diverse knowledge informing fire policy and biodiversity...

8
Diverse knowledge informing fire policy and biodiversity conservation There is a need to reassess fire policy following the increase in severe wildfires over the last decade in many countries that has led to rising costs and damage to lives, property and natural resources. Fire policies often aim to suppress wildfires in attempts to reduce effects on ecosystems and societies despite evidence that these efforts increase fire risk in the future; increasingly, policy includes the use of controlled fires to reduce the intensity of future catastrophic events. In many regions, fire is perceived as an unnatural process. However, evidence from long-term ecological records show that fire is a natural part of most ecosystems and that many livelihoods and cultures are intrinsically connected to fire as a process. Long-term ecological data can identify the natural and cultural legacies on present landscapes, including knowledge on fire and vegetation changes in response to past climate and land use. KEY POINTS Policy Brief Knowledge about traditional fire use by local and Indigenous communities can provide information on culturally and environmentally sustainable fire management practices to improve biodiversity and local livelihoods. Used together, the diverse knowledge from science and local communities can help fire management practices meet conservation targets (e.g. biodiversity, ecosystem resilience), mitigate negative impacts of wildfires (e.g. health effects, loss of life and property), and engage in efforts of respectful reconciliation with Indigenous and Descendant groups. We recommend that these diverse forms of knowledge (long-term ecological data and traditional knowledge) are incorporated into the evidence base to support decisions on fire policy in areas that will be most affected by future climatic and land-use changes. December 2019

Upload: others

Post on 05-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Diverse knowledge informing fire policyand biodiversity conservation

    There is a need to reassess fire policyfollowingtheincreaseinseverewildfiresover the last decade inmany countriesthathas ledtorisingcostsanddamagetolives,propertyandnaturalresources.

    Fire policies often aim to suppresswildfires in attempts to reduce effectson ecosystems and societies despiteevidence that theseefforts increasefirerisk in the future; increasingly, policyincludes the use of controlled fires toreducetheintensityoffuturecatastrophicevents.

    Inmanyregions,fireisperceivedasanunnatural process. However, evidencefrom long-term ecological recordsshow thatfire is anatural part ofmostecosystems and that many livelihoodsand cultures are intrinsically connectedtofireasaprocess.

    Long-termecologicaldatacanidentifythenatural and cultural legacies onpresentlandscapes, including knowledge on fireand vegetation changes in response topastclimateandlanduse.

    KEY POINTS

    Policy Brief

    Knowledge about traditional fire useby local and Indigenous communitiescan provide information on culturallyand environmentally sustainable firemanagement practices to improvebiodiversityandlocallivelihoods.

    Used together, the diverse knowledgefromscienceand localcommunitiescanhelp fire management practices meetconservation targets (e.g. biodiversity,ecosystemresilience),mitigatenegativeimpactsofwildfires (e.g.healtheffects,lossoflifeandproperty),andengageinefforts of respectful reconciliation withIndigenousandDescendantgroups.

    Werecommendthatthesediverseformsof knowledge (long-term ecologicaldata and traditional knowledge) areincorporated into the evidence base tosupportdecisionsonfirepolicy inareasthat will be most affected by futureclimaticandland-usechanges.

    December 2019

  • 1

    Wildfiresarecontrolledbyacombinationofclimatic,land-use,andvegetationfactorswhichvaryacrossregions3. Inboreal forests,wildfires occurduringwarmer conditions in summer3,4. In the driertropicalsavannas,firesdependonthelengthofthedryseasonandfuelavailability5. Ingeneral,firesaremorecommonunder“intermediateclimates”,meaning that conditions are neither too dry tolimit fuel accumulation, nor too wet to reduceflammability6,7. Examples of such intermediateconditionsarefoundintropicalsavannasorinmixedevergreen-deciduous forests. Due to acceleratedhumaninterventionoverrecentdecades,fireshaveoccurredunderawiderrangeofclimateconditionsthatwouldhistoricallybelessconducivetolarge-magnitude wildfires. For example, land use anddeforestationareresponsibleforhigherburninginthewettropics,asshownbysatellitedataintheAmazonandinSoutheastAsia8.

