distribution of scattering matrix elements in quantum … · 2014. 1. 9. · santosh kumar shiv...

55
Santosh Kumar Shiv Nadar University Dadri, India DISTRIBUTION OF SCATTERING MATRIX ELEMENTS IN QUANTUM CHAOTIC SCATTERING Joint work with A. Nock* , H.-J. Sommers, T. Guhr Universität Duisburg-Essen, Duisburg. * Queen Mary University of London, London B. Dietz, M. Miski-Oglu, A. Richter, F. Schäfer Institut für Kernphysik, Technische Universität Darmstadt IX Brunel-Bielefeld Workshop on Random Matrix Theory Bielefeld 2013 Distribution of S-matrix element in Fourier Space

Upload: others

Post on 29-Jan-2021

6 views

Category:

Documents


0 download

TRANSCRIPT

  • Santosh KumarShiv Nadar UniversityDadri, India

    DISTRIBUTION OF SCATTERING MATRIX ELEMENTS IN QUANTUM CHAOTIC SCATTERING

    Joint work with

    A. Nock*, H.-J. Sommers, T. Guhr Universität Duisburg-Essen, Duisburg.*Queen Mary University of London, London

    B. Dietz, M. Miski-Oglu, A. Richter, F. Schäfer Institut für Kernphysik, Technische Universität Darmstadt

    IX Brunel-Bielefeld Workshop on Random Matrix TheoryBielefeld 2013

    Distribution of S-matrix element in Fourier Space

  • OUTLINE

    Introduction

    Brief sketch of the derivation

    Results and comparison with simulations and experiments

    Conclusion

  • SCATTERING

    Scattering of light waves by clouds Scattering of radio waves

    Rutherford-Geiger-Marsden experiment

    Scattering of laser beam

    Electron scattering inside aquantum dot

    A candidate scattering event at LHC leading to the discovery of Higgs Boson

    Deviation of a wave or a particle from its trajectory because of some localized non-uniformity in the medium.

    Image Sources: http://images.tutorvista.com/content/feed/tvcs/scattering-of-light.jpeg, http://www.te.kmutnb.ac.th/~ttp/ttp_research_clip_image010.gif, http://www.retsch-technology.com/uploads/pics/pic_la_function_en_kl.jpg, http://web.am.qub.ac.uk/ctamop/images/cavitysmall.gif, http://images.tutorvista.com/content/atom/alpha-particles-showed-deflection.jpeg, http://public.web.cern.ch/Public/features/1212_highlights.png

    http://www.te.kmutnb.ac.th/~ttp/ttp_research_clip_image010.gifhttp://www.te.kmutnb.ac.th/~ttp/ttp_research_clip_image010.gifhttp://www.te.kmutnb.ac.th/~ttp/ttp_research_clip_image010.gifhttp://www.te.kmutnb.ac.th/~ttp/ttp_research_clip_image010.gifhttp://www.retsch-technology.com/uploads/pics/pic_la_function_en_kl.jpghttp://www.retsch-technology.com/uploads/pics/pic_la_function_en_kl.jpghttp://web.am.qub.ac.uk/ctamop/images/cavitysmall.gifhttp://web.am.qub.ac.uk/ctamop/images/cavitysmall.gifhttp://images.tutorvista.com/content/atom/alpha-particles-showed-deflection.jpeghttp://images.tutorvista.com/content/atom/alpha-particles-showed-deflection.jpeghttp://images.tutorvista.com/content/atom/alpha-particles-showed-deflection.jpeghttp://images.tutorvista.com/content/atom/alpha-particles-showed-deflection.jpeg

  • SCATTERING: GENERIC SET-UP

    States before the scattering event

    Interaction region(Scattering event) States after the

    scattering event

    Channels of reaction (Characterized by total

    energy E and other quantum numbers)

    Scattering matrix (S-matrix) connects states existing asymptotically before and after the scattering event

    (Relates incoming and outgoing waves)

  • B1(k)A2(k)

    �=

    S11 S12S21 S22

    � A1(k)B2(k)

    � 1(x) = A1(k)e

    ikx + B1(k)e�ikx

    2(x) = A2(k)eikx + B2(k)e

    �ikx

    SS† = S†S = 1

    SCATTERING MATRIX

    H

    Relates incoming and outgoing waves

    2 channel example:

    S- matrix is unitary owing to the flux conservation,

  • N(� 1) bound states : hl|mi = �lmM channels : ha,E1|b, E2i = �ab �(E1 � E2)

    HAMILTONIAN FORMULATION

    H =X

    lm

    |liHlmhm|+X

    c

    ZdE|c, EiEhc, E|

    +

    X

    l,c

    ✓|li

    ZdEWlchc, E|+ herm. conj.

