distributed spectrum sensing in unlicensed bands using the vesna platform student: zoltan padrah...

71
Distributed spectrum sensing in unlicensed bands using the VESNA platform Student: Zoltan Padrah Mentor: doc. dr. Mihael Mohorčič Seminar II

Upload: georgina-young

Post on 30-Dec-2015

217 views

Category:

Documents


0 download

TRANSCRIPT

Distributed spectrum sensing in unlicensed bands using the

VESNA platform

Student: Zoltan PadrahMentor: doc. dr. Mihael Mohorčič

Seminar II

Seminar II 2 / 73

Agenda

• Motivation• Theoretical aspects• Practical aspects• Stand-alone spectrum sensing• Distributed spectrum sensing• Spectrum sensing testbed• Experimental results• Conclusions07.12.2012

Seminar II 3 / 73

MOTIVATION

07.12.2012

Seminar II 4 / 73

Motivation

• Introduction• Radio spectrum

– Regulation– Usage

• Using the radio spectrum more efficiently– Approach

• Reusing radio frequency bands– Licensed– Unlicensed

• Motivation• Theoretical aspects• Practical aspects• Stand-alone spectrum

sensing• Distributed spectrum

sensing• Spectrum sensing

testbed• Experimental results• Conclusions07.12.2012

Seminar II 5 / 73

Introduction• Radio spectrum1

– Many systems use it: AM, FM, TV broadcast, GSM, UMTS, WiFi, GPS, satellite

– Systems need to coexist– Avoid disturbance (interference)

• Radio spectrum regulation– Frequency band allocation– Each system has its own frequency band

1 image credit: Roke Manor reseach, 200407.12.2012

Seminar II 6 / 73

Frequency band allocation

image credit: Roke Manor reseach, 200407.12.2012

Seminar II 7 / 73

Usage of radio spectrum

• Studies about radio spectrum utilizationLeft: Cabric et al: Implemenation issues

In spectrum sensing

Bottom: Valenta et al: Survey in spectrum

utilization in Europe

07.12.2012

Seminar II 8 / 73

Usage of radio spectrum

• Studies about radio spectrum utilizationLeft: Cabric et al: Implemenation issues

In spectrum sensing

Bottom: Valenta et al: Survey in spectrum

utilization in Europe

Terminal 1Terminal 2 Terminal 3

07.12.2012

Seminar II 9 / 73

Usage of radio spectrum

• Studies about radio spectrum utilizationLeft: Cabric et al: Implemenation issues

In spectrum sensing

Bottom: Valenta et al: Survey in spectrum

utilization in Europe

Terminal 1Terminal 2 Terminal 3

Terminal 4

07.12.2012

Seminar II 10 / 73

Approach

Get information about radio spectrum

Take decision on the used frequency band

07.12.2012

Seminar II 11 / 73

Approach

Get information about radio spectrum

Take decision on the used frequency band

Perform database lookup

Perform sensing with a radio

07.12.2012

Seminar II 12 / 73

Reusing radio spectrum

In licensed bands

• Examples: TV VHF, UHF, GSM bands

• Primary user(s)• Secondary user(s)

• Dynamic spectrum access (DSA)

In unlicensed bands

• Examples: ISM bands (868 MHz; 2.4 GHz)

• Multiple equally threated users

• Spectrum Sharing (SP)

07.12.2012

Seminar II 13 / 73

Reusing radio spectrum

In licensed bands

• Examples: TV VHF, UHF, GSM bands

• Primary user(s)• Secondary user(s)

• Dynamic spectrum access (DSA)

In unlicensed bands

• Examples: ISM bands (868 MHz; 2.4 GHz)

• Multiple equally threated users

• Spectrum Sharing (SP)

07.12.2012

Seminar II 14 / 73

THEORETICAL ASPECTS

07.12.2012

Seminar II 15 / 73

Theoretical aspects

• Problem formulation• Goals• Hidden terminal and

exposed terminal situations

• Spectrum sensing• Energy detection

• Motivation• Theoretical aspects• Practical aspects• Stand-alone spectrum

sensing• Distributed spectrum

sensing• Spectrum sensing

testbed• Experimental results• Conclusions07.12.2012

Seminar II 16 / 73

Problem formulation

Testbed is needed

For solving the artificial spectrum scarcity problem, it is necessary:• Experimental-driven research• Experimental validation and improvement of sensing

algorithms

We assume that either:

a) a radio communication experiment is prepared in an ISM radio frequency band

b) the radio activity in an ISM band is of interest at a given location

In both cases external interference might be observed.07.12.2012

Seminar II 17 / 73

Goals

• Defining the system architecture for a testbed • Developing software that allows performing spectrum

sensing with the VESNA platform• Spectrum sensing:

– Calibration of multiple VESNA devices– Evaluation of their performance– Performing experiments with them