    Fireisoftenviewedasadamagingfactor,yetdiverselinesofevidenceclearlyshowitisafundamentalecologicalprocessinnearlyallecosystems9,10.Manyplantsevolvedovermillionsofyearstodependonfireandthriveinitspresence10,11.Forexample,inwesternUSforeststhelodgepolepinerequiresfiretogerminate,andtheponderosapine isadaptedtohighfrequency,lowintensityfires.Fire-adaptedspeciesplayan important role inecosystems,astheycanrecoverquickerafterfire12.Suchecologicalbenefits are seen in many environments todayandshowthatfiresupportsimportantfeaturesoflandscapes includingbiodiversity, forest structureandnutrientcycling3,12,13.

    Therehasbeenanincreaseincatastrophicwildfiresaroundtheworld,suchasinPortugal(2017),Greece(2018),Australia(2019)andBrazil (2019).Severefireshave importantconsequencesonpeople’s livelihoods,humanhealth,climatechangeandecosystemservices(includingforestproducts,biodiversity,waterandsoilquality).Therisingeconomicandsocialcostsoffire,particularlyinthetransitionbetweenunoccupiedlandandurbanareas(thewildland-urbaninterface),makesitapriorityissueforecosystemmanagersandpolicymakersaroundtheworld1,2.

    Fire is a global issue

    Figure 1. The effects of catastrophic fires (like the Yellowstone fires of 1988) can still be seen in landscapes after several decades (Photo credit: DC).

    Many local community livelihoods and culturesdependandbenefitfromfire14.Forexample,firemaintains many ecosystem services, includingfood resources and forest biomass. Fire plays acriticalroleinsubsistenceagriculturewheresmallareas of forest, typically of one hectare in size,arecutandburnedaspartofrotationalfarming15.Inpastoralsystems,fireisusedtoproducefreshfeedforlivestock,particularlyinseasonalclimateswherethedryseasonreducesthenutrientqualityof grasses. In addition, fire is used to protectcertain habitats and resources (such as fruiting

    Figure 2. Fire is a natural ecological process and many tree species, like the ponderosa pine, are adapted to fire (Photo credit: DC).

    Fire is a naturalecosystem process

    Fire and its benefit to people

    Wildfires are controlled by different factors

    1.1

    1.2

    1.3

  • In thepast,fireandvegetationchanged inresponsetovariations inclimate.Sincetheendof theLastGlacialMaximum (about 18,000 years ago) biomass burning increasedglobally due to rising temperatures and forestbuild-up27,28. Ingeneral,biomassburningwashighwhenforestadvancedduringwarminterglacialperiods,andlowduringcoldglacialswhenforestswerereduced29,30.Pastwarmperiods,suchasthoseidentifiedca.130,000yearsago,canbeconsidered“analogues”forfutureconditionsina+2Cdegreeswarmerworld31andcaninformusaboutfireregimesunder“naturalconditions”(i.e.whenhumaninfluenceonfireregimeswaslessrelevant32).Inadditiontoclimate,firesinmanyregionsoftheworldhavebeenstronglymodifiedbypeopleformillennia17,33.Failuretoaccountforthecomplexresponseoffiretomanydrivers(climate,vegetation,humanimpact)mayhinderassessmentoffutureecosystemchangesoverthecomingdecades.

    Box-1: The fire-climate relationship over millennia

    trees), forgathering,tomaintainsacredsites,toclear travel routes, and tomaintain cultural andspiritualconnectionswiththelandscape16.Thereisa long-history of fire-human interactions inmostcontinents17; however, fire is still perceived as“unnatural” inmany regions,and itskey role forpeopleisoftenundermined14.

    Firemanagement around the world ranges fromfire suppression and exclusion to actively usingfireasamanagementtool1,18.FiresuppressionhasbeencommoninVenezuelawherewildfiresarearegular occurrence, andonly approximately13%of total fires can be combatted15,19. An exampleof active management is prescribed burning,which iswidelyused inNorthAmerica to reducefuel accumulation and the likelihood of severefires20. In southern Europe, fire regulations areimplemented at the national level, resulting indifferentmanagementstrategiesacrosscountries.For example, prescribed burning is adopted inmany Mediterranean countries to mitigate theeffects of fuel accumulation resulting from landabandonment1,18;thissamemanagementpracticeinstead is generally not allowed in Greece18. Inmanycases,firepoliciessuchasfiresuppressionhavefosteredtheideathatfireis“unnatural”and“bad,” thus not considering the beneficial effectsfortheenvironmentandpeopleovertime.