    Hab

    d

    e

    f

    c

    Schematic view of the general scattering problem: Different channels of reaction (labeled a,b,...) are

    connected via a compact interaction region described by a Hamiltonian H.

    Schematic view of the general scattering problem: Different channels of reaction (labeled a,b,...) are

    connected via a compact interaction region described by a Hamiltonian H.

    GaAs based quantum dot(Source: http://www.newton.ac.uk/reports/9798/dqc1.gif)

    • C. Mahaux and H. A. Weidenmüller, Shell Model Approach to Nuclear Reactions (North Holland, Amsterdam, 1969)

  • SCATTERING MATRIX

    The resolvent G(E) is given by:

    The N-component coupling vectors are assumed to satisfy the orthogonality

    Sab(E) = �ab � i2⇡W †aG(E)Wb

    G(E) =

    E1N �H + i⇡

    MX

    c=1

    WcW†c

    !�1

    W †cWd =�c⇡�cd; c, d = 1, · · · ,M

    • C. Mahaux and H. A. Weidenmüller, Shell Model Approach to Nuclear Reactions (North Holland, Amsterdam, 1969)

  • STATISTICAL DESCRIPTION

    Scattering process is quite often of chaotic nature.

    Complicated dependence on

    ‣ Parameters of incoming waves (e.g., energy)

    ‣ The scattering region (e.g., the form or strength of the scattering potential.)

    Scattering description of S-matrix is needed!

  • S-matrix, itself, is treated as a stochastic quantity and is described by the Poisson kernel.

    (Based on the assumption of minimal information content)

    M: Dimension of the S-matrix (Number of channels): Average S-matrixβ: Symmetry class

    Dependence on the parameters not obvious!

    P (S) / |det�1M � ShS†i

    �|�(�M+2��)

    MEXICO APPROACH

    • P. Mello, P. Pereyra and T. H. Seligman, Ann. Phys. (NY) 161, 254 (1985)• H. U. Baranger and P. Mello , Phys. Rev. Lett. 73,142 (1994); Europh. Lett. 33, 465 (1996)• P. Mello and H. Baranger , Physica A 220, 15 (1995)

  • HEIDELBERG APPROACHIntroduces stochasticity on the level of the Hamiltonian describing the scattering center.

    Random Matrix Universality: Universal and generic features can be extracted by modeling the Hamiltonian describing the scattering center using appropriate ensemble of Random matrices

    N: Dimension of the matrices Hv: Energy scale

    β: Symmetry class

    β=1 Time reversal invariant “spinless” systems (Real-Symmetric H) β=2 Time reversal noninvariant systems (Hermitian H)

    • D. Agassi, H. A. Weidenmüller and Z. Mantzouranis, Phys. Rep. 22, 145 (1975)

    P(H) / exp✓��N

    4v2trH2

  • KNOWN RESULTS

    • Two-point correlation function (β=1) J. J. M. Verbaarschot, H. A. Weidenmüller and M. R. Zirnbauer Phys. Rep. 129, 367 (1985)

    • Up to fourth moment (β=1) E. D. Davis and D. Boose Phys. Lett. B 211, 379 (1988); Z. Phys. A 332, 427 (1989)

    • Two-point correlation function (β=2) D. V. Savin, Y. V. Fyodorov, H.-J. Sommers Acta Phys. Pol. A 109, 53-64 (2006)

    • Two-point correlation function (β=2, Arbitrary UN invariant distribution for H) S. Mandt and M. R. Zirnbauer, J. Phys. A: Math. Theor. 43, 025201 (2010)

  • KNOWN RESULTS

    • Two-point correlation function (β=1) J. J. M. Verbaarschot, H. A. Weidenmüller and M. R. Zirnbauer Phys. Rep. 129, 367 (1985)

