distortion type theorems for functions in the logarithmic ...journaloffunctionspaces 3 that...

11
Research Article Distortion Type Theorems for Functions in the Logarithmic Bloch Space Armando J. GarcĆ­a-OrtĆ­z, 1 Milton del Castillo Lesmes Acosta, 2 and Julio C. Ramos-FernĆ”ndez 3 1 Ā“ Area de MatemĀ“ atica, Universidad Nacional Experimental de Guayana, Pto. Ordaz, BolĀ“ ıvar, Venezuela 2 Proyecto Curricular de MatemĀ“ aticas, Facultad de Ciencias y EducaciĀ“ on, Universidad Distrital Francisco JosĀ“ e de Caldas, Carrera 3 No. 26 A-40, BogotĀ“ a, Colombia 3 Departamento de MatemĀ“ atica, Universidad de Oriente, 6101 CumanĀ“ a, Sucre, Venezuela Correspondence should be addressed to Julio C. Ramos-FernĀ“ andez; [email protected] Received 23 January 2017; Revised 22 March 2017; Accepted 2 April 2017; Published 16 April 2017 Academic Editor: John R. Akeroyd Copyright Ā© 2017 Armando J. GarcĀ“ ıa-OrtĀ“ ız et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We establish distortion type theorems for locally schlicht functions and for functions having branch points satisfying a normalized Bloch condition in the closed unit ball of the logarithmic Bloch space B log . As a consequence of our results we have estimations of the schlicht radius for functions in these classes. 1. Introduction One of the most important results in the area of geometric theory of functions of a complex variable is the celebrated distortionā€™s theorem established by Koebe and Bieberbach [1, 2] at the beginning of the twentieth century. Koebe and Bieberbach showed that the range of any function in the class S of all conformal functions on D, the open unit disk of the complex plane C, normalized such that (0) = 0 = (0) āˆ’ 1 contain the Euclidean disk with center at the origin and radius 1/4. is last result is today known as Koebe 1/4 eorem and, in particular, shows that Blochā€™s constant (see [3]) is greater than or equal to 1/4. Koebe and Bieberbach found sharp lower and upper bounds for the growth and the distortion of conformal maps in the class S; more precisely, they showed that for any āˆˆ S and āˆˆ D the following estimations hold. (1) Growth theorem: || (1 + ||) 2 ā‰¤ () ā‰¤ || (1 āˆ’ ||) 2 (1) (2) Distortion theorem: 1 āˆ’ || (1 + ||) 3 ā‰¤ () ā‰¤ 1 + || (1 āˆ’ ||) 3 (2) with equality if and only if is a rotation of the Koebe function deļ¬ned by () = (1 āˆ’ ) 2 , ( āˆˆ D), (3) which also belongs to the class S. In particular, the distortion theorem implies that the class S is contained in the closed ball with center at the origin and radius 8 of -Bloch space B for all ā‰„3 (see Section 3 for the deļ¬nition of B ). For more properties of conformal maps and distortion theorem, we recommend the excellent books [4, 5]. Although the distortion theorem gives sharp bounds for the modulus of the derivative of functions in the class S, it cannot be applied to the bigger class of locally schlicht functions deļ¬ned on D satisfying the normalized Bloch conditions (0) = 0 = (0) āˆ’ 1 (recall that a holomorphic function is locally schlicht on D if () Ģø =0 for all āˆˆ D). Many authors have obtained distortion type theorems or lower bounds for the modulus or real part of the derivative of locally schlicht functions in Bloch-type spaces. e pioneer work about this subject appears in 1992 and is due to Liu and Minda [6]. ey established distortion theorems for locally schlicht functions in the classical Bloch space B satisfying the conditions (0) = 0, (0) = 1, and ā€–ā€– B =1 (see Section 3 for the deļ¬nition of Bloch space). Liu and Minda Hindawi Journal of Function Spaces Volume 2017, Article ID 8694516, 10 pages https://doi.org/10.1155/2017/8694516

Upload: others

Post on 05-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Research ArticleDistortion Type Theorems for Functions inthe Logarithmic Bloch Space

    Armando J. GarcĆ­a-OrtĆ­z,1 Milton del Castillo Lesmes Acosta,2

    and Julio C. Ramos-FernƔndez3

    1 AĢrea de MatemaĢtica, Universidad Nacional Experimental de Guayana, Pto. Ordaz, BolĢÄ±var, Venezuela2Proyecto Curricular de MatemaĢticas, Facultad de Ciencias y EducacioĢn, Universidad Distrital Francisco JoseĢ de Caldas,Carrera 3 No. 26 A-40, BogotaĢ, Colombia3Departamento de MatemaĢtica, Universidad de Oriente, 6101 CumanaĢ, Sucre, Venezuela

    Correspondence should be addressed to Julio C. Ramos-FernaĢndez; [email protected]

    Received 23 January 2017; Revised 22 March 2017; Accepted 2 April 2017; Published 16 April 2017

    Academic Editor: John R. Akeroyd

    Copyright Ā© 2017 Armando J. GarcĢÄ±a-OrtĢÄ±z et al.This is an open access article distributed under theCreativeCommonsAttributionLicense, which permits unrestricted use, distribution, and reproduction in anymedium, provided the originalwork is properly cited.

    We establish distortion type theorems for locally schlicht functions and for functions having branch points satisfying a normalizedBloch condition in the closed unit ball of the logarithmic Bloch spaceBlog. As a consequence of our results we have estimations ofthe schlicht radius for functions in these classes.

    1. Introduction

    One of the most important results in the area of geometrictheory of functions of a complex variable is the celebrateddistortionā€™s theorem established by Koebe and Bieberbach[1, 2] at the beginning of the twentieth century. Koebe andBieberbach showed that the range of any function š‘“ in theclass S of all conformal functions on D, the open unit diskof the complex plane C, normalized such that š‘“(0) = 0 =š‘“(0) āˆ’ 1 contain the Euclidean disk with center at the originand radius 1/4. This last result is today known as Koebe 1/4Theorem and, in particular, shows that Blochā€™s constant (see[3]) is greater than or equal to 1/4. Koebe and Bieberbachfound sharp lower and upper bounds for the growth and thedistortion of conformal maps in the class S; more precisely,they showed that for any š‘“ āˆˆ S and š‘§ āˆˆ D the followingestimations hold.

    (1) Growth theorem:|š‘§|

    (1 + |š‘§|)2 ā‰¤ š‘“ (š‘§) ā‰¤|š‘§|

    (1 āˆ’ |š‘§|)2 (1)(2) Distortion theorem:

    1 āˆ’ |š‘§|(1 + |š‘§|)3 ā‰¤

    š‘“ (š‘§) ā‰¤ 1 + |š‘§|(1 āˆ’ |š‘§|)3 (2)

    with equality if and only if š‘“ is a rotation of the Koebefunction defined by

    š¾ (š‘§) = š‘§(1 āˆ’ š‘§)2 , (š‘§ āˆˆ D) , (3)which also belongs to the classS. In particular, the distortiontheorem implies that the class S is contained in the closedball with center at the origin and radius 8 of š‘-Bloch spaceBš‘ for all š‘ ā‰„ 3 (see Section 3 for the definition ofBš‘). Formore properties of conformal maps and distortion theorem,we recommend the excellent books [4, 5].

    Although the distortion theorem gives sharp bounds forthe modulus of the derivative of functions in the class S,it cannot be applied to the bigger class of locally schlichtfunctions defined on D satisfying the normalized Blochconditions š‘“(0) = 0 = š‘“(0) āˆ’ 1 (recall that a holomorphicfunction š‘“ is locally schlicht on D if š‘“(š‘§) Ģø= 0 for all š‘§ āˆˆD). Many authors have obtained distortion type theorems orlower bounds for the modulus or real part of the derivative oflocally schlicht functions in Bloch-type spaces. The pioneerwork about this subject appears in 1992 and is due to Liu andMinda [6]. They established distortion theorems for locallyschlicht functions š‘“ in the classical Bloch spaceB satisfyingthe conditions š‘“(0) = 0, š‘“(0) = 1, and ā€–š‘“ā€–B = 1 (seeSection 3 for the definition of Bloch space). Liu and Minda

    HindawiJournal of Function SpacesVolume 2017, Article ID 8694516, 10 pageshttps://doi.org/10.1155/2017/8694516

    https://doi.org/10.1155/2017/8694516

  • 2 Journal of Function Spaces

    give sharp lower bounds for |š‘“(š‘§)| and for Reš‘“(š‘§) and asconsequence of their results they obtain a lower bound forBlochā€™s constant.Determination of the (locally schlicht) Blochconstant is still an open problem. By Landauā€™s reduction, itis enough to consider those functions with Bloch seminormnot greater than 1. Hence, it is important to consider certainsubclasses of functions in Bloch spaces having seminorm notgreater than 1.

