportance,theircurrentlyadvisedidentificationmethod(s)andtheirvalidtaxonomicnames.Taxonomicnamesmarkedingreyhaveyettoberesolved,thereforetheMycosphaerellanameforthisspeciesshouldstillbeused.

Notes — Septoria musiva is the causal agent of Septoria canker of poplar and is endemic to North America and Argen-tina, where it occurs on all native Populusspp.Itcausesseverecankering and die-back and is especially damaging to hybrid Populus species (Bier 1939,Waterman 1954,Ostry 1987,Dickmann2001,EPPO2012).BasedonLSUdata,S. musiva clusters within Septoria s.str.asdefinedbyQuaedvlieg etal. (2011).However, ongoingwork byQuaedvlieg andVerkley(unpubl.data)revealedthatS. musiva is located in a cryptic phylogenetic lineage sister to Septorias.str.,andthereforethegenusnameofthisclademightchangeinthefuture.

DISCUSSION

Current EPPO protocols for identifying A1/A2 listed Myco­sphaerella speciesarebasedeitheron ITS-RFLPor fungalmorphology(Table4).Theseapproacheseachhavelimitationsthatmakethemill-suitedasidentificationtoolsforplantprotec-tionpolicyenforcementofficers.Morphology-basedtechniquesareheavilydependentonhigh- ly skilled personnel that need to perform time-consuming iden- tificationsofmature,sporulatingculturesthatoftenneedtobegrownonspecificmediaandunderspecificconditions.Therapid advanceofmolecular techniques in recent years hasunderlined the limitations of identifications based solely onmorphologyand/orITSsequencing.Examplesofthisarethenew Lecanosticta species that have been described during this study.These isolateshadpreviously been identifiedasLecanosticta acicola based both on morphology and limited ITSsequencing.Thesequencingofadditionallocirevealedthat L. acicola actually represented a species complex rather than a singlespecies.ThisisyetanotherexampleofthetenetofCrous&Groenewald(2005)whichstates“Showmeaplantpathogen,andIwillshowyouaspeciescomplex”.Anotherexamplewasthe Cercospora apii complex, which was considered to be a singlespeciesbasedonmorphology(Crous&Braun2003),butwhichwasfoundtorepresentseveralspecieswhenDNAsequencingtechniqueswhereemployed(Crousetal.2004b,2006a,Inpress,Groenewaldetal.2005,Inpress).Thisinabilityto discriminate between cryptic species and their dependency on mature, sporulating cultures make morphology-based tech-niquespoorlysuitedfortherapidandreliableidentificationofMycosphaerellaspeciesontradegoods.PCR-RFLP-basedmethodsworkona ‘hitormiss’principle,and work well for identifying small groups of well-characterised fungalspecieswithlittlegeneticvariation.Unfortunatelythesemethods lack the inherent ability to cope with expanding natural variation.Pointmutations,insertionordeletioneventscanleadtothelossofrestrictionsites,makingisolatesunrecognizable

forPCR-RFLPbasedmethods(Majeretal.1996).SpeciesofMycosphaerellaalsoco-colonizelesions,increasingthechanceofhavingamixedDNAsampleifsingle-sporedorhyphal-tippedcoloniesarenotusedintheassay(Crous&Groenewald2005).TheuseofaDNAbarcodeorthecombinationofsequencedata from twoormore discriminatory loci (multi-locus sequencetyping),fortherecognitionofspeciesofquarantineimportancehasnumerousadvantagesoverpreviouslyusedtechniques.Itdoesnotrequirefruitingbodiesoramaturelifestage,itisfast,(relatively)cheap,andcanbeperformedbymoderatelyskilledpersonnel and has a high probability of yielding a result, even withunknownspecies.ButthesinglemostimportantaspectofDNAbarcodingisitsabilitytoidentifyspecies(evencrypticspecies)withalmostnomarginoferror,onconditionthatalarge,validated,referencedatabaselibraryisavailable.Oneof themaingoals of this projectwas to determine themost suitable barcoding locus/loci by which to identify Myco­sphaerella-like spp. on theEPPOA1/A2 lists.Hebert et al.(2003)proposedthatagoodbarcodinglocusshouldshowaclear separation between the distributions of the mean intra- andinterspecificdistances(theso-called‘Kimura-2-parameterbarcodinggap’).Theauthorsproposedthatalocusshouldhaveameaninter-/intraspecificdistanceratioofatleast10,tobesuitableasabarcodinglocus.Thelocitestedinthisstudyallhadmeaninter-,intraspecificdistanceratiosthatweremuchhigher than10.Meandistribution ratiosvaried from486 forLSUto69forITS(Fig.2).Bythesecriteriaalone,theselocishouldallbesuitablebarcodingloci.AlmostalllocishowedaKimura-2-parameter overlap between their absolute inter- and intraspecific distribution frequencies.When thePseudocer­cosporaisolateswereincludedinthedataset,thesizeofthisabsoluteinter-andintraspecificdistributionfrequenciesdataoverlap varied from 12% (LSU), 16% (ITS), 3.4% (Act),1.2% (EF-1α), 0.6% (RPB2), 0.5% (Btub) and0% (Cal),respectively.Calmodulindidnotoverlapsimplybecausethislocus failed to amplify most of the Pseudocercosporaspp.thatare mostly responsible for this Kimura-2-parameter inter- and intraspecificdistributionoverlapintheotherloci.The relatively high Kimura-2-parameter distribution overlap in thetwonuclearribosomalDNAloci(ITSandLSU)iscausedby the low natural variation that exists within these loci between speciesofcertaingenera (in thisdatasetSeptoriaspp.andPseudocercosporaspp.hadverylowvariabilitybetweenspe-cies).Thisdifferencewithinthenaturalvariationpresentwithinthe different genera in the complete dataset can clearly be seen in the ITS and LSU Kimura-2-parameter distribution graphs (Fig.2).Thesetwographsclearlyshowmultiple‘peaks’thatrepresent the difference in natural variation within the varying generausedinthisdataset.