    • Up to fourth moment (β=1) E. D. Davis and D. Boose Phys. Lett. B 211, 379 (1988); Z. Phys. A 332, 427 (1989)

    • Two-point correlation function (β=2) D. V. Savin, Y. V. Fyodorov, H.-J. Sommers Acta Phys. Pol. A 109, 53-64 (2006)

    • Two-point correlation function (β=2, Arbitrary UN invariant distribution for H) S. Mandt and M. R. Zirnbauer, J. Phys. A: Math. Theor. 43, 025201 (2010)

    ‣ Distribution of diagonal elements (β=1, 2): Y. V. Fyodorov, D. V. Savin, and H.-J. Sommers J. Phys. A: Math. Gen 38, 10731 (2005)

  • KNOWN RESULTS

    • Two-point correlation function (β=1) J. J. M. Verbaarschot, H. A. Weidenmüller and M. R. Zirnbauer Phys. Rep. 129, 367 (1985)

    • Up to fourth moment (β=1) E. D. Davis and D. Boose Phys. Lett. B 211, 379 (1988); Z. Phys. A 332, 427 (1989)

    • Two-point correlation function (β=2) D. V. Savin, Y. V. Fyodorov, H.-J. Sommers Acta Phys. Pol. A 109, 53-64 (2006)

    • Two-point correlation function (β=2, Arbitrary UN invariant distribution for H) S. Mandt and M. R. Zirnbauer, J. Phys. A: Math. Theor. 43, 025201 (2010)

    ‣ Distribution of diagonal elements (β=1, 2): Y. V. Fyodorov, D. V. Savin, and H.-J. Sommers J. Phys. A: Math. Gen 38, 10731 (2005)

    The problem of finding distribution of off-diagonal S-matrix elements remained unsolved!

  • SOME OBSERVATIONS

    Already in 1975 numerical simulations revealed that

    The distributions, in general, exhibit Non - Gaussian behavior (expected because of Unitarity constraint).

    The real and imaginary parts show different deviations from the Gaussian behavior for β=1.

    Similar conclusions were arrived at from the data obtained from experiments on microwave resonators.

    • J.W.Tepel, Z.Physik A 273, 59 (1975). • J.Richert, M. H. Simbel, and H. A. Weidenmüller,Z.Physik A 273, 195 (1975).• B. Dietz, T. Friedrich, H. L. Harney, M. Miski-Oglu, A. Richter, F. Schäfer, and H. A.

    Weidenmüller, Phys. Rev. E 81, 036205 (2010).

  • SOME OBSERVATIONS

    Already in 1975 numerical simulations revealed that

    The distributions, in general, exhibit Non - Gaussian behavior (expected because of Unitarity constraint).

    The real and imaginary parts show different deviations from the Gaussian behavior for β=1.

    Similar conclusions were arrived at from the data obtained from experiments on microwave resonators.

    • J.W.Tepel, Z.Physik A 273, 59 (1975). • J.Richert, M. H. Simbel, and H. A. Weidenmüller,Z.Physik A 273, 195 (1975).• B. Dietz, T. Friedrich, H. L. Harney, M. Miski-Oglu, A. Richter, F. Schäfer, and H. A.

    Weidenmüller, Phys. Rev. E 81, 036205 (2010).

  • Ps(xs) =

    Zd[H]P(H)�(xs � }s(Sab)); s = 1, 2

    GOAL

    Distribution of off-diagonal S-matrix elements

    Real part of Sab:

    Imaginary part of Sab:

    }1(Sab) =Sab + S⇤ab

    2= �i⇡(W †aGWb �W

    †bG

    †Wa)

    }2(Sab) =Sab � S⇤ab

    2i= �⇡(W †aGWb +W

    †bG

    †Wa)

  • Rs(k) =

    Zd[H]P(H) exp(�ik}s(Sab)); s = 1, 2

    Ps(xs) =1

    2⇡

    Z 1

    �1dkRs(k) exp(ikxs)

    CHARACTERISTIC FUNCTIONS

    The characteristic function also serves as the moment generating function

    The distributions can be obtained as the Fourier transform of Rs(k):

  • Rs(k) =

    Zd[H]P(H) exp(�ik}s(Sab)); s = 1, 2

    W =

    WaWb

    �As =

    0 (�i)sG

    isG† 0

    Rs(k) =

    Zd[H]P(H) exp(�ik⇡W †AsW )

    P(H) / exp⇣� �N

    4v2trH2

    CHARACTERISTIC FUNCTIONS

    Introduce a 2N-dimensional vector W and a 2N×2N dimensional matrix As

    H appears in the denominator of G: Ensemble averaging nontrivial !

