distributed coordination in power networks agustín irizarry-rivera, phd, pe

33
Distributed Coordination in Power Networks Agustín Irizarry -Rivera, Ph PE [email protected]

Upload: jason-peters

Post on 08-Jan-2018

219 views

Category:

Documents


0 download

DESCRIPTION

EPNES: Intelligent Power Routers3 Re-routing in Response to Failures Producers P1P2 Pn P3 Consumers C1C2 C3 C4 x x System MTTR Limited by Operator Response Time

TRANSCRIPT

Page 1: Distributed Coordination in Power Networks Agustín Irizarry-Rivera, PhD, PE

Distributed Coordination in Power Networks

Agustín Irizarry-Rivera, PhD, PE

[email protected]

Page 2: Distributed Coordination in Power Networks Agustín Irizarry-Rivera, PhD, PE

EPNES: Intelligent Power Routers 2

State-of-the-Art Power Delivery

ProducersP1 P2

Pn

P3

Consumers

C1 C2 C3 C4

GOAL:De-centralized System

Reconfigurationwith

Minimal Human Intervention

Page 3: Distributed Coordination in Power Networks Agustín Irizarry-Rivera, PhD, PE

EPNES: Intelligent Power Routers 3

Re-routing in Response to Failures

ProducersP1 P2

Pn

P3

Consumers

C1 C2 C3 C4

x

x

System MTTR Limited by Operator

Response Time

Page 4: Distributed Coordination in Power Networks Agustín Irizarry-Rivera, PhD, PE

EPNES: Intelligent Power Routers 4

Re-routing in Response to Major Disturbances

ProducersP1 P2

Pn

P3

Consumers

C1 C2 C3 C4

Slow Operator Response

May Cause Cascading

Failures

Page 5: Distributed Coordination in Power Networks Agustín Irizarry-Rivera, PhD, PE

EPNES: Intelligent Power Routers 5

Re-routing in Response to Major Disturbances

ProducersP1 P2

Pn

P3

Consumers

C1 C2 C3 C4

IPRSRespondPromptlyto AvoidFurther

Deterioration

Page 6: Distributed Coordination in Power Networks Agustín Irizarry-Rivera, PhD, PE

EPNES: Intelligent Power Routers 6

Our approach

• De-centralized control in response to major disturbances

• Intelligent Power Routers (IPR):– modular building blocks– strategically distributed over entire network– embedded intelligence – information exchange allows neighboring IPRs to

coordinate network reconfiguration– improve network survivability, security, reliability,

and re-configurability

Page 7: Distributed Coordination in Power Networks Agustín Irizarry-Rivera, PhD, PE

EPNES: Intelligent Power Routers 7

RestorationModels

IPRProtocols

DistributedControlModels

IPRArchitecture

Project Organization-Presentation Focus

Economics

Education

EducationEd

ucat

ion

EducationRisk Assessment

Page 8: Distributed Coordination in Power Networks Agustín Irizarry-Rivera, PhD, PE

EPNES: Intelligent Power Routers 8

• Objectives– De-centralized System Reconfiguration Algorithm– Maximize number of high-priority loads served

• Approach– Model as Network of IPR (Graph Model)– Design Communication Protocols and Routing

messages algorithms– Design Objective Function

• Prk : Priority of load k , range [1,N], N is the lowest priority• Lk : each of the loads in the system (power required/load)• Yk : Variable decision ( yk = 1 : Served, yk = 0 : not served)• R: set of loads

* *( Pr ), max Prk k k kk RMAX L y

De-Centralized Communication & Control ProtocolsIPR

Protocols

Page 9: Distributed Coordination in Power Networks Agustín Irizarry-Rivera, PhD, PE

EPNES: Intelligent Power Routers 9

IPR decisions are based on reliability and priority

• Input - Reliability – IPR requests power

from the more reliable input available

– Reliability based on historical data or user defined

• Output - Priority– Load (client) priority– IPR resolve request

beginning with highest priority request

IPRProtocols

Page 10: Distributed Coordination in Power Networks Agustín Irizarry-Rivera, PhD, PE