    The results of Liu and Minda in [6] have been extendedto other classes of locally schlicht functions or to functionshaving branch points in the Bloch space by Yanagihara [7],Bonk et al. [8, 9], and Graham andMinda [10].The extensionof the above results to š‘-Bloch spaces was obtained by Teradaand Yanagihara [11] and by Zheng and Wang [12]. It is anopen problem to obtain distortion type theorems for locallyschlicht functions in other spaces of analytic functions.

    In this article we extend the results of Liu and Minda[6] to the logarithmic Bloch space Blog which we define inSection 3; we obtain lower bounds for the modulus and thereal part of the derivative of locally schlicht functions and forfunctions having branch points in the closed unit ball ofBlogsatisfying a normalized Bloch conditionš‘“(0) = 0 = š‘“(0)āˆ’1.Our resultswill be showed in Sections 4 and 5, as consequenceof our results, in Section 6, we obtain lower bounds for theschlicht radius of functions in these classes.

    2. Some Preliminaries: Juliaā€™s Lemma

    In this section we gather some notations, definitions, andresults that we will need through this note. We denote by Dthe open unit disk in the complex plane C, with center atthe origin and radius 1; šœ•D denotes the boundary of D. Thespace of all complex and holomorphic functions on D, as isusual, is denoted byš»(D). A function š‘“ āˆˆ š»(D) is said to benormalized if š‘“(0) = 0 and š‘“(0) = 1 and š‘“ is locally schlichtor locally univalent if š‘“(š‘§) Ģø= 0 for all š‘§ āˆˆ D. A point š‘§0 is abranch point for š‘“ if š‘“(š‘§0) = 0. For š‘Ÿ > 0, we define

    Ī” (1, š‘Ÿ) = {š‘§ āˆˆ D : |1 āˆ’ š‘§|21 āˆ’ |š‘§|2 < š‘Ÿ} . (4)Ī”(1, š‘Ÿ) is known as a horodisk D; that is, it is an Euclideandisk contained inDwhich is tangent to šœ•D at 1. Furthermore,Ī”(1, š‘Ÿ) has center at 1/(1+š‘Ÿ) and radius š‘Ÿ/(1+š‘Ÿ). The closureof Ī”(1, š‘Ÿ) relative toD is denoted by Ī”(1, š‘Ÿ). Observe that 1 āˆ‰Ī”(1, š‘Ÿ) but (1 āˆ’ š‘Ÿ)/(1 + š‘Ÿ) āˆˆ Ī”(1, š‘Ÿ). With these notations, wecan enunciate the well known Juliaā€™s Lemma; the reader canconsult the excellent book of Ahlfors [13] for its proof.

    Lemma 1 (Juliaā€™s Lemma). Suppose that š‘¤ is a complex andholomorphic function onDāˆŖ{1} such thatš‘¤mapsD intoH+ ={š‘§ āˆˆ C : Re(š‘§) > 0}, the right half-plane, and š‘¤(1) = 0. Then,for any š‘Ÿ > 0, the functionš‘¤maps the horodisk Ī”(1, š‘Ÿ) into theEuclidean disk {š‘§ āˆˆ C : |š‘§ āˆ’ š‘‘š‘Ÿ| < š‘‘š‘Ÿ}, where š‘‘ = āˆ’š‘¤(1) > 0.Furthermore, a boundary point of the first disk is mapped onthe boundary of the second disk if and only if š‘¤ is a conformalfunction mapping D onto H+ and satisfying š‘¤(1) = 0.

    In 1992, Liu andMinda [6] established distortion theoremfor functions in the Bloch space; they showed the followingresults which are consequences of Juliaā€™s Lemma. We includethe proof of the first one to illustrate the application of Juliaā€™sLemma.

    Lemma2 ([6, corollary in Section 1]). Letš‘¤ be a holomorphicfunction onDāˆŖ{1}. Suppose thatš‘¤mapsD into the right half-plane H+ and that š‘¤(1) = 0. Then š‘‘ = āˆ’š‘¤(1) > 0 and

    Reš‘¤ (š‘„) ā‰¤ 2š‘‘1 āˆ’ š‘„1 + š‘„ , (5)for all š‘„ āˆˆ (āˆ’1, 1), with equality for some š‘„ āˆˆ (āˆ’1, 1) if andonly if

    š‘¤ (š‘§) = 2š‘‘1 āˆ’ š‘§1 + š‘§ , (6)for all š‘§ āˆˆ D.Proof. Indeed, let us fix š‘„ āˆˆ (āˆ’1, 1); then š‘Ÿ = (1āˆ’š‘„)/(1+š‘„) >0 and by Juliaā€™s Lemma, š‘¤ maps Ī”(1, š‘Ÿ) into the Euclideandisk š·(š‘‘š‘Ÿ, š‘‘š‘Ÿ). In particular, since š‘„ āˆˆ Ī”(1, š‘Ÿ), then š‘¤(š‘„) āˆˆš·(š‘‘š‘Ÿ, š‘‘š‘Ÿ); this fact implies that Reš‘¤(š‘„) ā‰¤ 2š‘‘š‘Ÿ. Furthermore,š‘„ āˆˆ šœ•Ī”(1, š‘Ÿ); hence if Reš‘¤(š‘„) = 2š‘‘š‘Ÿ, then we conclude thatš‘¤(š‘„) = 2š‘‘š‘Ÿ āˆˆ šœ•š·(š‘‘š‘Ÿ, š‘‘š‘Ÿ) and, by Juliaā€™s Lemma, this last factoccurs if š‘¤ is the conformal map from D onto H+ such thatš‘¤(1) = 0; that is,š‘¤(š‘§) = 2š‘‘((1āˆ’š‘§)/(1+š‘§)) for all š‘§ āˆˆ D. Thisshows the lemma.

    Lemma 3 ([6, corollary to Theorem 3]). Let š‘“ be a holomor-phic function onDāˆŖ{1}. Suppose thatš‘“(D) āŠ‚ D,š‘“(1) = 1 andthat all the zeros of š‘“ have multiplicity at least š‘›. If š‘“(1) = š‘›,then

    (1) |š‘“(š‘„)| ā‰„ š‘„š‘› for all š‘„ āˆˆ [0, 1), with equality for someš‘„ āˆˆ [0, 1) if and only if š‘“(š‘§) = š‘§š‘› for all š‘§ āˆˆ D;(2) Re(š‘“(š‘„)) ā‰„ š‘„š‘› for all (š‘› āˆ’ 1)/(š‘› + 1) ā‰¤ š‘„ < 1, with

    equality for some š‘„ āˆˆ [(š‘› āˆ’ 1)/(š‘› + 1), 1) if and only ifš‘“(š‘§) = š‘§š‘› for all š‘§ āˆˆ D.We finish this section by establishing the following ele-

    mentary property of the complex exponential. We thank thereviewer for providing us the following simple demonstrationof this fact.