    G =

    E1N �H + i⇡

    MX

    c=1

    WcW†c

    !�1

  • SUPERMATHEMATICSAnticommuting (Grassmann or Fermionic) variables:

    Any function of the anticommuting variables is a finite polynomial,e.g., exp(α)=1+α

    “Complex conjugate”

    Conventions:

    •F. A. Berezin, Introduction to Superanalysis (Reidel, Dordrecht, 1987)• K. B. Efetov, Supersymmetry in Disorder and Chaos (Cambridge University Press, 1997)

    ↵1↵2 = �↵2↵1↵2 = 0

    ↵ ↵⇤

    (↵⇤)⇤ = �↵ (↵�)⇤ = ↵⇤�⇤(↵⇤↵)⇤ = (↵⇤)⇤↵⇤ = �↵↵⇤ = ↵⇤↵

  • SUPERMATHEMATICSIntegrals (Berezin Integrals):

    In contrast, for the ordinary complex variables

    Superintegral:

    •F. A. Berezin, Introduction to Superanalysis (Reidel, Dordrecht, 1987)• K. B. Efetov, Supersymmetry in Disorder and Chaos (Cambridge University Press, 1997)

    Zd↵ = 0,

    Zd↵↵ =

    1p2⇡Z Z

    d↵⇤ d↵ exp(iq ↵⇤↵) =q

    2⇡i

    Z Z Z Zdz⇤dz d↵⇤d↵ exp(iq(z⇤z + ↵⇤↵)) = 1

    Z Zdz⇤ dz exp(iq z⇤z) =

    2⇡i

    q

  • str� = tra� trb

    sdet� =det(a� µb�1⌫)

    det b=

    det a

    det(b� ⌫a�1µ)

    SUPERMATHEMATICS

    Supervectors:

    Supermatrices:

    DefinitionsSupertrace:

    Superdeterminant:

    =

    z⇣

    � † = [z† ⇣†]

    � =

    a µ⌫ b

    ��T =

    aT ⌫T

    �µT bT�

    �† =

    a† ⌫†

    �µ† b†�

  • z =

    zazb

    �⇣ =

    ⇣a⇣b

    �A�1s =

    0 (�i)s(G�1)†

    isG�1 0

    �W =

    WaWb

    Zd[⇣] exp

    ✓i

    4⇡k⇣†A�1s ⇣

    ◆= det

    A�1si8⇡2k

    !

    SUPERMATHEMATICSMultivariate Gaussian Integrals:

    Using vectors with commuting entries:

    Using vectors with anticommuting entries:

    Zd[z] exp

    ✓i

    4⇡kz†A�1s z

    ◆exp

    ✓i

    2

    (W †z + z†W )

    ◆= det

    �1

    A�1si8⇡2k

    !exp(�ik⇡W †AsW )

  • Zd[z]

    Zd[⇣] exp

    ✓i

    4⇡k(z†A�1s z + ⇣

    †A�1s ⇣)

    ◆exp

    ✓i

    2

    (W †z + z†W )

    ◆= exp(�ik⇡W †AsW )

    SUPERMATHEMATICS

    Combining the above integral results we obtain

  • Zd[z]

    Zd[⇣] exp

    ✓i

    4⇡k(z†A�1s z + ⇣

    †A�1s ⇣)

    ◆exp

    ✓i

    2

    (W †z + z†W )

    ◆= exp(�ik⇡W †AsW )

    Rs(k) =

    Zd[H]P(H) exp(�ik⇡W †AsW )

    SUPERMATHEMATICS

    Combining the above integral results we obtain

    The exponential on RHS is exactly the factor in our expression for Rs(k)