    Fire management approachesvary widely around the globe

    Figure 3. A traditional winter fire in montane grasslands in the Pyrenees (Photo credit: CC).

    Fire challenges in a future warmer world

    1.4

    1.5

    Fire management approaches are challenged byuncertainties related to future climate changes21.It is not easy to accurately predict the futureoccurrence of fire, because climate conditionsandfuelavailabilitywillchangeacrossregions.Intemperate and boreal regions, warmer and drierconditionswillcausemoreforestfires22.Manyaridregions will experience more rainfall, fuel build-up and burning5,21. Additional insights can begained by considering the history of fires duringpastclimaticconditions(Box-1).Futurefireswillalso depend on societal and land use changes.Land abandonment in rural areas is causingforest regrowth and an increase in fire, as seenin many Mediterranean countries1,23. Conversely,the expansion of the wildland-urban interface iscausing a reduction in fuel and consequently inareaburned24.Therefore,futuretrendswilllargelydiffer across regions. Other factors include landconversion (e.g.palmoil in the tropics),politicalchanges (changed investment in policies), andrapid lossoftraditionalfireknowledge14.Thereisagrowingneed formore sustainableapproachesthatadapttofutureclimatechangesandmitigatethe effects of catastrophic wildfires on naturalresourcesandpublichealth1,25,26.

    Figure 4. An experimental fire in Kansas (US) to assess the effects of changing burning intensities and frequencies on prairie’s species (Photo credit: DC).

  • Figure 5. An example of traditional use of fire in South America for shifting cultivation in forests (Photo credit: BB)

    Long-term ecology can provide information onhowpastclimates,fireandlandusehaveshapedpresentlandscapes,andhowwildfirechangedundernaturalorhuman-inducedfactors3,17.Forexample,changesinfireactivityattheonsetofagricultureincentralEurope(ca.5500BC)showhowforestshavebeenclearedormanagedformillennia;thislegacyisvisibleintoday’slandscapesintheformof cultivars or other introduced species37. Long-term ecological information is particularly usefulconsideringthatthedynamicsofmanyecosystemsoperateonscalestoolongtobedirectlyrecordedbyecologicalmonitoring38,39.Forexample,forestschangeonscalesofdecadestocenturiesinwaysthat are difficult to observe directly. Informationfrom biological records such as tree rings,charcoal40, fossil pollen in lakes, bogs and othernatural archives can be used to address manyconservationissuesrelatedtobiodiversitylosses38,invasive species41, and species distribution underfuture climates31. Importantly, these records canalsohelpidentifyecologicallegaciesofIndigenouslandusethatarestillrepresentedinthecompositionandstructureofmodernvegetationcommunities.Forexample,intheBorderLakesRegionofcentralNorth America, tree ring records have helpeddescribethelinkagesbetweenIndigenouslandusepractices,fire,andforeststructure42.

    Traditionalecologicalknowledgerepresentsarichsourceofinformationonhowpeoplemanagetheirenvironmentinsustainableandproductiveways.Inmanyregions,traditionalburningactivitiesmaintainalandscapemosaicwitharangeofspecieshabitatsthatenhancebiodiversityandreducetheamountofflammablefuel,loweringtheriskofuncontrolledfires15,19.Ecosystemsarecharacterisedbyspecificfireregimesintermsoffrequencyand intensity,and people have traditionally developed burningpractices at different times of the year linkedto livelihood activities. For example, in Kenyaand Tanzania, fires set by Maasai pastoralistspromote green growth for grazing animals35. Inthe‘conucos’(farm)cultivationpracticesbyPemonpeople in Venezuela, fire has beneficial effectson the nutrient-poor soils because it acts as afertilizer, improving crop yieldswhilemaintainingnutrient rich soils19. In Indigenous rotationalfarmingpracticesinNorthernAustralia,foodplantsare selectively promoted (“fire-stick farming”).Similarly, fire management by Yurok and Karuktribes in thePacificNorthwest support traditionalfood production36. The loss of this traditional

    Informing fire policy andbiodiversity conservation

    knowledgeinrecenttimes(asaresultofhistoricalprocessesofcolonisation,resourceextractionandstate intervention), and rapidly changing socio-environmentalconditions,alongwithfireexclusionpolicies, has led to significant alterations of fireregimes and the increased likelihood of moreseverefires14.