• Implementation of the functionalities needed for – Integrating multiple VESNA devices in a testbed– Communication system of the testbed, supporting

experiments• Experimental evaluation of the performance of a

VESNA-based spectrum sensing testbed.07.12.2012

Seminar II 18 / 73

Hidden terminal and exposed terminal situations• Idea: use multiple radios for

observation– Each radio performs partial

detection– Results are centralized

• Resolves the problems:– Hidden transceiver– Hidden receiver

• Relies on other methods for partial detection

07.12.2012

Seminar II 19 / 73

Spectrum sensing

• Detecting other radios• Spectrum sensing methods

– Energy detection– Eigenvalue based detection– Cyclostationary feature detection– Matched filter detection– Collaborative sensing

07.12.2012

Seminar II 21 / 73

Energy detection

• Idea: measure the energy in frequency band and compare it to a threshold

• Simple to implement• Needs correct threshold value: noise floor• Does not work well with spread spectrum signals07.12.2012

Seminar II 22 / 73

PRACTICAL ASPECTS

07.12.2012

Seminar II 23 / 73

Practical aspects

• Used devices• VESNA platform• Spectrum sensing

framework

• Motivation• Theoretical aspects• Practical aspects• Stand-alone spectrum

sensing• Distributed spectrum

sensing• Spectrum sensing

testbed• Experimental results• Conclusions07.12.2012

Seminar II 24 / 73

Used devices

• Sensor network based testbed• VESNA platform

– Low-cost, low-complexity• CC1101 radio – 868 MHz ISM band• CC2500 radio – 2.4 GHz ISM band

• The radios can only provide RSSI values– Only energy detection is possible

07.12.2012

Seminar II 25 / 73

VESNA platform• Developed at Jozef Stefan Institute• ST ARM Cortex-M3, 64 MHz• JTAG, USB, USART PC interface• I2C, SPI, PWM, ADC, DAC, USART

sensor and actuator interfaces– Code library: C/C++ (GCC)

• 300-900 MHz, 2.4 GHz radio interface (all ISM bands); – TI CC1101, TI CC2500

• Software tools: Open Source• Eclipse IDE• Tool-chain: GNU Compiler Collection• Cygwin, Linux environment for

Windows• JTAG server: OpenOCD• JTAG hardware interface: Olimex

ARM-USB-OCD07.12.2012

Seminar II 26 / 73

VESNA platform• Developed at Jozef Stefan Institute• ST ARM Cortex-M3, 64 MHz• JTAG, USB, USART PC interface• I2C, SPI, PWM, ADC, DAC, USART

sensor and actuator interfaces– Code library: C/C++ (GCC)

• 300-900 MHz, 2.4 GHz radio interface (all ISM bands); – TI CC1101, TI CC2500

• Software tools: Open Source• Eclipse IDE• Tool-chain: GNU Compiler Collection• Cygwin, Linux environment for

Windows• JTAG server: OpenOCD• JTAG hardware interface: Olimex

ARM-USB-OCD

Performance:- Comparable to other sensor node platforms,

like TelosB or Sensinode- Lot less processing power than a PC

07.12.2012

Seminar II 27 / 73

Spectrum sensing framework

Radio VESNA Communication and control

Communication

interface Data storage

On-line processing

Off-line processin

g

Control system

07.12.2012

Seminar II 28 / 73

STANDALONE SPECTRUM SENSING

07.12.2012

Seminar II 29 / 73

Standalone spectrum sensing

• Goals• Experimental

setup• Calibration results

– CC2500– CC1101

• Motivation• Theoretical aspects• Practical aspects• Stand-alone

spectrum sensing• Distributed spectrum

sensing• Spectrum sensing

testbed• Experimental results• Conclusions07.12.2012

Seminar II 30 / 73

Goals

• Implementation of spectrum sensing functionality

• Calibration of the prototype

07.12.2012

Seminar II 31 / 73

Experimental setup

Signal generator

Coaxial Cable

VESNA

Measured signal level

Offset value

Generated signal level

07.12.2012

Seminar II 32 / 73

Calibration – CC2500

• Absolute error: < 6 dB• Nonlinearity: < 2 dB

07.12.2012

Seminar II 33 / 73

Calibration – CC1101

• Absolute error: < 8 dB• Nonlinearity: < 0.5 dB

07.12.2012

Seminar II 34 / 73

Calibration – CC1101

Malfunction07.12.2012

Seminar II 35 / 73

DISTRIBUTED SPECTRUM SENSING

07.12.2012

Seminar II 36 / 73

Distributed spectrum sensing

• Goals• Demonstration

– Devices– Environment– Representative

results• Device comparison

– Introduction– Environment– Results

• Motivation• Theoretical aspects• Practical aspects• Stand-alone spectrum

sensing• Distributed spectrum

sensing• Spectrum sensing

testbed• Experimental results• Conclusions07.12.2012

Seminar II 37 / 73

Goals

• Demonstrate the functioning of heterogeneous sensing system

• Benchmark– Devices– Combinations of devices

07.12.2012

Seminar II 38 / 73

Demonstration – devices

• eZ430-RF2500• Texas Instruments wireless

development tool• MSP430 CPU• CC2500 radio

• USRP2• Universal Software Radio Peripheral• SBX daugthterboard• Software defined radio device• GNU radio software