    Lemma 4. Let š‘„ āˆˆ [0, 1) be fixed and š·š‘„ the Euclidean diskwith center at (1 āˆ’ š‘„)/(1 + š‘„) and radius (1 āˆ’ š‘„)/(1 + š‘„); then

    min {Re (exp (āˆ’š‘§)) : š‘§ āˆˆ š·š‘„} = exp (āˆ’21 āˆ’ š‘„1 + š‘„) . (7)Proof. Let š‘Ÿ = (1 āˆ’ š‘„)/(1 + š‘„) for simplicity and let š‘“(š‘§) =š‘’š‘Ÿ(š‘§āˆ’1). Since 1 + š‘§š‘“(š‘§)/š‘“(š‘§) = 1 āˆ’ š‘Ÿš‘§ has positive real parton |š‘§| < 1, the functionš‘“ is convex. In particular, Re(š‘“(š‘§)) >š‘“(āˆ’1) = š‘’āˆ’2š‘Ÿ, which proves the assertion.3. Logarithmic Bloch Space

    In this section we gather the definition and some of theproperties of the logarithmic Bloch space Blog. Let us recall

  • Journal of Function Spaces 3

    that a function weight šœ‡ on D is a bounded, positive, andcontinuous function defined on D. Given a weight šœ‡ on D,šœ‡-Bloch space, denoted by Bšœ‡, consists of all holomorphicfunctions š‘“ on D such that

    š‘“šœ‡ fl supš‘§āˆˆD

    šœ‡ (š‘§) š‘“ (š‘§) < āˆž. (8)It is known that if the weight šœ‡ is radial, that is, šœ‡(š‘§) = šœ‡(|š‘§|)for all š‘§ āˆˆ D, then Bšœ‡ is a Banach space with the normā€–š‘“ā€–Bšœ‡ = |š‘“(0)| + ā€–š‘“ā€–šœ‡. When šœ‡(š‘§) = 1āˆ’ |š‘§|2, with š‘§ āˆˆ D,Bšœ‡becomes the Bloch space which is denoted byB, while whenšœ‡(š‘§) = (1 āˆ’ |š‘§|2)š‘, with š‘§ āˆˆ D and š‘ > 0 fixed, we obtainš‘-Bloch space which is denoted byBš‘.

    Clearly, the function šœ‡log, defined byšœ‡log (š‘§) = [log( š‘’1 āˆ’ |š‘§|2)]

    āˆ’1 , (9)defines a weight on D. Hence, the space Blog = Bšœ‡log is aBanach space with the norm

    š‘“Blog = š‘“ (0) + š‘“logfl š‘“ (0) + sup

    š‘§āˆˆD

    š‘“ (š‘§)log (š‘’/ (1 āˆ’ |š‘§|2)) .

    (10)

    We callBlog as the logarithmic Bloch space. In the next resultwe are going to show that Blog is a subspace of Bš‘ for allš‘ ā‰„ 1.Proposition 5. The spaceBlog is contained inBš‘, for all š‘ ā‰„1. Furthermore, š‘“Bš‘ ā‰¤ š‘“Blog , (11)for all function š‘“ āˆˆ Blog.Proof. It is enough to show that for š‘ ā‰„ 1 fixed

    (1 āˆ’ |š‘§|2)š‘ log( š‘’1 āˆ’ |š‘§|2) ā‰¤ 1, (12)for all š‘§ āˆˆ D. But, this last inequality is true since the function

    ā„Ž (š‘”) = š‘”š‘ log(š‘’š‘” ) āˆ’ 1, (13)with š‘” āˆˆ (0, 1], is increasing and ā„Ž(1) = 0.

    Also, we have the following very useful identity (seeLemma 3.3 in [12]).

    Lemma 6. If š‘“ āˆˆ Blog, š‘“(0) = 0, š‘“(0) = 1, and ā€–š‘“ā€–log ā‰¤ 1,then š‘“(0) = 0.Proof. Suppose that š‘“ āˆˆ Blog, š‘“(0) = 0, š‘“(0) = 1, andā€–š‘“ā€–log ā‰¤ 1. Then, for each š‘§ āˆˆ D, we have

    š‘“ (š‘§) ā‰¤ log( š‘’1 āˆ’ |š‘§|2) . (14)

    Taylorā€™s theorem implies that

    1 + š‘“ (0) š‘§ + š‘œ (|š‘§|)2 ā‰¤ log2 ( š‘’1 āˆ’ |š‘§|2)= (1 + |š‘§|2 + š‘œ (|š‘§|))2 ,

    (15)

    as š‘§ ā†’ 0. But since1 + š‘“ (0) š‘§ + š‘œ (|š‘§|)2

    = 1 + 2Re (š‘“ (0) š‘§) + š‘œ (|š‘§|) , (16)as š‘§ ā†’ 0, and

    (1 + |š‘§|2 + š‘œ (|š‘§|))2 = 1 + š‘œ (|š‘§|) , (17)as š‘§ ā†’ 0, we obtain from (15) that

    2Re (š‘“ (0) š‘§) ā‰¤ š‘œ (|š‘§|) , (18)as š‘§ ā†’ 0. Now, if we consider š‘§ = š‘Ÿš‘“(0)/|š‘“(0)| with š‘Ÿ > 0small in (18), we conclude |š‘“(0)| = 0 and we are done.

    The following functions play a very important role in ourwork; theywill be used to get lower bounds for locally schlichtfunctions and for functions having branch points in certainclasses in the logarithmic Bloch space. From now, we uselog(š‘¤) to denote the principal logarithmic of the complexnumber š‘¤ Ģø= 0. Observe that the principal logarithmic isa holomorphic function on š·(1, 1), the Euclidean disk withcenter at 1 and radius 1:

    (1) For each š‘› āˆˆ N, we setš¹š‘› (š‘§) = āˆ«š‘§

    0(1 āˆ’ š‘ /š‘Žš‘›1 āˆ’ š‘Žš‘›š‘  )

    š‘› (1 āˆ’ 2 log (1 āˆ’ š‘Žš‘›š‘ )) š‘‘š‘ , (19)where š‘Žš‘› = āˆšš‘›/(š‘› + 2) and š‘§ āˆˆ D. Clearly, š¹š‘› āˆˆ š»(D) for allš‘› āˆˆ N, š¹š‘›(0) = 0, and š¹š‘›(0) = 1.

    (2) For š‘§ āˆˆ D, we defineš¹ (š‘§) = āˆ«š‘§

    0exp (āˆ’ 2š‘ 1 āˆ’ š‘ ) (1 āˆ’ 2 log (1 āˆ’ š‘ )) š‘‘š‘ . (20)

    We can see that š¹ āˆˆ š»(D), š¹(0) = 0, and š¹(0) = 1.Also we have that the function š¹ satisfies the following

    properties.

    Proposition 7. The function š¹ belongs toBlog. Furthermore,supš‘§āˆˆDšœ‡log(š‘§)|š¹(|š‘§|)| = 1 but ā€–š¹ā€–log > 1.Proof. We see that ā€–š¹ā€–log > 1. Indeed, we have

    ā€–š¹ā€–log ā‰„š¹ (š‘–/2)1 āˆ’ log (1 āˆ’ |š‘–/2|2)

    = exp (2/5)1 āˆ’ log (3/4)āˆš(1 āˆ’ log(54))2 + 4 arctan2 (12)

    ā‰ˆ 1.4014837 > 1.

    (21)

  • 4 Journal of Function Spaces

    Now, we are going to show that š¹ āˆˆ Blog. Since thefunction exp(āˆ’2š‘§/(1 āˆ’ š‘§)) is holomorphic on D, then themodulus maximum principle tells us that its maximum valueis attained in the boundary šœ•D. But if |š‘§| = 1 then |1 āˆ’ š‘§|2 =2(1 āˆ’ Re(š‘§)) and hence

    supš‘§āˆˆD

    exp(āˆ’ 2š‘§1 āˆ’ š‘§) = sup|š‘§|=1 exp(2 āˆ’

    2 (1 āˆ’ Re (š‘§))|1 āˆ’ š‘§|2 )

    = š‘’.(22)

    On the other hand, for each š‘§ āˆˆ D, we have |arg(1āˆ’š‘§)| < šœ‹/2and

    supš‘§āˆˆD

    arg (1 āˆ’ š‘§)1 āˆ’ log (1 āˆ’ |š‘§|2) ā‰¤šœ‹2 . (23)

    Furthermore, using elementary calculus, we can see that thereal functionš»(š‘”) = š‘’2 āˆ’ (1 āˆ’ š‘”)(1 + š‘”)3 is nonnegative for allš‘” āˆˆ [0, 1] (its minimum value isš»(1/2) = š‘’2 āˆ’ 27/16 ā‰ˆ 5.70).Hence for any š‘” āˆˆ [0, 1) we obtain

    1 āˆ’ 2 log (1 āˆ’ š‘”) āˆ’ 3 (1 āˆ’ log (1 āˆ’ š‘”2))= log((1 āˆ’ š‘”) (1 + š‘”)3š‘’2 ) ā‰¤ 0.