  • Rs(k) =

    Zd[ ] exp

    ⇣ i2

    (W† + †W)⌘Z

    d[H]P(H) exp⇣ i4⇡k

    †A�1s ⌘

    W =

    2

    664

    WaWb00

    3

    775 =

    2

    664

    zazb⇣a⇣b

    3

    775 A�1s =

    2

    666664

    0 (�i)s(G�1)†

    isG�1 00

    00 (�i)s(G�1)†

    isG�1 0

    3

    777775

    G�1 = E1N �H + i⇡MX

    c=1

    WcW†c

  • Rs(k) =

    Zd[ ] exp

    ⇣ i2

    (W† + †W)⌘Z

    d[H]P(H) exp⇣ i4⇡k

    †A�1s ⌘

    W =

    2

    664

    WaWb00

    3

    775 =

    2

    664

    zazb⇣a⇣b

    3

    775 A�1s =

    2

    666664

    0 (�i)s(G�1)†

    isG�1 00

    00 (�i)s(G�1)†

    isG�1 0

    3

    777775

    G�1 = E1N �H + i⇡MX

    c=1

    WcW†c

    H is now linear in the exponent containing the supervectors

  • Rs(k) =

    Zd[ ] exp

    ⇣ i2

    (W† + †W)⌘Z

    d[H]P(H) exp⇣ i4⇡k

    †A�1s ⌘

    W =

    2

    664

    WaWb00

    3

    775 =

    2

    664

    zazb⇣a⇣b

    3

    775 A�1s =

    2

    666664

    0 (�i)s(G�1)†

    isG�1 00

    00 (�i)s(G�1)†

    isG�1 0

    3

    777775

    G�1 = E1N �H + i⇡MX

    c=1

    WcW†c

    H is now linear in the exponent containing the supervectors

    As-1 is not block diagonal!

  • !⌅+ 00 2�⌅

    † ! †⌅± =

    0 ±(�i)s1N

    �is1N 0

    Ψ and Ψ† can be treated as independent complex quantities and therefore admit independent transformations.

    Jacobian: (-1)N 2-2N for β= 1 and (-1)N for β= 2

    The choice of Ξ± ensures proper convergence requirements for the supermatrix introduced later

  • Rs(k) = (�1)NZ

    d[ ] exp⇣ i2

    (U†s + †W)

    ⌘Zd[H]P(H) exp

    ⇣ i4⇡k

    †A�1 ⌘

    A�1 = diag[�(G�1)†, G�1,�(G�1)†,�G�1]

    β = 2 (HERMITIAN H)

  • Rs(k) = (�1)NZ

    d[ ] exp⇣ i2

    (U†s + †W)

    ⌘Zd[H]P(H) exp

    ⇣ i4⇡k

    †A�1 ⌘

    =

    2

    664

    zazb⇣a⇣b

    3

    775

    A�1 = diag[�(G�1)†, G�1,�(G�1)†,�G�1]

    β = 2 (HERMITIAN H)

  • Rs(k) = (�1)NZ

    d[ ] exp⇣ i2

    (U†s + †W)

    ⌘Zd[H]P(H) exp

    ⇣ i4⇡k

    †A�1 ⌘

    z†aHza � z†bHzb + ⇣

    †aH⇣a + ⇣

    †bH⇣b

    = tr(HD)

    D = zaz†a � zbz

    †b � ⇣a⇣

    †a � ⇣b⇣

    †b

    H-part in exponent involving the supervectors:

    where

    A�1 = diag[�(G�1)†, G�1,�(G�1)†,�G�1]

    β = 2 (HERMITIAN H)

  • Rs(k) = (�1)NZ

    d[ ] exp�i †Vs

    � Zd[H]P(H) exp

    ⇣ i4⇡k

    †A�1 ⌘

    A�1 = diag(�(G�1)†, G�1,�(G�1)†,�G�1)⌦ 12

    β= 1 (REAL SYMMETRIC H)

  • =

    2

    66666666664

    xa

    ya

    xb

    yb

    ⇣a

    ⇤a

    ⇣b

    ⇤b

    3

    77777777775

    Rs(k) = (�1)NZ

    d[ ] exp�i †Vs

    � Zd[H]P(H) exp

    ⇣ i4⇡k

    †A�1 ⌘

    A�1 = diag(�(G�1)†, G�1,�(G�1)†,�G�1)⌦ 12

    β= 1 (REAL SYMMETRIC H)