• VESNA• CC2500 radio

07.12.2012

Seminar II 39 / 73

Demonstration – environment

07.12.2012

Seminar II 40 / 73

Representative results

07.12.2012

Seminar II 41 / 73

Device comparison

Path loss model with parameters

Measurement results from

devices

Fitting

Parameter values

Error relative to the model

For each

device

Comparison

07.12.2012

Seminar II 42 / 73

Device comparison

Path loss model with parameters

Measurement results from

devices

Fitting

Parameter values

Error relative to the model

For each

device

Comparison

07.12.2012

Seminar II 43 / 73

Device comparison

Path loss model with parameters

Measurement results from

devices

Fitting

Parameter values

Error relative to the model

For each

device

Comparison

• One static continuous transmission

• Multiple measurement locations

07.12.2012

Seminar II 44 / 73

Device comparison

Path loss model with parameters

Measurement results from

devices

Fitting

Parameter values

Error relative to the model

For each

device

Comparison

• One static continuous transmission

• Multiple measurement locations

Mean Squared Error (MSE): average of squared error values for each data point

07.12.2012

Seminar II 45 / 73

Environment

07.12.2012

Seminar II 46 / 73

Results - plotted

07.12.2012

Seminar II 47 / 73

Results - numerical

07.12.2012

Seminar II 48 / 73

SPECTRUM SENSING TESTBED

07.12.2012

Seminar II 49 / 73

Spectrum sensing testbed

• Architecture• Goals• Requirements• Constraints• Measurements

– Setup– Representative

results

• Motivation• Theoretical aspects• Practical aspects• Stand-alone spectrum

sensing• Distributed spectrum

sensing• Spectrum sensing

testbed• Experimental results• Conclusions07.12.2012

Seminar II 50 / 73

Architecture

07.12.2012

Seminar II 51 / 73

Architecture• Functionality abstracted

in resources• RESTful design: GET

and POST requests• All nodes addressable• Requests initiated by

management and control part

07.12.2012

Seminar II 52 / 73

Architecture

• Custom application layer protocol

• Similar to HTTP

07.12.2012

Seminar II 53 / 73

Architecture

• Management and control part

• Access control• HTTP interface• Scriptable

07.12.2012

Seminar II 54 / 73

Goals

• Everything configurable remotely– No physical access

• Unified control interface– Simple design and usage

• Centralized control and data collection– Simplicity, reliability

• Possibility of easily adding functionality in the future

07.12.2012

Seminar II 55 / 73

Requirements

• Spectrum sensing data collection– Performance level– Nodes Control system

• Reprogramming functionality– firmware image transmission performance

level– Control system Nodes

• Reliability

07.12.2012

Seminar II 56 / 73

Constraints

• Availability of Internet access– for the gateway node

• Location of light poles• Power connections to the light poles• Radio connectivity• Possibilities for experiments

07.12.2012

Seminar II 57 / 73

Measurements – setup

• Goal: measuring radio propagation– For the control network

07.12.2012

Seminar II 58 / 73

Measurements – representative results

07.12.2012

Seminar II 59 / 73

EXPERIMENTAL RESULTS

07.12.2012

Seminar II 60 / 73

Experimental results

• Scenario• Radio wave

propagation in the testbed– Link quality

categories• Experiment

scenario• Results

• Motivation• Theoretical aspects• Practical aspects• Stand-alone spectrum

sensing• Distributed spectrum

sensing• Spectrum sensing

testbed• Experimental results• Conclusions07.12.2012

Seminar II 61 / 73

Scenario

• In the industrial zone• 2.4 GHz ISM band• Emulated behavior

– Scripted• Observed by multiple nodes

07.12.2012

Seminar II 62 / 73

Radio wave propagation

07.12.2012

Seminar II 63 / 73

Link quality categories

1) Good link quality

2) Medium link quality

3) Bad link quality

1) 2)

3)

07.12.2012

Seminar II 64 / 73

Experiment scenario

07.12.2012

Seminar II 65 / 73

Node roles in the experiment

• Node 17: terminal with cognitive radio capabilities (c)

• Node 2: terminal without cognitive radio capabilities (n)

• Rest of the nodes: observers

(c)

(n)07.12.2012

Seminar II 66 / 73

Results – Node 25

07.12.2012

Seminar II 67 / 73

Results – Node 6

07.12.2012

Seminar II 68 / 73

Results – Node 13

07.12.2012

Seminar II 69 / 73

CONCLUSIONS

07.12.2012

Seminar II 70 / 73

Conclusions (1)

• Spectrum sensing: energy detection is suitable for low-complexity platform

• Stand-alone spectrum sensing prototype– Developed– Calibrated– Integrated in a heterogeneous system– Accuracy has been determined

07.12.2012

Seminar II 71 / 73

Conclusions (2)

• Spectrum sensing testbed– Architecture defined– Network planning performed– Developed, set up

• Including HTTP like protocol

• Spectrum sensing experiment– Prepared– Performed

07.12.2012

Seminar II 73 / 73

THANK YOU FOR YOUR ATTENTION!

Questions?

07.12.2012