    (24)

    This last implies that

    1 āˆ’ 2 log (1 āˆ’ š‘”)1 āˆ’ log (1 āˆ’ š‘”2) ā‰¤ 3, (25)for all š‘” āˆˆ [0, 1). We conclude that for any š‘§ āˆˆ D such that|1 āˆ’ š‘§|2 ā‰¤ š‘’

    log (š‘’/ |1 āˆ’ š‘§|2)1 āˆ’ log (1 āˆ’ |š‘§|2) =1 āˆ’ 2 log (|1 āˆ’ š‘§|)1 āˆ’ log (1 āˆ’ |š‘§|2)

    ā‰¤ 1 āˆ’ 2 log (1 āˆ’ |š‘§|)1 āˆ’ log (1 āˆ’ |š‘§|2) ā‰¤ 3,(26)

    while for š‘§ āˆˆ D such that |1 āˆ’ š‘§|2 > š‘’ we havelog (š‘’/ |1 āˆ’ š‘§|2)1 āˆ’ log (1 āˆ’ |š‘§|2) =

    log (|1 āˆ’ š‘§|2 /š‘’)1 āˆ’ log (1 āˆ’ |š‘§|2) ā‰¤ log (4) āˆ’ 1. (27)

    These last inequalities, (22) and (23), imply that

    ā€–š¹ā€–log ā‰¤ š‘’ (3 + log (4) āˆ’ 1 + 2 (šœ‹2 ))= š‘’ (2 + log (4) + šœ‹)

    (28)

    which shows that š¹ āˆˆ Blog.Now, we are going to show that supš‘§āˆˆDšœ‡log(š‘§)|š¹(|š‘§|)| = 1.

    Observe that šœ‡log(0)|š¹(0)| = 1. Also the real functionš»(š‘”) =exp(āˆ’2š‘”/(1āˆ’š‘”))(1āˆ’2log(1āˆ’š‘”))āˆ’1+ log(1āˆ’š‘”2)with š‘” āˆˆ [0, 1)

    satisfies š»(0) = 0, š»(š‘”) ā†’ āˆ’āˆž as š‘” ā†’ 1āˆ’ and it is strictlydecreasing since

    š» (š‘”)= āˆ’ 2š‘”1 āˆ’ š‘”2

    āˆ’ 21 āˆ’ š‘” ( 21 āˆ’ š‘” log( š‘’(1 āˆ’ š‘”)2) āˆ’ 1) exp (āˆ’2š‘”1 āˆ’ š‘”)

    < 0,

    (29)

    for all š‘” āˆˆ [0, 1). Hence we conclude that š»(š‘”) ā‰¤ 0 for allš‘” āˆˆ [0, 1) which shows the affirmation.For the sequence {š¹š‘›}, we have the following properties.

    Proposition 8. Functions š¹š‘› with š‘› āˆˆ N belong to Blog andsatisfy

    limš‘›ā†’āˆž

    š¹š‘› (š‘§) = š¹ (š‘§) , (30)for each š‘§ āˆˆ D. Furthermore, for each š‘› āˆˆ N ā€–š¹š‘›ā€–log > 1, infact, supš‘§āˆˆDšœ‡log(š‘§)|š¹š‘›(|š‘§|)| > 1.Proof. Clearly, for any š‘› āˆˆ N, the function š¹š‘› belongsto Blog since š¹š‘› āˆˆ š»(D). We are going to show thatsupš‘§āˆˆDšœ‡log(š‘§)|š¹š‘›(|š‘§|)| > 1. It is enough to show that thereexists a š‘”0 āˆˆ (š‘Žš‘›, 1) such thatš»(š‘”0) > 0, where

    š»(š‘”) = (š‘”/š‘Žš‘› āˆ’ 11 āˆ’ š‘Žš‘›š‘” )š‘›

    log( š‘’(1 āˆ’ š‘Žš‘›š‘”)2)āˆ’ log( š‘’1 āˆ’ š‘”2 ) ,

    (31)

    with š‘” āˆˆ (š‘Žš‘›, 1). Observe that, for š‘”š‘› = š‘Ÿš‘Žš‘› with š‘Ÿ = 2/(1 +š‘Ž2š‘›) > 1, we have š‘”š‘› āˆˆ (š‘Žš‘›, 1), š‘Ÿ āˆ’ 1 = 1 āˆ’ š‘Ÿš‘Ž2š‘› , and 1 āˆ’ š‘Ÿ2š‘Ž2š‘› =(1 āˆ’ š‘Ÿš‘Ž2š‘›)2 which implies thatš»(š‘”š‘›) = 0. Also,š» (š‘”)

    = š‘› (š‘”/š‘Žš‘› āˆ’ 11 āˆ’ š‘Žš‘›š‘” )š‘›āˆ’1 1/š‘Žš‘› āˆ’ š‘Žš‘›(1 āˆ’ š‘Žš‘›š‘”)2 log(

    š‘’(1 āˆ’ š‘Žš‘›š‘”)2)

    + (š‘”/š‘Žš‘› āˆ’ 11 āˆ’ š‘Žš‘›š‘” )š‘› 2š‘Žš‘›1 āˆ’ š‘Žš‘›š‘” āˆ’

    2š‘”1 āˆ’ š‘”2 ;(32)

    hence

    š» (š‘”š‘›) = š‘› 1/š‘Žš‘› āˆ’ š‘Žš‘›(1 āˆ’ š‘Ÿš‘Ž2š‘›)2 log(š‘’

    (1 āˆ’ š‘Ÿš‘Ž2š‘›)2) +2š‘Žš‘›1 āˆ’ š‘Ÿš‘Ž2š‘›

    āˆ’ 2š‘Ÿš‘Žš‘›1 āˆ’ š‘Ÿ2š‘Ž2š‘› =š‘›

    (1 āˆ’ š‘Ÿš‘Ž2š‘›)2 (1š‘Žš‘› āˆ’ š‘Žš‘›)

    ā‹… (log( š‘’(1 āˆ’ š‘Ÿš‘Ž2š‘›)2) āˆ’1š‘›

    2š‘Ž2š‘›1 āˆ’ š‘Ž2š‘›)

  • Journal of Function Spaces 5

    = š‘›(1 āˆ’ š‘Ÿš‘Ž2š‘›)2 (1š‘Žš‘› āˆ’ š‘Žš‘›)

    ā‹… (log( š‘’(1 āˆ’ š‘Ÿš‘Ž2š‘›)2) āˆ’ 1) ,(33)

    since š‘Ÿ āˆ’ 1 = 1 āˆ’ š‘Ÿš‘Ž2š‘› , 1 āˆ’ š‘Ÿ2š‘Ž2š‘› = (1 āˆ’ š‘Ÿš‘Ž2š‘›)2, and š‘Ÿ(š‘Ž2š‘› + 1) = 2and we have used that š‘Žš‘› = āˆšš‘›/(š‘› + 2) in the last equality.Thus, we conclude that š»(š‘”š‘›) > 0 and since š»(š‘”š‘›) = 0, thenthere exists š‘”0 āˆˆ (š‘”š‘›, 1) such that š»(š‘”0) > 0. This shows theaffirmation. The other properties of š¹š‘›ā€™s are clear.4. A Distortion Theorem for Locally SchlichtFunctions inBlog

    In this section we establish a distortion theorem for locallyschlicht functions in the closed unit ball of Blog satisfyingnormalized Bloch conditions. We denote by š›½(āˆž)log the class ofall holomorphic functions š‘“ āˆˆ Blog such that š‘“ is locallyschlicht, š‘“(0) = 0, š‘“(0) = 1, and ā€–š‘“ā€–log ā‰¤ 1. With thesenotations, we have the following result.