EPNES: Intelligent Power Routers 10

IPRS Negotiation Scheme

Gen 1

Gen 2 Gen 3Load 2

Load 1

B 1

B 6B 2

B 5B 4B 3 Bus Line Reliable Priority

B2 B1 – B2 2 /

B2 – B3 1 /

Load 1 / 1

B3 Gen 2 1 /

B2 – B3 / 1

B3 – B4 / 2

B4 B3 – B4 2 /

B4 – B5 1 /

Load 2 / 1

B5 Gen 3 1 /

B4 – B5 / 1

B5 – B6 / 2

OffOffOnOn

Load 3

OnOnOnOn

OnOn

— Normal State Message

— Request Power— Deny Request— Request Status

— Response Status— Affirmative Response

IPRProtocols

Page 11: Distributed Coordination in Power Networks Agustín Irizarry-Rivera, PhD, PE

EPNES: Intelligent Power Routers 11

IPR Zone Approach

Interior-IPRBorder-IPR

Intra-ZoneMessages

Intra-ZoneMessages

Inter-ZoneMessages

Zone A Zone B

Least ReliableGenerators

LowestPriorityLoads

IPRProtocols

Page 12: Distributed Coordination in Power Networks Agustín Irizarry-Rivera, PhD, PE

EPNES: Intelligent Power Routers 12

Intra Zone IPR Negotiation

Gen 1250MW

Gen 2300MW

Gen 3270MW

Load 2 100MW

Load 1125 MW

Load 390MW4

59

678 32

1

P1

P3P2

On

On

Off OffOn

250 150 300

250

250 250

150

IPRProtocols

Page 13: Distributed Coordination in Power Networks Agustín Irizarry-Rivera, PhD, PE

EPNES: Intelligent Power Routers 13

OutlineBackground and Problem Statement• Report on project activities

– IPR Protocols– Benchmark Test Systems– IPR Reliability– Education

• Year 2 Accomplishments Summary• Year 3 Proposed activities

Page 14: Distributed Coordination in Power Networks Agustín Irizarry-Rivera, PhD, PE

EPNES: Intelligent Power Routers 14

WSCC 179-Bus SystemBuses 179

Transmission lines 203

Transformers 60

Generators 29

Base Demand 60,785 MW

Base Generation 61,412 MW

BenchmarkTest Systems

Page 15: Distributed Coordination in Power Networks Agustín Irizarry-Rivera, PhD, PE

EPNES: Intelligent Power Routers 15

179 buses divided in Zones

156

167

155165

166

163

164

14

19

25

24

22

23

27

136

21

84 85

36

157 161 162

158

1604445

159

3

8

18

9

7

6

115

10

17

2 4

28

29

20

12 13

147 148

144

118

116 117

132

103

107

110

134

102

47

40

140

43

81

99

180

42

150

51

152

179177175

141149

153

154

57

48

49

105

106

143

41

59

137

50

145

146

15

16

62

59

46

55

60 56

39109108

178176 174

61

54

51

5253

63

64

37138 139

142

104 135

133

127

115

130

131129

128

125

119

121

122

123

3534

33

3031

32

79 80 74

7875 73

66 65

67

76

82

98

77

91

92

93

94

97

96

95

87

88

86

90

89

83

120

111

173

172

114

112113

170 168

169171

124126

72

71

68

6970

1a

1b

1c2a

2b

Area Gen MW

Load MW

1a 28266 25839

1b 5530 4749

1c 7020 5819

2a 5883 8599

2b 14713 15780

BenchmarkTest Systems

Page 16: Distributed Coordination in Power Networks Agustín Irizarry-Rivera, PhD, PE

EPNES: Intelligent Power Routers 16

DCZEDS Simplified DiagramBenchmarkTest Systems

Page 17: Distributed Coordination in Power Networks Agustín Irizarry-Rivera, PhD, PE

EPNES: Intelligent Power Routers 17

l ine-line faultline-ground fault

line-line-ground fault

Pow ergui-Continuous

A B C

com

A

B

C

load

ABC

com

A

B

C

gen_right

ABCcom

A

B

C

gen_left

A B C

A

B

C

Vab

cIa

bc

Three-PhaseV-I Measurement

Terminator6Terminator5

Terminator4Terminator3Terminator2

Terminator1Terminator

Pm

E

A

B

C

m_SI

Simplified Synchronous Machine SI Units1

Pm

E

A

B

C

m_SI

Simplified Synchronous Machine SI Units

Scope6Scope2

Scope1

Relay

6

Multimeter4

A B C

com

A

B

C

IPR_3_1_B

ABC

com

A

B

C

IPR_3_1_A

ABC

com

A

B

C

IPR_2_3_B

ABCcom

A

B

C

IPR_2_3_A

A B C

com

A

B

C

IPR_2_1_B

ABCcom

A

B

C

IPR_2_1_A

IPR3 Control

IPR3

IPR2 Control

IPR2

IPR1 Control

IPR1

Sensor_3_1

Goto2

[IPR_3_1_B]