  • Rs(k) = (�1)NZ

    d[ ] exp�i †Vs

    � Zd[H]P(H) exp

    ⇣ i4⇡k

    †A�1 ⌘

    xTaHxa + yTa Hya � xTb Hxb � yTb Hyb + ⇣†aH⇣a � ⇣Ta H⇣⇤a + ⇣

    †bH⇣b � ⇣

    Tb H⇣

    ⇤b

    = tr(HD)

    D = xaxTa + yay

    Ta � xbxTb � ybyTb � ⇣a⇣†a + ⇣⇤a⇣Ta � ⇣b⇣

    †b + ⇣

    ⇤b ⇣

    Tb

    A�1 = diag(�(G�1)†, G�1,�(G�1)†,�G�1)⌦ 12H-part in exponent involving the supervectors:

    where

    β= 1 (REAL SYMMETRIC H)

  • Zd[H]P(H) exp

    ⇣ i4⇡k

    trHD⌘= exp

    ⇣� 1

    4rtrD2

    = exp

    ⇣� 1

    4rstr (K1/2BK1/2)2

    r =4�⇡2k2N

    v2

    Bmn =NX

    j=1

    ( m)j( †n)j ; m,n = 1, 2, .., 8/�

    K = diag(1,�1, 1, 1)⌦ 12/�

    ENSEMBLE AVERAGING

    where

  • exp

    ⇣� 1

    4rstr (K1/2BK1/2)2

    ⌘=

    Zd[�] exp

    �� r str�2 + i str�K1/2BK1/2

    =

    Zd[�] exp

    �� r str�2 + i †K1/2(� ⌦ 1N )K1/2

    HUBBARD-STRATONOVICH TRANSFORMATION

    σ is an 8/β-dimensional supermatrix having same structure as B, and K = K ⌦ 12/�

  • Rs(k) = (�1)NZ

    d[�] exp(�r str�2)Z

    d[ ] exp⇣i †K1/2⌃K1/2 + i †Vs

    Rs(k) = (�1)NZ

    d[�] exp(�r str�2)Z

    d[ ] exphi †K1/2⌃K1/2 +

    i

    2

    (U†s + †W)

    i

    ⌃ =⇣� � E

    4⇡k18/�

    ⌘⌦ 1N +

    i

    4kL⌦

    MX

    c=1

    WcW†c

    L = diag(1,�1, 1,�1)⌦ 12/�

    β=1

    β=2

  • Rs(k) = (�1)NZ

    d[�] exp(�r str�2)Z

    d[ ] exp⇣i †K1/2⌃K1/2 + i †Vs

    Rs(k) = (�1)NZ

    d[�] exp(�r str�2)Z

    d[ ] exphi †K1/2⌃K1/2 +

    i

    2

    (U†s + †W)

    i

    ⌃ =⇣� � E

    4⇡k18/�

    ⌘⌦ 1N +

    i

    4kL⌦

    MX

    c=1

    WcW†c

    L = diag(1,�1, 1,�1)⌦ 12/�

    Integral over the supervector can now be performed

    β=1

    β=2

  • Rs(k) =

    Zd[�] exp

    ⇣� r str�2 � �

    2

    str ln⌃� i4

    Fs⌘

    ⌃ =⇣� � E

    4⇡k18/�

    ⌘⌦ 1N +

    i

    4kL⌦

    MX

    c=1

    WcW†c

    L = L⌦ 1N , L = diag(1,�1, 1,�1)⌦ 12/�

    Fs =

    (VTs L

    �1/2⌃�1L�1/2Vs, � = 1

    U†sL�1/2⌃�1L�1/2W, � = 2

    REPRESENTATION IN SUPERMATRIX SPACE

    β=1 32 independent integration variables β=2 16 independent integration variables

  • Rs(k) =

    Zd[�] exp

    ⇣� r str�2 � �

    2

    str ln⌃� i4

    Fs⌘

    ⌃ =⇣� � E

    4⇡k18/�

    ⌘⌦ 1N +

    i

    4kL⌦

    MX

    c=1

    WcW†c

    L = L⌦ 1N , L = diag(1,�1, 1,�1)⌦ 12/�

    Fs =

    (VTs L

    �1/2⌃�1L�1/2Vs, � = 1

    U†sL�1/2⌃�1L�1/2W, � = 2

    REPRESENTATION IN SUPERMATRIX SPACE

    β=1 32 independent integration variables β=2 16 independent integration variables

    Drastic reduction in the number of integration variables!