    Theorem 9. If š‘“ āˆˆ š›½(āˆž)log then we have the following:(1) |š‘“(š‘§)| ā‰„ š¹(|š‘§|) = exp(āˆ’2|š‘§|/(1 āˆ’ |š‘§|))(1 āˆ’ 2 log(1 āˆ’|š‘§|)) for all š‘§ āˆˆ D. There is not a function š‘“0 āˆˆ š›½(āˆž)log

    such that |š‘“0(š‘§0)| = š¹(|š‘§0|) for some š‘§0 āˆˆ D \ {0}.(2) Reš‘“(š‘§) ā‰„ š¹(|š‘§|) = exp(āˆ’2|š‘§|/(1 āˆ’ |š‘§|))(1 āˆ’ 2log(1 āˆ’|š‘§|)) for all |š‘§| ā‰¤ 1/2. There is not a function š‘“0 āˆˆ š›½(āˆž)log

    such thatReš‘“0(š‘§0) = š¹(|š‘§0|) for some š‘§0 āˆˆ š·(0, 1/2)\{0}.Proof. (1) Suppose that š‘“ āˆˆ š›½(āˆž)log . Let us fix |šœ| = 1 and we setthe function

    š‘” (š‘¢) = (1 āˆ’ 2 log(1 + š‘¢2 ))āˆ’1 š‘“ (1 āˆ’ š‘¢2 šœ) , (34)

    with š‘¢ āˆˆ D, where log(š‘¤) denotes the principal logarithmicof š‘¤ āˆˆ š·(1, 1). Clearly š‘” is holomorphic on D \ {āˆ’1} andš‘”(1) = 1 because š‘“(0) = 1. Since š‘“ is locally schlicht on D,we have that š‘”(š‘§) Ģø= 0 for all š‘§ āˆˆ D. Furthermore,

    š‘” (š‘¢)= 21 + š‘¢ (1 āˆ’ 2 log(1 + š‘¢2 ))

    āˆ’2 š‘“ (1 āˆ’ š‘¢2 šœ)+ (1 āˆ’ 2 log(1 + š‘¢2 ))

    āˆ’1 š‘“ (1 āˆ’ š‘¢2 šœ)(āˆ’šœ2) .(35)

    In particular, š‘”(1) = 1 since š‘“(0) = 1 and š‘“(0) = 0 (byLemma 6). Also, for any š‘¢ āˆˆ D, we have

    š‘” (š‘¢) = 1 āˆ’ 2 log(1 + š‘¢2 )āˆ’1 š‘“ (1 āˆ’ š‘¢2 šœ)

    ā‰¤ 1Re (1 āˆ’ 2 log ((1 + š‘¢) /2))ā‹… log( š‘’1 āˆ’ |(1 āˆ’ š‘¢) /2|2) =

    1log (š‘’/ |(1 + š‘¢) /2|2)

    ā‹… log (š‘’/1 āˆ’ |(1 āˆ’ š‘¢) /2|2) < 1

    (36)

    and š‘”mapsD intoD \ {0}. Hence, there exists a holomorphicfunction š‘¤mapping the unit disk D into the right half-planeH+ = {š‘§ : Re(š‘§) > 0} and such that š‘”(š‘¢) = exp{āˆ’š‘¤(š‘¢)}for all š‘¢ āˆˆ D. Observe that š‘¤(1) = 0 since š‘”(1) = 1 andš‘‘ = āˆ’š‘¤(1) = 1. Invoking Lemma 2, it follows that

    Re (š‘¤ (š‘„)) ā‰¤ 21 āˆ’ š‘„1 + š‘„ , (37)for all š‘„ āˆˆ (āˆ’1, 1). Henceš‘” (š‘„) = exp {āˆ’š‘¤ (š‘„)} = exp (āˆ’Re {š‘¤ (š‘„)})

    ā‰„ exp(āˆ’21 āˆ’ š‘„1 + š‘„) ,(38)

    for all š‘„ āˆˆ (āˆ’1, 1). That is,(1 āˆ’ 2 log(1 + š‘„2 ))

    āˆ’1 š‘“ (1 āˆ’ š‘„2 šœ)

    ā‰„ exp(āˆ’21 āˆ’ š‘„1 + š‘„) ,(39)

    for all š‘„ āˆˆ (āˆ’1, 1).Making the change š‘Ÿ = (1āˆ’š‘„)/2, we obtain that š‘Ÿ āˆˆ (0, 1)

    and š‘“ (š‘Ÿšœ) ā‰„ exp(āˆ’2 š‘Ÿ1 āˆ’ š‘Ÿ) (1 āˆ’ 2 log (1 āˆ’ š‘Ÿ)) . (40)Therefore, if we consider š‘Ÿ = |š‘§| with š‘§ āˆˆ D Ģø= 0 and we takešœ = š‘§/|š‘§|, we conclude that

    š‘“ (š‘§) ā‰„ exp(āˆ’2 |š‘§|1 āˆ’ |š‘§|) (1 āˆ’ 2 log (1 āˆ’ |š‘§|))= š¹ (|š‘§|) .

    (41)

    This shows inequality (1).Now, if there existsš‘“0 āˆˆ š›½(āˆž)log such that |š‘“0(š‘§0)| = š¹(|š‘§0|)

    for some š‘§0 āˆˆ D\{0}, then arguing as in the proof of inequality(1), for šœ0 = š‘§0/|š‘§0|, the function,

    š‘”0 (š‘§) = (1 āˆ’ 2 log(1 + š‘§2 ))āˆ’1 š‘“0 (1 āˆ’ š‘§2 šœ0) , (42)

    maps D into D \ {0}. Hence, there exists a holomorphicfunction š‘¤ mapping D into H+ such that š‘¤(1) = 0, āˆ’š‘¤(1) =1 > 0, and

    š‘”0 (š‘§) = exp (āˆ’š‘¤ (š‘§)) , (43)

  • 6 Journal of Function Spaces

    for all š‘§ āˆˆ D. In particular, for š‘„ = 1āˆ’2|š‘§0| āˆˆ (āˆ’1, 1), we haveexp (āˆ’Reš‘¤ (š‘„)) = š‘”0 (š‘„) =

    š‘“0 (((1 āˆ’ š‘„) /2) šœ0)1 āˆ’ 2 log ((1 + š‘„) /2)=

    š‘“0 (š‘§0)1 āˆ’ 2 log (1 āˆ’ š‘§0)= š¹ (š‘§0)1 āˆ’ 2 log (1 āˆ’ š‘§0)= exp(āˆ’ 2 š‘§01 āˆ’ š‘§0)= exp(āˆ’21 āˆ’ š‘„1 + š‘„) .

    (44)

    Thus,

    Reš‘¤ (š‘„) = 21 āˆ’ š‘„1 + š‘„ , (45)for some š‘„ āˆˆ (āˆ’1, 1) and, by Lemma 2, we conclude that

    š‘¤ (š‘§) = 21 āˆ’ š‘§1 + š‘§ (46)for all š‘§ āˆˆ D. Therefore,

    š‘“0 (1 āˆ’ š‘§2 šœ0) = (1 āˆ’ 2 log(1 + š‘§2 ))š‘”0 (š‘§)= (1 āˆ’ 2 log(1 + š‘§2 )) exp(āˆ’21 āˆ’ š‘§1 + š‘§) ,

    (47)

    for all š‘§ āˆˆ D. Hence, changing (1āˆ’š‘§)/2 by š‘§, which belongs toš·(1/2, 1/2), and using the identity principle for holomorphicfunctions, we obtain that

    š‘“0 (š‘§šœ0) = š¹ (š‘§) , (48)for all š‘§ āˆˆ D. This last relation implies that ā€–š¹ā€–log ā‰¤ 1 whichis a contradiction to Proposition 7. This complete the proofof item (1).

    (2) Arguing as in the proof of part (1), for |šœ| = 1 fixed, weset the function

    š‘” (š‘¢) = (1 āˆ’ 2 log(1 + š‘¢2 ))āˆ’1 š‘“ (1 āˆ’ š‘¢2 šœ) , (49)

    with š‘¢ āˆˆ D. We have shown that there exists a holomorphicfunction š‘¤ such that š‘”(š‘¢) = exp{āˆ’š‘¤(š‘¢)} for all š‘¢ āˆˆ D.Furthermore, š‘¤ satisfies the hypothesis of Juliaā€™s Lemma(Lemma 1); that is, š‘¤ is a holomorphic function in D āˆŖ {1},whichmapsD intoH+,š‘¤(1) = 0, and āˆ’š‘¤(1) = š‘‘ = 1. Hence,for š‘Ÿ = (1 āˆ’ š‘„)/(1 + š‘„) with š‘„ āˆˆ [0, 1) fixed, š‘¤ maps thehorodisk Ī”(1, š‘Ÿ) into the open Euclidean disk with center at(1 āˆ’ š‘„)/(1 + š‘„) and radius (1 āˆ’ š‘„)/(1 + š‘„). In particular, sinceš‘„ āˆˆ Ī”(1, š‘Ÿ), we have thatš‘¤(š‘„) āˆˆ š·š‘„ = š·((1 āˆ’ š‘„)/(1 + š‘„), (1 āˆ’š‘„)/(1 + š‘„)). Thus, Lemma 4 allows us to write