From8

[IPR_3_1_A] From7

[IPR_2_1_B]

From6

[IPR_2_1_A] From5

[load]

From4

[IPR_2_3_B]From3[gen_right]From2[IPR_2_3_A]From1[gen_left]From

257648

Constant7

5.00549e+007

Constant6

257651

Constant5

5.02436e+007

Constant4

0 Constant25

0 Constant13

0 Constant1

A B C

com

A

B

C

3-Phase Breaker8

ABC

com

A

B

C

3-Phase Breaker4

ABCcom

A

B

C

3-Phase Breaker3

abc

Mag

Phase

3-PhaseSequence Analyzer

A B C

3-PhaseParallel RLC Load

A

B

C

FaultA

Fault

IPR-Controlled 3-bus System

2 Generators

1 LOAD

Page 18: Distributed Coordination in Power Networks Agustín Irizarry-Rivera, PhD, PE

EPNES: Intelligent Power Routers 18

l ine-line faultline-ground fault

line-line-ground fault

Pow ergui-Continuous

A B C

com

A

B

C

load

ABC

com

A

B

C

gen_right

ABCcom

A

B

C

gen_left

A B C

A

B

C

Vab

cIa

bc

Three-PhaseV-I Measurement

Terminator6Terminator5

Terminator4Terminator3Terminator2

Terminator1Terminator

Pm

E

A

B

C

m_SI

Simplified Synchronous Machine SI Units1

Pm

E

A

B

C

m_SI

Simplified Synchronous Machine SI Units

Scope6Scope2

Scope1

Relay

6

Multimeter4

A B C

com

A

B

C

IPR_3_1_B

ABC

com

A

B

C

IPR_3_1_A

ABC

com

A

B

C

IPR_2_3_B

ABCcom

A

B

C

IPR_2_3_A

A B C

com

A

B

C

IPR_2_1_B

ABCcom

A

B

C

IPR_2_1_A

IPR3 Control

IPR3

IPR2 Control

IPR2

IPR1 Control

IPR1

Sensor_3_1

Goto2

[IPR_3_1_B]

From8

[IPR_3_1_A] From7

[IPR_2_1_B]

From6

[IPR_2_1_A] From5

[load]

From4

[IPR_2_3_B]From3[gen_right]From2[IPR_2_3_A]From1[gen_left]From

257648

Constant7

5.00549e+007

Constant6

257651

Constant5

5.02436e+007

Constant4

0 Constant25

0 Constant13

0 Constant1

A B C

com

A

B

C

3-Phase Breaker8

ABC

com

A

B

C

3-Phase Breaker4

ABCcom

A

B

C

3-Phase Breaker3

abc

Mag

Phase

3-PhaseSequence Analyzer

A B C

3-PhaseParallel RLC Load

A

B

C

FaultA

Fault

IPR-Controlled 3-bus System

3 Energy FlowControl Devices

(EFCD)

EFCD + IPR = Intelligent Bus

3 IPRs

Page 19: Distributed Coordination in Power Networks Agustín Irizarry-Rivera, PhD, PE

EPNES: Intelligent Power Routers 19

l ine-line faultline-ground fault

line-line-ground fault

Pow ergui-Continuous

A B C

com

A

B

C

load

ABC

com

A

B

C

gen_right

ABCcom

A

B

C

gen_left

A B C

A

B

C

Vab

cIa

bc

Three-PhaseV-I Measurement

Terminator6Terminator5

Terminator4Terminator3Terminator2

Terminator1Terminator

Pm

E

A

B

C

m_SI

Simplified Synchronous Machine SI Units1

Pm

E

A

B

C

m_SI

Simplified Synchronous Machine SI Units

Scope6Scope2

Scope1

Relay

6

Multimeter4

A B C

com

A

B

C

IPR_3_1_B

ABC

com

A

B

C

IPR_3_1_A

ABC

com

A

B

C

IPR_2_3_B

ABCcom

A

B

C

IPR_2_3_A

A B C

com

A

B

C

IPR_2_1_B

ABCcom

A

B

C

IPR_2_1_A

IPR3 Control

IPR3

IPR2 Control

IPR2

IPR1 Control

IPR1

Sensor_3_1

Goto2

[IPR_3_1_B]

From8

[IPR_3_1_A] From7

[IPR_2_1_B]

From6

[IPR_2_1_A] From5

[load]