Page 14: DNA barcoding of Mycosphaerella species of quarantine ......CPC 15143 Eugenia uniflora Alfenas JX902122 JX901561 JX901666 JX902244 JX901998 FJ493188 JX901875 CPC 15159 Δ Eugenia uniflora

114 Persoonia – Volume 29, 2012

From the three independent barcode suitability tests we can concludethat,basedonathresholdofatleastfivebasepairsdifference, EF-1αisthebestlocustouseforDNAbarcodingoftheisolateswithinthisdataset.Ifweuseathresholdoffourbasepairs,thenBtubisalsosuitedtoserveasDNAbarcodinglocusforthisdataset.Theothertestedlocieitherhaveaclearamplificationproblem(Cal)ordonothavesufficientresolution(Δ≥4nt)(ITS,LSU,ActandRPB2)todiscriminatebetweensomeofthequarantinespeciesandtheirclosestrelativespe-cies(Fig.1).Although the EF-1α and Btub loci have the highest species discrimination levels for the species used in this dataset, these loci have the disadvantage that there is not much reference data concerning these loci available in online databases which can helpidentifyisolatesnotusedinthisdataset.Tocompensatefor this lack of reference data, we recommend using a combina-tion of a primary and a secondary locus to give more reliable identificationresults.The ITS locus is theprimecandidate for theprimary locus.ITS has recently been proposed as one of the primary fungal barcodingloci(Schochetal.2012).ITSsequencingdataiseasily obtained and a good starting point to rapidly identify generaandsometimesspecies.Ifanunknowngenusorspe-cies is not represented in a curated database such as Q-bank, aGenBankblastcouldbeusedtosupplementthesecurateddatabases.MycologyhasalonghistoryofusingITSdatatoidentify fungalspeciesandGenBankwould thusbeagoodsupplementary (althoughnotcompletelycurated)database.The use of ITS as the primary locus, and if necessary using a secondary locus following a molecular decision protocol, would bethemoststableapproachforareliableidentification.ThisisalsotheidentificationprotocolasitiscurrentlyimplementedinQ-bank.As a secondary barcoding locus to supplement the ITS se-quencedata,eitherBtuborEF-1αwouldsufficeforthisdataset.Bothlociareeasilyamplifiableandhaveahighamplificationrate(100%and97%,respectively),possesonlyminimalKimura- 2-parameterinter-andintraspecificdistributionoverlap(0.5%and1.2%,respectively)andbothhave100%speciesdiscri-minationsuccessratewithinthetesteddataset(Δ≥4nt).Theuse of either Btub or EF-1α may complement each other if amplificationproblemswith either locusoccur, thus leadingtoasuccessful identificationofanunknownMycosphaerella speciesofpossiblequarantineimportance.