    Re (š‘” (š‘„)) = Re (exp (āˆ’š‘¤ (š‘„)))ā‰„ min {Re (exp (āˆ’š‘§)) : š‘§ āˆˆ š·š‘„}= exp(āˆ’21 āˆ’ š‘„1 + š‘„) ,

    (50)

    for all š‘„ āˆˆ [0, 1). This last inequality is equivalent to writingRe((1 āˆ’ 2 log(1 + š‘„2 ))

    āˆ’1 š‘“ (1 āˆ’ š‘„2 šœ))ā‰„ exp (āˆ’21 āˆ’ š‘„1 + š‘„) ,

    (51)

    for all š‘„ āˆˆ [0, 1) and from here we haveRe(š‘“ (1 āˆ’ š‘„2 šœ))

    ā‰„ exp(āˆ’21 āˆ’ š‘„1 + š‘„)(1 āˆ’ 2 log(1 + š‘„2 )) .(52)

    Making the change š‘Ÿ = (1 āˆ’ š‘„)/2, we obtain š‘Ÿ āˆˆ (0, 1/2] sinceš‘„ āˆˆ [0, 1) and alsoRe (š‘“ (š‘Ÿšœ)) ā‰„ exp (āˆ’2 š‘Ÿ1 āˆ’ š‘Ÿ) (1 āˆ’ 2 log (1 āˆ’ š‘Ÿ)) . (53)

    We conclude, as before, that

    Re (š‘“ (š‘§)) ā‰„ exp(āˆ’2 |š‘§|1 āˆ’ |š‘§|) (1 āˆ’ 2 log (1 āˆ’ |š‘§|)) , (54)for all |š‘§| ā‰¤ 1/2. This shows the inequality in the second partof the theorem.

    Now, if there exists a function š‘“0 āˆˆ š›½(āˆž)log such thatReš‘“(š‘§0) = š¹(|š‘§0|) for some š‘§0 āˆˆ š·(0, 1/2), then we candefine šœ0 = š‘§0/|š‘§0| and the function

    š‘”0 (š‘§) = (1 āˆ’ 2 log(1 + š‘§2 ))āˆ’1 š‘“0 (1 āˆ’ š‘§2 šœ0) , (55)

    which maps D into D \ {0}. Hence, as before, there exists aholomorphic functionš‘¤mappingD intoH+ such thatš‘¤(1) =0, āˆ’š‘¤(1) = 1 > 0, and š‘”0(š‘§) = exp(āˆ’š‘¤(š‘§)) for all š‘§ āˆˆ D. Inparticular, for š‘„ = 1 āˆ’ 2|š‘§0| āˆˆ [0, 1), we haveRe exp (āˆ’š‘¤ (š‘„)) = Reš‘”0 (š‘„) = Reš‘“0 (((1 āˆ’ š‘„) /2) šœ0)1 āˆ’ 2 log ((1 + š‘„) /2)

    = Reš‘“0 (š‘§0)1 āˆ’ 2 log (1 āˆ’ š‘§0)= š¹ (š‘§0)1 āˆ’ 2 log (1 āˆ’ š‘§0)= exp(āˆ’ 2 š‘§01 āˆ’ š‘§0)= exp (āˆ’21 āˆ’ š‘„1 + š‘„) ;

    (56)

    that is,š‘¤(š‘„) is the value inš·š‘„ where Re exp(āˆ’š‘¤(š‘„)) attain itsminimum value, but by the proof of Lemma 4, we know thatthis happens if Imš‘¤(š‘„) = 0 andReš‘¤(š‘„) = āˆ’2((1āˆ’š‘„)/(1+š‘„)).Now, by Lemma 2, we conclude thatš‘¤(š‘§) = 2((1āˆ’š‘§)/(1+š‘§))for all š‘§ āˆˆ D. As before, this last fact implies that š‘“0(š‘§šœ0) =š¹(š‘§) for all š‘§ āˆˆ D and therefore ā€–š¹ā€–log ā‰¤ 1 which is acontradiction to Proposition 7. This completes the proof ofitem (2).

  • Journal of Function Spaces 7

    5. Distortion Theorems for Complex FunctionsinBlog Having Branch Points

    In this section we establish a distortion theorem for functionsin the closed unit ball of Blog having branch points andsatisfying a normalized Bloch conditions. More precisely, foreach š‘› āˆˆ N, we denote by š›½(š‘›)log the class of all holomorphicfunctions š‘“ āˆˆ Blog such that š‘“(0) = 0, š‘“(0) = 1, ā€–š‘“ā€–log ā‰¤ 1and if š‘“(š‘) = 0 for some š‘ āˆˆ D then š‘“(š‘˜)(š‘) = 0 for allš‘˜ = 1, 2, . . . , š‘›. Clearly we have

    š›½(āˆž)log =āˆžā‹‚š‘›=1

    š›½(š‘›)log. (57)With these notations, we have the following result.

    Theorem 10. For š‘› āˆˆ N fixed, we set š‘Žš‘› = āˆšš‘›/(š‘› + 2). Thenfor every š‘“ āˆˆ š›½(š‘›)log we have the following:

    (1) |š‘“(š‘§)| ā‰„ š¹š‘›(|š‘§|) = ((š‘Žš‘›āˆ’|š‘§|)/(š‘Žš‘›āˆ’š‘Ž2š‘›|š‘§|))š‘›(1āˆ’2 log(1āˆ’š‘Žš‘›|š‘§|)), for all |š‘§| ā‰¤ š‘Žš‘›.There is not a functionš‘“0 āˆˆ š›½(š‘›)logsuch that |š‘“0(š‘§0)| = š¹š‘›(|š‘§0|) for some š‘§0 āˆˆ š·(0, š‘Žš‘›) \{0}.

    (2) Reš‘“(š‘§) ā‰„ š¹š‘›(|š‘§|) = ((š‘Žš‘› āˆ’ |š‘§|)/(š‘Žš‘› āˆ’ š‘Ž2š‘›|š‘§|))š‘›(1 āˆ’2 log(1 āˆ’ š‘Žš‘›|š‘§|)), for all |š‘§| ā‰¤ āˆšš‘›(š‘› + 2)/(2š‘› + 1).Furthermore, there is not a function š‘“0 āˆˆ š›½(š‘›)log suchthat Reš‘“0(š‘§0) = š¹š‘›(|š‘§0|) for some š‘§0 āˆˆ š·(0,āˆšš‘›(š‘› + 2)/(2š‘› + 1)) \ {0}.

    Proof. (1) Let us fix |šœ| = 1, š‘› āˆˆ N and š‘Žš‘› = āˆšš‘›/(š‘› + 2) < 1.We set the function

    š‘” (š‘¢) = (1 āˆ’ 2 log (1 āˆ’ š‘Ž2š‘›) + 2 log (1 āˆ’ š‘Ž2š‘›š‘¢))āˆ’1

    ā‹… š‘“ (š‘Žš‘› āˆ’ š‘Žš‘›š‘¢1 āˆ’ š‘Ž2š‘›š‘¢ šœ) ,(58)

    with š‘¢ āˆˆ D, where log(š‘¤) denotes the principal logarithmicof the complex number š‘¤ āˆˆ š·(1, 1). Clearly the function š‘”is holomorphic on D āˆŖ {1} and š‘”(1) = 1 because š‘“(0) = 1.Also, we have

    š‘” (š‘¢) = āˆ’ (1 āˆ’ 2 log (1 āˆ’ š‘Ž2š‘›) + 2 log (1 āˆ’ š‘Ž2š‘›š‘¢))āˆ’2

    ā‹… ( āˆ’2š‘Ž2š‘›1 āˆ’ š‘Ž2š‘›š‘¢)š‘“ (š‘Žš‘› āˆ’ š‘Žš‘›š‘¢1 āˆ’ š‘Ž2š‘›š‘¢ šœ)

    + (1 āˆ’ 2 log (1 āˆ’ š‘Ž2š‘›) + 2 log (1 āˆ’ š‘Ž2š‘›š‘¢))āˆ’1

    ā‹… š‘“ (š‘Žš‘› āˆ’ š‘Žš‘›š‘¢1 āˆ’ š‘Ž2š‘›š‘¢ šœ)[š‘Žš‘› (š‘Ž2š‘› āˆ’ 1)(1 āˆ’ š‘Ž2š‘›š‘¢)2 ] šœ.