From4

[IPR_2_3_B]From3[gen_right]From2[IPR_2_3_A]From1[gen_left]From

257648

Constant7

5.00549e+007

Constant6

257651

Constant5

5.02436e+007

Constant4

0 Constant25

0 Constant13

0 Constant1

A B C

com

A

B

C

3-Phase Breaker8

ABC

com

A

B

C

3-Phase Breaker4

ABCcom

A

B

C

3-Phase Breaker3

abc

Mag

Phase

3-PhaseSequence Analyzer

A B C

3-PhaseParallel RLC Load

A

B

C

FaultA

Fault

IPR-Controlled 3-bus System

Fault GenerationCircuitry

Fault DetectionCircuitry

Page 20: Distributed Coordination in Power Networks Agustín Irizarry-Rivera, PhD, PE

EPNES: Intelligent Power Routers 20

l ine-line faultline-ground fault

line-l ine-ground fault

Pow ergui-Continuous

A B C

com

A

B

C

load

ABC

com

A

B

C

gen_right

ABCcom

A

B

C

gen_left

A B C

A

B

C

Vab

cIa

bc

Three-PhaseV-I Measurement

Terminator6Terminator5

Terminator4Terminator3Terminator2

Terminator1Terminator

Pm

E

A

B

C

m_SI

Simplified Synchronous Machine SI Units1

Pm

E

A

B

C

m_SI

Simplified Synchronous Machine SI Units

Scope6Scope2

Scope1

Relay

6

Multimeter4

A B C

com

A

B

C

IPR_3_1_B

ABC

com

A

B

C

IPR_3_1_A

ABC

com

A

B

C

IPR_2_3_B

ABCcom

A

B

C

IPR_2_3_A

A B C

com

A

B

C

IPR_2_1_B

ABCcom

A

B

C

IPR_2_1_A

IPR3 Control

IPR3

IPR2 Control

IPR2

IPR1 Control

IPR1

Sensor_3_1

Goto2

[IPR_3_1_B]

From8

[IPR_3_1_A] From7

[IPR_2_1_B]

From6

[IPR_2_1_A] From5

[load]

From4

[IPR_2_3_B]From3[gen_right]From2[IPR_2_3_A]From1[gen_left]From

257648

Constant7

5.00549e+007

Constant6

257651

Constant5

5.02436e+007

Constant4

0 Constant25

0 Constant13

0 Constant1

A B C

com

A

B

C

3-Phase Breaker8

ABC

com

A

B

C

3-Phase Breaker4

ABCcom

A

B

C

3-Phase Breaker3

abc

Mag

Phase

3-PhaseSequence Analyzer

A B C

3-PhaseParallel RLC Load

A

B

C

FaultA

Fault

IPR-Controlled 3-bus System

A

C

D

B

Page 21: Distributed Coordination in Power Networks Agustín Irizarry-Rivera, PhD, PE

EPNES: Intelligent Power Routers 21

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-200

-150

-100

-50

0

50

100

150

200

Ib: IPR 3 1 B/Breaker A

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-100

-80

-60

-40

-20

0

20

40

60

80

100

Ib: IPR 2 3 A/Breaker A

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-200

-150

-100

-50

0

50

100

150

200

Ib: IPR 2 1 A/Breaker A

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-200

-150

-100

-50

0

50

100

150

200

Ib: load/Breaker A

IPRs Achieve Fault Recovery With Local Decisions

A

B

C

D

BenchmarkTest Systems

Page 22: Distributed Coordination in Power Networks Agustín Irizarry-Rivera, PhD, PE

EPNES: Intelligent Power Routers 22

Status• Studied and partitioned in zones the 179 bus system

– Implementing IPR Zone and Multi step negotiation

• Studied and partitioned in zones the Navy system – Simulation of IPR v1 using SimPower for MatLab– Demonstration of IPR v1 application in a 3-bus system– Experiment demonstrating decentralized control leading to fault

recovery

• Developing a simple IPR messaging protocol (SIMP)

• Redesign of ONR Zonal Ship System using IPR modules

• Experimentation with various IPR–based designs

BenchmarkTest Systems

Page 23: Distributed Coordination in Power Networks Agustín Irizarry-Rivera, PhD, PE

EPNES: Intelligent Power Routers 23

OutlineBackground and Problem Statement• Report on project activities

– IPR Protocols– Benchmark Test Systems– IPR Reliability– Education

• Year 2 Accomplishments Summary• Year 3 Proposed activities

Page 24: Distributed Coordination in Power Networks Agustín Irizarry-Rivera, PhD, PE

EPNES: Intelligent Power Routers 24

Reliability of IPR

•To calculate the reliability change of a system operated with and without IPR we first need to calculate the reliability of the IPR itself.