Acknowledgements Wethankthetechnicalstaff,ArienvanIperen(cul-tures)andMarjanVermaas(photographicplates)fortheirinvaluableassis-tance.SpecialthanksgotoProf.KirkD.Broders(DepartmentofBiologicalSciences,UniversityofNewHampshire,USA),Dr.IsabelleMunck(USDAForestService,NewHampshire,USA),JenniferWeimer(NewHampshireDivisionofForests&LandsForestProtection,Blackwater,USA),Dr.JaredLeBoldus(DepartmentofPlantPathology,NorthDakotaStateUniversity,USA)andWilliamOstrofsky(MaineForestService,Bethel,USA)forcollectingand providing fresh material of Lecanosticta acicola.WewouldalsoliketothankDr.RenaudIoos(LaboratoiredelaSantédesVégétaux,Anses,France)forprovidingDNAsamplesofLecanosticta acicolaandDr.SarahL.Boyer(DepartmentofBiology,MacalesterCollege,SaintPaul,USA)forprovidingsupportwiththeKimura-2-parameterdistributiongraphs.Theresearchlead-ingtotheseresultshasreceivedfundingfromtheEuropeanCommunity’sSeventhFrameworkProgram(FP7/2007–2013)/grantagreementno.226482(Project:QBOL–DevelopmentofanewdiagnostictoolusingDNAbarcodingtoidentifyquarantineorganismsinsupportofplanthealth)bytheEuropeanCommissionunderthetheme‘DevelopmentofnewdiagnosticmethodsinsupportofPlantHealthpolicy’(no.KBBE-2008-1-4-01).

REFERENCES

BarnesI,CrousPW,WingfieldBD,WingfieldMJ.2004.Multigenephylo-genies reveal that red band needle blight of Pinus is caused by two distinct speciesofDothistroma,D.septosporumandD.pini.StudiesinMycology50:551–565.

Bier JE. 1939.Septoria canker of introducedandnative hybrid poplars.CanadianJournalofResearch17c:195–204.

BonantsP,GroenewaldE,RasplusJY,MaesM,VosPde,etal.2010.QBOL:anewEUprojectfocusingonDNAbarcodingofquarantineorganisms.EPPOBulletin40:30–33.

CarboneI,KohnLM.1999.Amethodfordesigningprimersetsforspeciationstudiesinfilamentousascomycetes.Mycologia91:553–556.

CheewangkoonR,CrousPW,HydeKD,GroenewaldJZ,To-ananC.2008.Species of Mycosphaerella and related anamorphs on Eucalyptus leaves fromThailand.Persoonia21:77–91.

ClineET,RossmanAY.2006.Septoriamalagutiisp.nov.,causeofannularleafspotofpotato.Mycotaxon98:125–132.

CrousPW.2009.Taxonomyandphylogenyof thegenusMycosphaerellaanditsanamorphs.FungalDiversity38:1–24.

CrousPW,BraunU.2003.Mycosphaerellaanditsanamorphs:1.NamespublishedinCercosporaandPassalora.CBSBiodiversitySeriesCentraal-bureauvoorSchimmelcultures,1,Utrecht,TheNetherlands.

CrousPW,BraunU,GroenewaldJZ.2007.Mycosphaerellaispolyphyletic.StudiesinMycology58:1-32.

CrousPW,BraunU,HunterGC,WingfieldMJ,VerkleyGJM,etal.Inpress.Phylogenetic lineages inPseudocercospora.Studies inMycology 75:37–114.

CrousPW,GamsW,StalpersJA,RobertV,StegehuisG.2004a.MycoBank:anonline initiative to launchmycology into the21stcentury.Studies inMycology50:19–22.

CrousPW,GroenewaldJZ.2005.Hosts,speciesandgenotypes:opinionsversusdata.AustralasianPlantPathology34:463–470.

CrousPW,GroenewaldJZ,GroenewaldM,CaldwellP,BraunU,HarringtonTC.2006a.SpeciesofCercosporaassociatedwithgreyleafspotofmaize.StudiesinMycology55:189–197.

CrousPW,GroenewaldJZ,PongpanichK,HimamanW,ArzanlouM,Wing-fieldMJ.2004b.CrypticspeciationandhostspecificityamongMycosphae-rellaspp.occurringonAustralianAcaciaspeciesgrownasexoticsinthetropics.StudiesinMycology50:457–469.

CrousPW,KangJC,BraunU.2001.AphylogeneticredefinitionofanamorphgenerainMycosphaerellabasedonITSrDNAsequenceandmorphology.Mycologia93:1081–1101.

CrousPW,MinnisAM,PereiraOL,AlfenasAC,AlfenasRF,etal.2011b.WhatisScirrhia?IMAFungus2:127–133.