  • Rs(k) =

    Zd[�] exp

    ⇣� r str�2 � �

    2

    str ln⌃� i4

    Fs⌘

    ⌃ =⇣� � E

    4⇡k18/�

    ⌘⌦ 1N +

    i

    4kL⌦

    MX

    c=1

    WcW†c

    L = L⌦ 1N , L = diag(1,�1, 1,�1)⌦ 12/�

    Fs =

    (VTs L

    �1/2⌃�1L�1/2Vs, � = 1

    U†sL�1/2⌃�1L�1/2W, � = 2

    REPRESENTATION IN SUPERMATRIX SPACE

    β=1 32 independent integration variables β=2 16 independent integration variables

    Drastic reduction in the number of integration variables!Form similar to that of generating function for correlations

  • Rs(k) =

    Zd[�] exp

    ⇣� r str�2 � �

    2

    str ln⌃� i4

    Fs⌘

    ⌃ =⇣� � E

    4⇡k18/�

    ⌘⌦ 1N +

    i

    4kL⌦

    MX

    c=1

    WcW†c

    L = L⌦ 1N , L = diag(1,�1, 1,�1)⌦ 12/�

    Fs =

    (VTs L

    �1/2⌃�1L�1/2Vs, � = 1

    U†sL�1/2⌃�1L�1/2W, � = 2

    REPRESENTATION IN SUPERMATRIX SPACE

    β=1 32 independent integration variables β=2 16 independent integration variables

    Drastic reduction in the number of integration variables!Form similar to that of generating function for correlations

    (Verbaarschot, Weidenmüller, Zirnbauer) apart from the Fs part

  • Rs(k) =

    Zd[�] exp(�L� �L)

    L = N 4�⇡2k2

    v2str�2 +N

    2str ln

    ⇣� � E

    4⇡k18/�

    �L =MX

    c=1

    str ln⇣18/� +

    i�c4⇡k

    ⇣� � E

    4⇡k18/�

    ⌘�1L⌘+

    i

    4Fs

    �0 =1

    8⇡k

    �E ± i

    p4v2 � E2

    SADDLE POINT ANALYSIS

    We are interested in N >> M limit. We fix M and let N → ∞

    Fs is a linear combination of matrix elements of multiplied with γc, where c=a, b.

    Saddle point equation:

    Scalar solution:

    8�⇡2k2

    v2� +

    2

    ⇣� � E

    4⇡k18/�

    ⌘�1= 0

  • �G =1

    8⇡k

    �E18/� �

    p4v2 � E2 Q

    Q = �i T�1LT ; strQ = 0; Q2 = �18/�

    L = diag(1,�1, 1,�1)⌦ 12/�

    MANIFOLD OF SOLUTIONS

    The dominant part of the free energy is invariant under the application of T

    β=1:T belongs to Lie supergroup UOSP(2,2/4) Q belongs to the coset superspace UOSP(2,2/4)/(UOSP(2/2)×UOSP(2/2))

    β=2:T belongs to Lie supergroup U(1,1/2) Q belongs to the coset superspace U(1,1/2)/(U(1/1)×U(1/1))

    •K. B. Efetov, Adv. Phys. 32, 53 (1983) • J. J. M. Verbaarschot, H. A. Weidenmüller and M. R. Zirnbauer, Phys. Rep. 129, 367 (1985)• Y. V. Fyodorov, and H.-J. Sommers, J. Math. Phys. 38,1918 (1997)

  • � = �G + ��

    SEPARATING “GOLDSTONE” AND “MASSIVE” MODES

    Expand up to the second power in δσ. The integrals involving Goldstone and Massive modes factorize. Symbolically:

    The part involving Massive modes are Gaussian integrals and yields unity.