•To do this we need the IPR • failure mechanisms • failure probabilities

… but no IPR has been built yet. Thus, failure mechanisms and probabilities are estimated by analogy to data routers

Risk Assessment

Page 25: Distributed Coordination in Power Networks Agustín Irizarry-Rivera, PhD, PE

EPNES: Intelligent Power Routers 25

IPR sub-systemsRisk

Assessment

Computer Hardware

Software(Algorithms,

“Intelligence”)

Switch orPower Hardware(Breakers, FACTS, other)IPR

(CPU functions, Communications)

Page 26: Distributed Coordination in Power Networks Agustín Irizarry-Rivera, PhD, PE

EPNES: Intelligent Power Routers 26

IPR SwitchRisk

Assessment

Computer Hardware Software

SwitchIPR

An existing high voltage circuit breaker, FACTS or another switching device capable of controlling power flow

Available breaker redundancy increases the reliability of the IPR

Page 27: Distributed Coordination in Power Networks Agustín Irizarry-Rivera, PhD, PE

EPNES: Intelligent Power Routers 27

IPR IntelligenceRisk

Assessment

Computer Hardware Software

SwitchIPR

The software (algorithms) will make and execute decisions to control the switch depending on the network status

Network status is monitored locally via sensors and regionally through other IPR

Decisions will be based on network status and pre-established contingency tables

Page 28: Distributed Coordination in Power Networks Agustín Irizarry-Rivera, PhD, PE

EPNES: Intelligent Power Routers 28

IPR CPU and CommunicationsRisk

Assessment

Computer Hardware Software

SwitchIPR

Computer hardware consists of CPU functions and a data router to handle communications between IPR.

Data may be transferred between IPR via wireless connection, fiber optic, dedicated line, or other

methods

Page 29: Distributed Coordination in Power Networks Agustín Irizarry-Rivera, PhD, PE

EPNES: Intelligent Power Routers 29

Functional configurations for the IPR sub systems

Risk Assessment

Page 30: Distributed Coordination in Power Networks Agustín Irizarry-Rivera, PhD, PE

EPNES: Intelligent Power Routers 30

Reliability of IPR

IPR Configuration

P(S)=0.95P(R)=0.90009P(B)=0.99330

P(S)=0.99P(R)=0.90009P(B)=0.99330

R F R F

(a) 0.84936 0.15064 0.88512 0.11488

(b) 0.89182 0.10818 0.89397 0.10603

(c) 0.93422 0.06578 0.97355 0.02645

(d) 0.97244 0.02756 0.98152 0.01842

(e) 0.98093 0.01907 0.98329 0.016713

Risk Assessment

Page 31: Distributed Coordination in Power Networks Agustín Irizarry-Rivera, PhD, PE

EPNES: Intelligent Power Routers 31

Results• IPR reliability lower than the reliability of the

breaker alone. – the reliability in a series system will be less than the lowest

reliability of its components.

• Is it better to use breaker only instead of IPR? No. – A breaker will act based on local data, without regard to the

system state outside its protection zone. – The IPR, through its communication capabilities, will act based on

local and regional data enhancing the system reliability.– A Special Protection System, like an IPR, when properly operating,

significantly improves system response following a contingency and the system reliability.

Risk Assessment

Page 32: Distributed Coordination in Power Networks Agustín Irizarry-Rivera, PhD, PE

EPNES: Intelligent Power Routers 32

On Going Work

Use other methods to properly capture the increase in reliability of a power system when a special protection scheme, like an IPR, is used.

Estimate the change in reliability of a power system operated with and without IPR:

• Well-Being • Risk framework methods.

Risk Assessment

Page 33: Distributed Coordination in Power Networks Agustín Irizarry-Rivera, PhD, PE

EPNES: Intelligent Power Routers 33

Acknowledgment

This project was primarily supported by the NSF/ONR NSF/ONR EPNES Award ECS-0224743 “Intelligent Power Routers for Distributed Coordination in Electric Energy Processing Networks”

Researchers: Agustín Irizarry (PI), Manuel Rodríguez, José Cedeño, Bienvenido Vélez, Miguel Vélez-Reyes, Efraín O’Neill-Carrillo, Alberto Ramírez

Students: Carlos Torres, Idalides Vergara, Marianela Santiago, Christian Feliciano