CrousPW,PhillipsAJL,WingfieldMJ.1991.ThegeneraCylindrocladiumandCylindrocladiellainSouthAfrica,withspecialreferencetoforestnurseries.SouthAfricanForestryJournal157:69–85.

CrousPW,SchochCL,HydeKD,WoodAR,GueidanC,etal.2009a.Phy-logeneticlineagesintheCapnodiales.StudiesinMycology64:17–47.

CrousPW,SlippersB,WingfieldMJ,RheederJ,MarasasWFO,etal.2006b.Phylogenetic lineages in theBotryosphaeriaceae.Studies inMycology55:235–253.

CrousPW,SummerellBA,CarnegieAJ,WingfieldMJ,Groenewald JZ.2009b.Novel speciesofMycosphaerellaceaeandTeratosphaeriaceae.Persoonia23:119–146.

CrousPW,SummerellBA,CarnegieAJ,WingfieldMJ,HunterGC, et al.2009c.UnravellingMycosphaerella:doyoubelieveingenera?Persoonia23:99–118.

DeightonFC.1987.NewspeciesofPseudocercosporaandMycovellosiella,andnewcombinationsintoPseudocercosporaandPhaeoramularia.Trans-actionsoftheBritishMycologicalSociety88:365–391.

DickmannD.2001.PoplarcultureinNorthAmerica.NRCResearchPress,Ottawa.

EPPO.2012.EPPOquarantine.http://www.eppo.int.EvansHC.1984.ThegenusMycosphaerellaanditsanamorphsCercosepto-ria,DothistromaandLecanostictaonpines.MycologicalPapers153:1–102.

FeauN,HamelinRC,BernierL.2006.Attributesandcongruenceofthreemolecular data sets: Inferring phylogenies among Septoria-related spe-ciesfromwoodyperennialplants.MolecularPhylogeneticsandEvolution40:808–829.

GroenewaldJZ,NakashimaC,NishikawaJ,ShinH-D,ParkJ-H,etal.Inpress.Speciesconcepts inCercospora:spotting theweedsamongtheroses.StudiesinMycology75:115–170.

GroenewaldM,GroenewaldJZ,CrousPW.2005.DistinctspeciesexistwithintheCercosporaapiimorphotype.Phytopathology95:951–959.

Page 15: DNA barcoding of Mycosphaerella species of quarantine ......CPC 15143 Eugenia uniflora Alfenas JX902122 JX901561 JX901666 JX902244 JX901998 FJ493188 JX901875 CPC 15159 Δ Eugenia uniflora

115W.Quaedvliegetal.:DNAbarcodingofMycosphaerella

HallTA.1999.BioEdit:Auser-friendlybiologicalsequencealignmenteditorandanalysisprogramforWindows95/98/NT.NucleicAcidsSymposiumSeries41:95–98.

HawksworthDL,CrousPW,RedheadSA,ReynoldsDR,SamsonRA,etal.2011.TheAmsterdamDeclarationonFungalNomenclature.IMAFungus2:105–112.

HebertPDN,CywinskaA,BallSL,DeWaardJR.2003.Biologicalidentifi-cationsthroughDNAbarcodes.ProceedingsoftheRoyalSocietyofLondonSeriesB270:313–321.

HuelsenbeckJP,RonquistF.2001.MrBayes:Bayesianinferenceofphylo-genetictrees.Bioinformatics17:754–755.

HunterGC,WingfieldBD,CrousPW,WingfieldMJ. 2006.Amulti-genephylogenyforspeciesofMycosphaerellaoccurringonEucalyptusleaves.StudiesinMycology55:147–161.

KatohK,MisawaK,KumaK,MiyataT.2002.MAFFT:anovelmethodforrapidmultiplesequencealignmentbasedonfastFouriertransform.NucleicAcidsResearch30:3059–3066.

KirkPM.1986.Phaeoramulariaangolensis.CMIDescriptionsofPathogenicFungiandBacteriaNo.843.CABInternational,Wallingford,UK.

KobayashiT.1980.Importantforestdiseasesandtheircontrolmeasures.PlantProtectioninJapan,AgricultureAsia11:298.

LewisT.1998.QuarantinepestsforEurope,2ndEd.CABInternationalinassociationwithEPPO,Wallingford,UK.

LiuY,WhelenS,HallB.1999.Phylogeneticrelationshipsamongascomy-cetes:evidencefromanRNApolymerseIIsubunit.MolecularBiologyandEvolution16:1799–1808.

MajerD,MithenR,LewisBG,VosP,OliverRP.1996.TheuseofAFLPfingerprinting for thedetectionofgeneticvariation in fungi.MycologicalResearch100:1107–1111.