    Firewillbeinevitableinmostecosystemsandthecomplexmixofsocio-economicandregionalclimatechangeswill requirenewstrategiesto increasetheresilienceofhumanandecologicalcommunitiestofireglobally25,34.Theinclusionintothedecision-makingofmorediverseknowledge,suchastraditionalknowledgeandlong-termecology,canimproveourunderstandingofpresentfiresandhelpsetmorerealisticgoalsforfiremanagementinfuturefire-proneecosystems.

    2

    Knowledge from the pastinforming present conservation

    and fire management

    Traditional ecological knowledgeinforming sustainable

    management

    2.2

    2.1

  • Accounting for the dynamic nature of fire overtime, using long-term ecological knowledge andtraditional knowledge to inform fire policy couldhelpto:

    a) Increase ecosystem resilience

    Differentspeciescanshowdifferentresponsestofiredisturbances;forexample,manyaresensitiveto fire, while others thrive with it. Long-termecologicaldatacanhelpcharacterisewhichspeciesare“firesensitive”or“firetolerant”andtherateofforestrecoveryafterfire,complementingecologicalmonitoring43. Traditional knowledge can informon which food species have been sustained bypeoplethroughanactivefiremanagement44.Thereintroductionorpromotionoffiretolerantspeciesin modern landscapes can improve ecosystemresilience,whileinsomecasesprovidelivelihoodstosustainlocalcommunities.

    b) Maximise biodiversity

    Long-term ecology can reveal the natural andhuman-induced causes driving past biodiversitychanges44,45, and their legacies on presentlandscapes. Traditional knowledge complementsthis with information on the fire managementpractices that can maximize biodiversity andlocal livelihoods. Using participatory and ethicalcommunity engagement can help towards theapplication of culturally and environmentallyappropriatepractices15,16.

    Integrating diverseknowledge can provide

    unique insights

    c) Identify historical baselines

    Long-term ecology provides baseline informationon the variability of fire in ecosystems beforemodern land use practices46. For example, theidentification of past fire baselines in Quebec47,48 helpedselectalternativeapproaches to industrialforestmanagementthatbestmeetCanadianandQuebecpolicies49.Inregionswithalongerhistoryofhumanimpact(Africa,Europe),long-termecologyandtraditionalknowledgecanrevealhowtraditionalpractices have adapted to past environmentalchanges,asdocumentedinmanyaridorsemi-aridenvironmentsoverthelastmillennia50.Knowledgederivedfromthissocio-ecologicalhistorycanhelpguidefutureadaptationstoexpectedrapidclimatechange.

    d) Understand the effects of burning practices

    Fire management policy in Australia, Brazil,Venezuela,Québec,Finland,Sweden,France,Spainismovingtowardsincludingcontrolledburningasamanagementapproach.Nevertheless,theeffectsofsuchpracticesonecosystemsareoftenunknownordebated1,51,52.Pastecosystemhistorycanshowwhich fire regime is characteristic for a region46 andhowIndigenousburningpracticesaffectedfireoccurrenceinthepast42.Thisinformationiskeyforassessingwhethermodernmanagementpracticessuchasprescribedburningshouldbeadopted.

    Figure 6. Collecting sediment cores from a lake surrounded by a burned forest in Central Oregon. Sediment cores (right) can provide ecologists with information on the millennial history of climate, vegetation and disturbance regimes for specific ecosystems. (Photo credit: MP).

    2.3

  • 3

    Firemanagementpracticeswillbemosteffectiveiftheyarebasedonlocalandregionalcontexts.Wethereforedonotadvocateaparticularapproach,butratherwerecommendthatfiremanagementandpolicyincorporatelong-termecologicalandtraditionalknowledgeintheirevidencebasetosetlocally-andregionally-relevantbenchmarksforfireregimesandtoidentifytargetsrelatedtobiodiversityconservationandresilienceinlandscapesthatareacceptabletolocalcommunities.Theseeffortscanbeachievedthroughthefollowingsteps:

    Policy Recommendation

    Use long-term ecological data to assess presentfires in the context of the region’s historical firevariability. For example, assesswhetherwildfiresareoutsideofan“historicalnorm”comparedtopastconditions. Gather information on the social andecologicalbenefitsoftraditionalfiremanagement.Usesystematicevaluation53oflong-termecologicaldataandtraditionalknowledgetotakeintoaccountalltheavailableevidence.