    (59)

    And hence š‘”(1) = 2š‘Ž2š‘›/(1 āˆ’ š‘Ž2š‘›) = š‘› since š‘“(0) = 1 andš‘“(0) = 0 (by Lemma 6). Furthermore, since š‘“ āˆˆ š›½(š‘›)log andš‘”(š‘¢0) = 0 if and only if š‘“(((š‘Žš‘› āˆ’ š‘Žš‘›š‘¢0)/(1 āˆ’ š‘Ž2š‘›š‘¢0))šœ) = 0, we

    conclude that all the zeros of the function š‘” have multiplicityat less š‘›.

    On the other hand, since ā€–š‘“ā€–log ā‰¤ 1 we haveš‘” (š‘¢) ā‰¤ 1 āˆ’ 2 log (1 āˆ’ š‘Ž2š‘›) + 2 log (1 āˆ’ š‘Ž2š‘›š‘¢)āˆ’1

    ā‹… log( š‘’1 āˆ’ (š‘Žš‘› āˆ’ š‘Žš‘›š‘¢) / (1 āˆ’ š‘Ž2š‘›š‘¢)2)ā‰¤ 1Re (1 āˆ’ 2 log (1 āˆ’ š‘Ž2š‘›) + 2 log (1 āˆ’ š‘Ž2š‘›š‘¢))ā‹… log( š‘’1 āˆ’ (š‘Žš‘› āˆ’ š‘Žš‘›š‘¢) / (1 āˆ’ š‘Ž2š‘›š‘¢)2)

    = [log( š‘’(1 āˆ’ š‘Ž2š‘›) / (1 āˆ’ š‘Ž2š‘›š‘¢)2)]āˆ’1

    ā‹… log( š‘’1 āˆ’ (š‘Žš‘› āˆ’ š‘Žš‘›š‘¢) / (1 āˆ’ š‘Ž2š‘›š‘¢)2) < 1,

    (60)

    for all š‘¢ āˆˆ D, since1 āˆ’ š‘Ž2š‘›1 āˆ’ š‘Ž2š‘›š‘¢

    2 < 1 āˆ’

    š‘Žš‘› āˆ’ š‘Žš‘›š‘¢1 āˆ’ š‘Ž2š‘›š‘¢2 , (61)

    for all š‘¢ āˆˆ D. Hence, we have shown that š‘”(D) āŠ‚ D. InvokingLemma 3, we conclude that |š‘”(š‘„)| ā‰„ š‘„š‘› for all š‘„ āˆˆ [0, 1).Therefore, for each š‘„ āˆˆ [0, 1), the following estimation holds:

    1 āˆ’ 2 log (1 āˆ’ š‘Ž2š‘›) + 2 log (1 āˆ’ š‘Ž2š‘›š‘„)āˆ’1

    ā‹… š‘“ (š‘Žš‘› āˆ’ š‘Žš‘›š‘„1 āˆ’ š‘Ž2š‘›š‘„ šœ)

    ā‰„ š‘„š‘›. (62)

    That is,

    š‘“ (š‘Žš‘› āˆ’ š‘Žš‘›š‘„1 āˆ’ š‘Ž2š‘›š‘„ šœ)

    ā‰„ š‘„š‘› (1 āˆ’ 2 log (1 āˆ’ š‘Ž2š‘›) + 2 log (1 āˆ’ š‘Ž2š‘›š‘„)) ,

    (63)

    for all š‘„ āˆˆ [0, 1) since š‘Žš‘› āˆˆ (0, 1).Next, we make the change š‘Ÿ = (š‘Žš‘› āˆ’ š‘Žš‘›š‘„)/(1 āˆ’ š‘Ž2š‘›š‘„). Thenš‘Ÿ āˆˆ (0, š‘Žš‘›] since š‘„ āˆˆ [0, 1), š‘„ = (1/š‘Žš‘›)((š‘Žš‘› āˆ’ š‘Ÿ)/(1 āˆ’ š‘Žš‘›š‘Ÿ)) and

    we can write

    š‘“ (š‘Ÿšœ) ā‰„ ( 1š‘Žš‘›š‘Žš‘› āˆ’ š‘Ÿ1 āˆ’ š‘Žš‘›š‘Ÿ)

    š‘›

    ā‹… (1 āˆ’ 2 log (1 āˆ’ š‘Ž2š‘›) + 2 log(1 āˆ’ š‘Ž2š‘› 1š‘Žš‘›š‘Žš‘› āˆ’ š‘Ÿ1 āˆ’ š‘Žš‘›š‘Ÿ))

    = ( 1š‘Žš‘›š‘Žš‘› āˆ’ š‘Ÿ1 āˆ’ š‘Žš‘›š‘Ÿ)

    š‘› (1 āˆ’ 2 log (1 āˆ’ š‘Žš‘›š‘Ÿ)) .(64)

  • 8 Journal of Function Spaces

    Finally, if we set šœ = š‘§/|š‘§| and š‘Ÿ = |š‘§|, we conclude thatš‘“ (š‘§) ā‰„ ( 1š‘Žš‘›

    š‘Žš‘› āˆ’ |š‘§|1 āˆ’ š‘Žš‘› |š‘§|)š‘› (1 āˆ’ 2 log (1 āˆ’ š‘Žš‘› |š‘§|))

    = (1 āˆ’ |š‘§| /š‘Žš‘›1 āˆ’ š‘Žš‘› |š‘§| )š‘› (1 āˆ’ 2 log (1 āˆ’ š‘Žš‘› |š‘§|))

    = š¹š‘› (|š‘§|) ,(65)

    for all |š‘§| āˆˆ (0, š‘Žš‘›]. This shows the inequality in part (1).The proof of the second part is similar to part (1) of

    Theorem 9. If there exists a function š‘“0 āˆˆ š›½(š‘›)log such that|š‘“0(š‘§0)| = š¹š‘›(|š‘§0|) for some š‘§0 āˆˆ š·(0, š‘Žš‘›) \ {0}, then we setšœ = š‘§0/|š‘§0| and the functionš‘”0 (š‘¢) = (1 āˆ’ 2 log (1 āˆ’ š‘Ž2š‘›) + 2 log (1 āˆ’ š‘Ž2š‘›š‘¢))āˆ’1

    ā‹… š‘“0 (š‘Žš‘› āˆ’ š‘Žš‘›š‘¢1 āˆ’ š‘Ž2š‘›š‘¢ šœ)(66)

    withš‘¢ āˆˆ D.Wehave showed thatš‘”0 satisfies all the hypothesisof Lemma 3. Furthermore, choosing š‘„ āˆˆ [0, 1) such that

    š‘Žš‘› āˆ’ š‘Žš‘›š‘„1 āˆ’ š‘Ž2š‘›š‘„ =š‘§0 (67)

    we obtainš‘”0 (š‘Žš‘› āˆ’ š‘§0š‘Žš‘› āˆ’ š‘Ž2š‘› š‘§0)

    =š‘”0 (š‘„)

    = (1 āˆ’ 2 log (1 āˆ’ š‘Ž2š‘›) + 2 log( 1 āˆ’ š‘Ž2š‘›1 āˆ’ š‘Žš‘› š‘§0))

    āˆ’1

    ā‹… š‘“0 (š‘§0) = š¹š‘› (š‘§0)1 āˆ’ 2 log (1 āˆ’ š‘Žš‘› š‘§0)

    = ( š‘Žš‘› āˆ’ š‘§0š‘Žš‘› āˆ’ š‘Ž2š‘› š‘§0)š‘› .

    (68)

    By Lemma 3, we conclude that š‘”0(š‘§) = š‘§š‘› for all š‘§ āˆˆ D.Hence,

    š‘“0 (š‘Žš‘› āˆ’ š‘Žš‘›š‘§1 āˆ’ š‘Ž2š‘›š‘§ šœ)= (1 āˆ’ 2 log (1 āˆ’ š‘Ž2š‘›) + 2 log (1 āˆ’ š‘Ž2š‘›š‘§)) š‘§š‘›,

    (69)

    for all š‘§ āˆˆ D. Changing (š‘Žš‘› āˆ’ š‘Žš‘›š‘§)/(1 āˆ’ š‘Ž2š‘›š‘§) by š‘§, we obtainthat

    š‘“0 (š‘§šœ) = (1 āˆ’ 2 log (1 āˆ’ š‘Žš‘›š‘§)) ( š‘Žš‘› āˆ’ š‘§š‘Žš‘› āˆ’ š‘Ž2š‘›š‘§)š‘›

    = š¹š‘› (š‘§) ,(70)

    for all š‘§ āˆˆ š·(0, š‘Žš‘›) and consequently for all š‘§ āˆˆ D. Thislast equality implies that ā€–š¹š‘›ā€–log = ā€–š‘“0ā€–log ā‰¤ 1 which is acontradiction to Proposition 8.