MarmolejoJG.2000.ThegenusLecanostictafromNuevoLeon,Mexico.Mycotaxon76:393–397.

NylanderJAA.2004.MrModeltestv2.Programdistributedby theauthor.EvolutionaryBiologyCentreUppsalaUniversity2:1–2.

O’DonnellK,CigelnikE.1997.TwodivergentintragenomicrDNAITS2typeswithinamonophyleticlineageofthefungusFusariumarenonorthologous.MolecularPhylogeneticsandEvolution7:103–116.

O’DonnellK,KistlerHC,CigelnikE,PloetzRC.1998.Multipleevolutionaryorigins of the fungus causing Panama disease of banana: Concordant evidencefromnuclearandmitochondrialgenegenealogies.Proceedingsof the National Academy of Sciences of the United States of America 95: 2044–2049.

OstryME.1987.BiologyofSeptoriamusivaandMarssoninabrunnea inhybridPopulusplantationsandcontrolofSeptoriacanker innurseries.EuropeanJournalofForestPathology17:158–165.

PeaceTR.1962.Pathologyoftreesandshrubs,withspecialreferencetoBritain.ClarendonPress,Oxford,UK.

PretoriusMC,CrousPW,GroenewaldJZ,BraunU.2003.PhylogenyofsomecercosporoidfungifromCitrus.Sydowia55:286–305.

QuaedvliegW,KemaGHJ,GroenewaldJZ,VerkleyGJM,SeifbarghiS,etal.2011.Zymoseptoriagen.nov.:anewgenustoaccommodateSeptoria-likespeciesoccurringongraminicoloushosts.Persoonia26:57–69.

RaynerRW.1970.Amycologicalcolourchart.CommonwealthMycologicalInstituteandBritishMycologicalSociety,Surrey,UK.

SchochCL,SeifertKA,HuhndorfS,RobertV,Spouge JL, et al. 2012.Nuclearribosomalinternaltranscribedspacer(ITS)regionasauniversalDNAbarcodemarkerforFungi.ProceedingsoftheNationalAcademyofSciencesoftheUSA109:6241–6246.

SchubertK,Groenewald JZ,BraunU,Dijksterhuis J,StarinkMS, et al.2007.BiodiversityintheCladosporiumherbarumcomplex(Davidiellaceae,Capnodiales),withstandardisationofmethodsforCladosporiumtaxonomyanddiagnostics.StudiesinMycology58:105–156.

StevensonWR.2001.Compendiumofpotatodiseases,2nded.APSCom-pendiumofPlantDiseaseSeries,AmericanPhytopathologicalSociety,St.Paul,MN,USA.

StukenbrockEH,QuaedvliegW, Javan-NikhahM, ZalaM,CrousPW,McDonaldBA.2012.ZymoseptoriaardabiliaandZ.pseudotritici,twopro-genitorspeciesoftheseptoriatriticileafblotchfungusZ.tritici(synonym:Mycosphaerellagraminicola).Mycologia104.

TamuraK,DudleyJ,NeiM,KumarS.2007.MEGA4:Molecularevolutionarygeneticsanalysis (MEGA)softwareversion4.0.MolecularBiologyandEvolution24:1596–1599.

TimmerLW,GarnseySM,GrahamJH.2000.Compendiumofcitrusdiseases.APSPress,St.Paul,MN,USA.

VerkleyGJM,Starink-WillemseM,IperenAvan,AbelnECA.2004.Phylo-geneticanalysesofSeptoriaspeciesbasedontheITSandLSU-D2regionsofnuclearribosomalDNA.Mycologia96:558–571.

VilgalysR,HesterM.1990.Rapidgeneticidentificationandmappingofen-zymaticallyamplifiedribosomalDNAfromseveralCryptococcusspecies.JournalofBacteriology172:4238–4246.

WatermanAM.1954.SeptoriacankerofpoplarsintheUnitedStates.Cir-cularU.S.D.A.no.947,U.S.DepartmentofAgriculture,Washington,USA.

WhiteTJ,BrunsT,LeeS,TaylorJW.1990.Amplificationanddirectsequenc-ingoffungalribosomalRNAgenesforphylogenetics.PCRprotocols:aguidetomethodsandapplications.AcademicPress,SanDiego,USA.

WingfieldMJ,BeerZWde,SlippersB,WingfieldBD,GroenewaldJZ,etal.2012.Onefungus,onenamepromotesprogressiveplantpathology.MolecularPlantPathology13:604–613.