    Set benchmarks for fire regimes, in terms offrequencyandintensity,thatmaximisebiodiversityand reduce fire risks. Based on the informationfrom long-termfire records54, consider controlledburning in areas where fire has been artificiallyexcluded, and monitor the outcomes. Prioritisetraditionalburningpracticesthatfocusontargetedspecies to preserve traditional food sources andotherethnobotanicalresources.

    Figure 7. Knowledge from past environments can reveal the fire regime conditions that maximise biodiversity in specific ecosystems. In the Alps, plant biodiversity is maximised at intermediate conditions45 and traditional fire practices can help maintaining the balance between natural and cultural heritage values. (Photo credit: DC).

    Raise “public understanding” for fire bycommunicating potential risks and educating thepublic that fire is a natural component in manyecosystems. Promote the inclusion of traditionalknowledge approaches that are collaborative,community-focused, and contribute to thecontinuationofculturaltraditions,intergenerationalknowledge transfer, and practical know-how14.Finally, encourage the participation of differentstakeholdersandlocalcommunitiesinaprocessofinterculturalexchange.

    Maintain mosaic landscapes that preventcatastrophic fires and preserve both natural andculturalheritagevalues37.Replacingmonocultureswithtraditionalpractices(e.gswiddenagriculture,pastoralism)mayincreaseecosystemdiversityandresilience while also achieving increased carbonsequestrationtargets.

    3

    1. Collect and integratediverse knowledge

    3. Involve local communitiesin decision-making

    4. Promote cultural andnatural diversity

    2. Set fire management plansbased on the diverse knowledge

  • AcknowledgementsThisPolicyBriefresultsfromaworkshopheldatRoyalHollowayUniversityofLondonandfundedbyPAGES,theQuaternary Research Association (QRA), and Chrono-environnementCNRS/UniversitédeFranche-Comté.Theworkshopgathered30internationalparticipantsfrom15countriestodiscussongoingchallengesonbiodiversityconservation and fire policy at global scale. Thisinitiative is promoted by the Global Paleofire WorkingGroup(https://www.gpwg.paleofire.org/),anetworkofresearchers promoting data collection and analyses ofsedimentarycharcoalrecordsfromaroundtheworld.

    Contributors:ColombaroliD(RHUL),MistryJ(RHUL),MilnerA(RHUL),VannièreB(CNRS,UniversitédeFranche-Comté),AdolfC(U.ofOxford),BilbaoBA(SimónBolívarU.), Carcaillet C (École Pratique des Hautes Études),ConnorS(AustralianNationalU.),DaniauAL(CNRS,U.ofBordeaux),HawthorneD(U.ofStAndrews),JeffersE(U.ofOxford),LarsonE(U.ofWisconsin-Platteville),Petrokofsky G (U. of Oxford), Power MJ (U. of Utah),SinnaduraiP(BreconBeaconsNationalParkAuthority),BerrioJC(U.ofLeicester),CassinoR(U.FederaldeOuroPreto), Gildeeva O (U. of Jena), Grosvenor M (King’sCollege London), Hardiman M (U. of Portsmouth),Hennebelle A (U. de Montréal), Kuosmanen N (U. ofHelsinki), Lestienne M (CNRS, Université de Franche-Comté),PortesMC(U.ofGöttingen),RockellG(SurreyWildlifeTrust),TsakiridouM(U.ofPortsmouth),WalshA(RHUL).