    Z(�) =

    Z(�G)

    Z(��)

    • L. Schäfer and F. Wegner, Z. Phys. B 38, 113 (1980)• J. J. M. Verbaarschot, H. A. Weidenmüller and M. R. Zirnbauer, Phys. Rep. 129, 367 (1985)

  • Rs(k) =

    Zdµ(�G)e

    �iFs/4MY

    c=1

    sdet��2

    ⇣18/� +

    i�c4⇡k

    ��1E L⌘

    �G =1

    8⇡k

    �E18/� �

    p4v2 � E2 Q

    � �E = �G �E

    4⇡k18/�

    NONLINEAR SIGMA MODEL

    Parametrization of Q:β=1: Eight commuting variables Eight anticommuting variables

    β=2: Four commuting variables, Four anticommuting variables

    • K. B. Efetov, Adv. Phys. 32, 53 (1983) • J. J. M. Verbaarschot, H. A. Weidenmüller and M. R. Zirnbauer, Phys. Rep. 129, 367 (1985)• Y. V. Fyodorov, and H.-J. Sommers, J. Math. Phys. 38,1918 (1997)

  • Rs(k) = 1�Z 1

    1d�1

    Z 1

    �1d�2

    k2

    4(�1 � �2)2FU(�1,�2)

    �t1at

    1b + t

    2at

    2b

    �J0

    ⇣kq

    t1at1b

    Ps(xs) =@

    2f(xs)

    @x

    2s

    ,

    f(x) = x⇥(x) +

    Z 1

    1d�1

    Z 1

    �1d�2

    FU(�1,�2)4⇡(�1 � �2)2

    t

    1at

    1b + t

    2at

    2b�

    t

    1at

    1b � x2

    �1/2⇥(t1at

    1b � x2)

    FU =MY

    c=1

    gc + �2gc + �1

    gc =v2 + �2c

    �cp4v2 � E2

    =2

    Tc� 1

    tjc =

    q|�2j � 1|

    (gc + �j), j = 1, 2

    RESULTS (β=2)

    Identical results for real (s=1) and imaginary (s=2) parts

    Characteristic Function

    Distribution

  • Ps(xs) = �(xs) +@f

    (s)1

    @xs+

    @

    2f

    (s)2

    @x

    2s

    +@

    3f

    (s)3

    @x

    3s

    +@

    4f

    (s)4

    @x

    4s

    FO =MY

    c=1

    gc + �0(gc + �1)1/2(gc + �2)1/2

    J = (1� �20)|�1 � �2|

    2(�21 � 1)1/2(�22 � 1)1/2(�1 � �0)2(�2 � �0)2

    Rs(k) = 1 +1

    8⇡

    Z 1

    �1d�0

    Z 1

    1d�1

    Z 1

    1d�2

    Z 2⇡

    0d J (�0,�1,�2)FO(�0,�1,�2)

    4X

    n=1

    (s)n kn

    RESULTS (β=1)Different results for real (s=1) and imaginary (s=2) parts

    Characteristic Function

    Distribution

  • EXPERIMENTS WITH MICROWAVE RESONATORS

    Equivalence in mathematical structure of the time-independent Schrödinger and Hemholtz equations (two-dimensions)

    The shape of microwave cavity is such that the dynamics of the corresponding classical billiard is chaotic

    Not only moduli, but both real and imaginary parts of the S-matrix elements can be measured

    (r2 + k2) = 0 (r2 + k2)Ez = 0

  • COMPARISON WITH EXPERIMENTAL DATA (β=1)

    Characteristic functions for the real and imaginary parts of S12 for the frequency range 10-11 GHz

    Characteristic functions for the real and imaginary parts of S12 for the frequency range 24-25 GHz

  • COMPARISON WITH EXPERIMENTAL DATA (β=1)

    Distributions for the real and imaginary parts of S12 for the frequency range 18-19 GHz

    Distributions for the real and imaginary parts of S12 for the frequency range 24-25 GHz

  • COMPARISON WITH NUMERICAL SIMULATIONS (β=1)

  • COMPARISON WITH NUMERICAL SIMULATIONS (β=2)

  • CONCLUSION

    We solved a long-standing problem of finding the exact results (in the N→∞ limit) for distributions of off-diagonal S- matrix elements.

    We accomplished this task using a novel route to the nonlinear sigma model based on the characteristic function.

    We validated our results with experimental data obtained with chaotic microwave billiards, and thus presented a new confirmation of the random matrix universality conjecture.

    • S. Kumar, A. Nock, H.-J. Sommers, T. Guhr, B. Dietz, M. Miski-Oglu, A. Richter, and F. Schäfer, Phys. Rev. Lett. 111, 030403 (2013)• A. Nock, S. Kumar, H.-J. Sommers, T. Guhr, Ann. Phys. (In press); Preprint: arXiv:1307.4739

  • Thank You!