    Contact: Daniele Colombaroli, Centre for QuaternaryResearch (CQR), Department of Geography, RoyalHollowayUniversityof London (RHUL),Egham,SurreyTW200EX,[email protected]

    How to cite this document: ColombaroliD,MistryJ,Milner A, Vannière B, Adolf C, BilbaoBA,Carcaillet C,ConnorS,DaniauAL,HawthorneD,JeffersE,LarsonE,PetrokofskyG,PowerMJ,SinnaduraiP,BerrioJC,CassinoR, Gildeeva O, GrosvenorM, HardimanM, HennebelleA, Kuosmanen N, Lestienne M, Portes MC, RockellG, Tsakiridou M, Walsh A (2019). Diverse knowledgeinforming fire policy and biodiversity conservation.DiverseK Policy Brief. Royal Holloway University ofLondon,UK.

    Photo Cover: AfiresetforsmallholderagricultureinGuatemala(Photocredit:BV).

    Graphic Design:M.Kelsey(RHUL).

    Website: TheGlobalPaleofireWorkingGroup

    Twitter:@diverse_k

    1. MoritzMA,Batllori E,BradstockRA,Gill AM,Handmer J,HessburgPF,etal.Learningtocoexistwithwildfire.Nature.2014;515(7525):58-66.

    2. Prentice IC. The Burning Issue. Science.2010;330(6011):1636-7.

    3. BowmanDMJS,BalchJK,ArtaxoP,BondWJ,CarlsonJM,Cochrane MA, et al. Fire in the Earth System. Science.2009;324(5926):481-4.

    4. KellyR,ChipmanML,Higuera PE,Stefanova I, BrubakerLB,Hu FS.Recent burningof boreal forests exceedsfireregime limits of the past 10,000 years. Proceedings oftheNationalAcademyofSciencesoftheUnitedStatesofAmerica.2013;110(32):13055-60.

    5. vanderWerfGR,RandersonJT,GiglioL,GobronN,DolmanAJ.Climatecontrolsonthevariabilityoffiresinthetropicsandsubtropics.GlobalBiogeochemicalCycles.2008;22(3).

    6. Colombaroli D, Ssemmanda I, Gelorini V, Verschuren D.Contrasting long-term recordsofbiomassburning inwetanddrysavannasofequatorialEastAfrica.GlobalChangeBiology.2014;20(9):2903-14.

    7. Marlon JR, Bartlein PJ, Carcaillet C, Gavin DG, HarrisonSP, Higuera PE, et al. Climate and human influences onglobalbiomassburningoverthepasttwomillennia.NatureGeoscience.2008;1(10):697-702.

    8. van der Werf GR, Randerson JT, Giglio L, van LeeuwenTT, Chen Y, Rogers BM, et al. Global fire emissionsestimatesduring1997-2016.EarthSystemScienceData.2017;9(2):697-720.

    9. Bond WJ. Fires in the Cenozoic: a late flowering offlammableecosystems.FrontiersinPlantScience.2015;5.

    References10. Pausas JG, Keeley JE, Schwilk DW. Flammability as an

    ecological and evolutionary driver. Journal of Ecology.2017;105(2):289-97.

    11. ScottAC.ThePre-Quaternaryhistoryoffire.PalaeogeographyPalaeoclimatologyPalaeoecology.2000;164(1-4):281-329.

    12. DonatoDC,FontaineJB,RobinsonWD,KauffmanJB,LawBE.Vegetationresponsetoashortintervalbetweenhigh-severity wildfires in amixed-evergreen forest. Journal ofEcology.2009;97(1):142-54.

    13. McLauchlanKK,HigueraPE,GavinDG,PerakisSS,MackMC,AlexanderH, et al. Reconstructingdisturbances and theirbiogeochemical consequences over multiple timescales.BioScience.2014;64(2):105-16.

    14. Mistry J, Berardi A. Bridging indigenous and scientificknowledge.Science.2016;352(6291):1274-5.

    15. MistryJ,BilbaoBA,BerardiA.Communityownedsolutionsfor fire management in tropical ecosystems: casestudies from Indigenous communities of South America.PhilosophicalTransactionsoftheRoyalSocietyB-BiologicalSciences.2016;371(1696).

    16. MistryJ,BerardiA,AndradeV,KrahoT,KrahoP,LeonardosO. Indigenous firemanagement in the cerrado of Brazil:The case of the Kraho of Tocantins. Human Ecology.2005;33(3):365-86.

    17. BowmanDMJS,BalchJ,ArtaxoP,BondWJ,CochraneMA,D’AntonioCM,etal.ThehumandimensionoffireregimesonEarth.JournalofBiogeography.2011;38(12):2223-36.

    18. FernandesPM,DaviesGM,AscoliD,FernandezC,MoreiraF,RigolotE,etal.PrescribedburninginsouthernEurope:developing fire management in a dynamic landscape.FrontiersinEcologyandtheEnvironment.2013;11:E4-E14.

    https://www.gpwg.paleofire.org/

  • 19. Bilbao BA, Leal AV, Mendez CL. Indigenous Use of Fireand Forest Loss in Canaima National Park, Venezuela.AssessmentofandToolsforAlternativeStrategiesofFireManagementinPemónIndigenousLands.HumanEcology.2010;38(5):663-73.

    20. Stephens SL, Ruth LW. Federal forest-fire policy in theUnitedStates.EcologicalApplications.2005;15(2):532-42.

    21. IPCC.IntergovernmentalPanelonClimateChange2013.22. HuFS,HigueraPE,DuffyP,ChipmanML,RochaAV,Young

    AM, et al. Arctic tundra fires: natural variability andresponsestoclimatechange.FrontiersinEcologyandtheEnvironment.2015;13(7):369-77.

    23. PausasJG,Fernandez-MunozS.FireregimechangesintheWesternMediterraneanBasin:fromfuel-limitedtodrought-drivenfire regime.ClimaticChange.2012;110(1-2):215-26.

    24. AndelaN,MortonDC,GiglioL,ChenY,vanderWerfGR,Kasibhatla PS, et al. A human-driven decline in globalburnedarea.Science.2017;356(6345):1356-61.

    25. McWethy DB, Schoennagel T, Higuera PE, KrawchukM, Harvey BJ, Metcalf EC, et al. Rethinking resilience towildfire.NatureSustainability.2019;2(9):797-804.

    26. McMorrowJ,CavanG,WalkerJ,AylenJ,LeggC,QuinnC,etal.FireInterdisciplinaryResearchonEcosystemServices(FIRES).PolicyBrief.2010.

    27. DaniauA-L,BartleinPJ,HarrisonSP,Prentice IC,BrewerS,FriedlingsteinP,etal.Predictabilityofbiomassburningin response to climate changes. Global BiogeochemicalCycles.2012;26.

    28. PowerMJ,MarlonJ,OrtizN,BartleinPJ,HarrisonSP,MayleFE, et al. Changes in fire regimes since the last glacialmaximum:Anassessmentbasedonaglobalsynthesisandanalysis of charcoal data.ClimateDynamics.2008;30(7-8):887-907.

    29. Daniau AL, Harrison SP, Bartlein PJ. Fire regimes duringtheLastGlacial.QuaternaryScienceReviews.2010;29(21-22):2918-30.

    30. Harrison SP, Goni MFS. Global patterns of vegetationresponse to millennial-scale variability and rapid climatechangeduringthelastglacialperiod.QuaternaryScienceReviews.2010;29(21-22):2957-80.

    31. FischerH,MeissnerKJ,MixAC,AbramNJ,AustermannJ,BrovkinV,etal.Palaeoclimateconstraintsontheimpactof2degreesCanthropogenicwarmingandbeyond.NatureGeoscience.2018;11(7):474-85.

    32. Lawson IT, Tzedakis PC, Roucoux KH, Galanidou N. Theanthropogenic influence on wildfire regimes: charcoalrecordsfromtheHoloceneandLastInterglacialatIoannina,Greece.JournalofBiogeography.2013;40(12):2324-34.

    33. Vannière B, Blarquez O, Rius D, Doyen E, Brücher T,ColombaroliD,etal.7000-yearhumanlegacyofelevation-dependent European fire regimes. Quaternary ScienceReviews.2016;132:206-12.

    34. Gillson L, Whitlock C, Humphrey G. Resilience and firemanagement in the Anthropocene. Ecology and Society.2019;24(3):14.

    35. ButzRJ.Traditionalfiremanagement:historicalfireregimesandlandusechangeinpastoralEastAfrica.InternationalJournalofWildlandFire.2009;18(4):442-50.

    36. Marks-BlockT,LakeFK,CurranLM.Effectsofunderstoryfire management treatments on California Hazelnut, anecocultural resource of the Karuk and Yurok Indians inthe Pacific Northwest. Forest Ecology and Management.2019;450.

    37. WhitlockC,ColombaroliD,ConederaM,TinnerW.Land-usehistoryasaguideforforestconservationandmanagement.ConservationBiology.2018;32(1):84-97.

    38. WillisKJ,BirksHJB.Whatisnatural?Theneedforalong-term perspective in biodiversity conservation. Science.2006;314(5803):1261-5.

    39. GillsonL,MarchantR.Frommyopiatoclarity:sharpeningthe focus of ecosystem management through thelens of palaeoecology. Trends in Ecology & Evolution.2014;29(6):317-25.

    40. Adolf C, Wunderle S, Colombaroli D, Weber H, GobetE, Heiri O, et al. The sedimentary and remote-sensingreflectionofbiomassburninginEurope.GlobalEcologyandBiogeography.2018;27(2):199-212.

    41. vanLeeuwenJFN,FroydCA,vanderKnaapWO,CoffeyEE,TyeA,WillisKJ.FossilPollenasaGuidetoConservationintheGalapagos.Science.2008;322(5905):1206-.

    42. Larson ER, Johnson LB, Wilding TC, Hildebrandt KM,Kipfmueller KF, Johnson LR. Faces in the Wilderness: aNewNetworkofCrossdatedCulturally-ModifiedRedPineintheBoundaryWatersCanoeAreaWildernessofNorthernMinnesota,USA.HumanEcology.2019;47(5):747-764.

    43. ConederaM,ColombaroliD,TinnerW,KrebsP,WhitlockC.Insightsaboutpast forestdynamicsasatool forpresentand future forest management in Switzerland. ForestEcologyandManagement.2017;388:100-12.

    44. ConnorSE,VanniereB,ColombaroliD,AndersonRS,CarrionJS, Ejarque A, et al. Humans take control of fire-drivendiversity changes in Mediterranean Iberia’s vegetationduringthemid-lateHolocene.Holocene.2019;29(5):886-901.

    45. Colombaroli D, Tinner W. Determining the long-termchanges in biodiversity and provisioning services alonga transect from Central Europe to the Mediterranean.Holocene.2013;23(11):1625-34.

    46. Gavin DG, Hallett DJ, Hu FS, Lertzman KP, Prichard SJ,BrownKJ,etal.ForestfireandclimatechangeinwesternNorth America: insights from sediment charcoal records.FrontiersinEcologyandtheEnvironment.2007;5(9):499-506.

    47. BergeronY,CyrD,GirardinMP,CarcailletC.Will climatechangedrive21st centuryburn rates inCanadianborealforest outside of its natural variability: collating globalclimatemodelexperimentswithsedimentarycharcoaldata.International Journal ofWildland Fire. 2010;19(8):1127-1139.

    48. HennebelleA,GrondinP,Aleman JC,Ali AA,BergeronY,BorcardD,etal.Usingpaleoecologytoimprovereferenceconditions for ecosystem-based management in westernspruce-moss subdomain of Quebec. Forest Ecology andManagement.2018;430:157-65.

    49. Cyr D, Gauthier S, Bergeron Y, Carcaillet C. ForestmanagementisdrivingtheeasternNorthAmericanborealforestoutside itsnatural rangeof variability. Frontiers inEcologyandtheEnvironment.2009;7(10):519-24.

    50. VerschurenD,LairdKR,CummingBF.Rainfallanddroughtin equatorial east Africa during the past 1,100 years.Nature.2000;403(6768):410-4.

    51. BoerMM,PriceOF,BradstockRA.Wildfires:Weighpolicyeffectiveness.Science.2015;350(6263):920-.

    52. North MP, Stephens SL, Collins BM, Agee JK, Aplet G,FranklinJF,etal.Reformforestfiremanagement.Science.2015;349(6254):1280-1.

    53. Petrokofsky G, Holmgren P, Brown ND. Reliable forestcarbon monitoring - systematic reviews as a tool forvalidating the knowledge base. International ForestryReview.2011;13(1):56-66.

    54. WhitlockC.Landmanagement-Forests,firesandclimate.Nature.2004;432(7013):28-9.