    (2) As before, for š‘› āˆˆ N, we set š‘Žš‘› = āˆšš‘›/(š‘› + 2), we fix|šœ| = 1, and we define the functionš‘” (š‘¢) = (1 āˆ’ 2 log (1 āˆ’ š‘Ž2š‘›) + 2 log (1 āˆ’ š‘Ž2š‘›š‘¢))āˆ’1

    ā‹… š‘“ (š‘Žš‘› āˆ’ š‘Žš‘›š‘¢1 āˆ’ š‘Ž2š‘›š‘¢ šœ) ,(71)

    with š‘¢ āˆˆ D. In the first part we have shown that this functionsatisfies the hypothesis of Lemma 3. Hence Reš‘”(š‘„) ā‰„ š‘„š‘› forall (š‘› āˆ’ 1)/(š‘› + 1) ā‰¤ š‘„ < 1. Therefore

    Re((1 āˆ’ 2 log (1 āˆ’ š‘Ž2š‘›) + 2 log (1 āˆ’ š‘Ž2š‘›š‘„))āˆ’1

    ā‹… š‘“ (š‘Žš‘› āˆ’ š‘Žš‘›š‘„1 āˆ’ š‘Ž2š‘›š‘„ šœ)) ā‰„ š‘„š‘›,

    (72)

    and thus we have

    (1 āˆ’ 2 log (1 āˆ’ š‘Ž2š‘›) + 2 log (1 āˆ’ š‘Ž2š‘›š‘„))āˆ’1

    ā‹… Re(š‘“ (š‘Žš‘› āˆ’ š‘Žš‘›š‘„1 āˆ’ š‘Ž2š‘›š‘„ šœ)) ā‰„ š‘„š‘›, (73)

    which is the same as

    Re(š‘“ (š‘Žš‘› āˆ’ š‘Žš‘›š‘„1 āˆ’ š‘Ž2š‘›š‘„ šœ))

    ā‰„ š‘„š‘› log( š‘’(1 āˆ’ š‘Ž2š‘›) / (1 āˆ’ š‘Ž2š‘›š‘„)2) .(74)

    As before, we make the change š‘Ÿ = (š‘Žš‘› āˆ’ š‘Žš‘›š‘„)/(1 āˆ’ š‘Ž2š‘›š‘„); then0 < š‘Ÿ ā‰¤ āˆšš‘›(š‘› + 2)/(2š‘› + 1), š‘„ = (1/š‘Žš‘›)((š‘Žš‘› āˆ’ š‘Ÿ)/(1 āˆ’ š‘Žš‘›š‘Ÿ)),and

    Reš‘“ (š‘Ÿšœ) ā‰„ ( 1š‘Žš‘›š‘Žš‘› āˆ’ š‘Ÿ1 āˆ’ š‘Žš‘›š‘Ÿ)

    š‘›

    ā‹… log( š‘’[(1 āˆ’ š‘Ž2š‘›) / (1 āˆ’ š‘Ž2š‘› (1/š‘Žš‘›) ((š‘Žš‘› āˆ’ š‘Ÿ) / (1 āˆ’ š‘Žš‘›š‘Ÿ)))]2)

    = ( 1š‘Žš‘›š‘Žš‘› āˆ’ š‘Ÿ1 āˆ’ š‘Žš‘›š‘Ÿ)

    š‘› (1 āˆ’ 2 log (1 āˆ’ š‘Žš‘›š‘Ÿ)) .(75)

    Setting šœ = š‘§/|š‘§| and š‘Ÿ = |š‘§|, we conclude thatReš‘“ (š‘§) ā‰„ ( 1š‘Žš‘›

    š‘Žš‘› āˆ’ |š‘§|1 āˆ’ š‘Žš‘› |š‘§|)š‘› (1 āˆ’ 2 log (1 āˆ’ š‘Žš‘› |š‘§|)) , (76)

    for all |š‘§| ā‰¤ āˆšš‘›(š‘› + 2)/(2š‘› + 1). This shows the inequality inpart (2).

    If there exists a function š‘“0 āˆˆ š›½(š‘›)log such that Reš‘“0(š‘§0) =š¹š‘›(|š‘§0|) for some š‘§0 āˆˆ š·(0,āˆšš‘›(š‘› + 2)/(2š‘› + 1)) \ {0}, then weset šœ = š‘§0/|š‘§0| and the function

    š‘”0 (š‘¢) = (1 āˆ’ 2 log (1 āˆ’ š‘Ž2š‘›) + 2 log (1 āˆ’ š‘Ž2š‘›š‘¢))āˆ’1

    ā‹… š‘“0 (š‘Žš‘› āˆ’ š‘Žš‘›š‘¢1 āˆ’ š‘Ž2š‘›š‘¢ šœ) ,(77)

  • Journal of Function Spaces 9

    withš‘¢ āˆˆ D.Wehave showed thatš‘”0 satisfies all the hypothesisof Lemma 3. Furthermore, choosing š‘„ āˆˆ [0, 1) such that

    š‘Žš‘› āˆ’ š‘Žš‘›š‘„1 āˆ’ š‘Ž2š‘›š‘„ =š‘§0 , (78)

    we obtain

    š‘„ = 1š‘Žš‘›š‘Žš‘› āˆ’ š‘§01 āˆ’ š‘Žš‘› š‘§0 , (79)

    and since 0 < |š‘§0| ā‰¤ š‘Žš‘›((š‘› + 2)/(2š‘› + 1)) we can see that(š‘› āˆ’ 1)/(š‘› + 1) ā‰¤ š‘„ < 1. Furthermore,Reš‘”0 ( š‘Žš‘› āˆ’

    š‘§0š‘Žš‘› āˆ’ š‘Ž2š‘› š‘§0) = Reš‘”0 (š‘„)

    = (1 āˆ’ 2 log (1 āˆ’ š‘Ž2š‘›) + 2 log( 1 āˆ’ š‘Ž2š‘›1 āˆ’ š‘Žš‘› š‘§0))

    āˆ’1

    ā‹… Reš‘“0 (š‘§0) = š¹š‘› (š‘§0)1 āˆ’ 2 log (1 āˆ’ š‘Žš‘› š‘§0)

    = ( š‘Žš‘› āˆ’ š‘§0š‘Žš‘› āˆ’ š‘Ž2š‘› š‘§0)š‘› .

    (80)

    By Lemma 3, we conclude that š‘”0(š‘§) = š‘§š‘› for all š‘§ āˆˆ D.Hence, as before, this last fact implies that ā€–š¹š‘›ā€–log = ā€–š‘“0ā€–log ā‰¤1 which is a contradiction to Proposition 8.6. Some Estimations for the Schlicht Radius

    In this section we present some consequences of the resultsobtained in Sections 4 and 5. We recall that if š‘“ is aholomorphic function on D and š‘§0 āˆˆ D, š‘Ÿš‘ (š‘§0, š‘“) denotethe radius of the largest schlicht disk on the Riemann surfaceš‘“(D) centered at š‘“(š‘§0) (a schlicht disk on š‘“(D) centered atš‘“(š‘§0) means that š‘“ maps an open subset of D containing š‘§0conformally onto this disk). With this notation, we have thefollowing results.

    Corollary 11. If š‘“ āˆˆ š›½(āˆž)log , thenš‘Ÿš‘  (0, š‘“) ā‰„ āˆ«1

    0š¹ (|š‘§|) š‘‘ |š‘§|

    = āˆ«10exp(āˆ’ 2š‘”1 āˆ’ š‘”) (1 āˆ’ 2 log (1 āˆ’ š‘”)) š‘‘š‘”.

    (81)

    Proof. From the definition of š‘Ÿš‘ (0, š‘“), it follows the fact thatthere exists a simply connected domain šø āŠ‚ D containing thezero such that š‘“ maps šø conformally onto an Euclidean diskwith center at š‘“(0) and radius š‘Ÿš‘ (0, š‘“). This Euclidean diskmust meet the boundary of š‘“(D) because, in other cases, theboundary of the set šø is a Jordan curve in the interior of Dand we can find an open set š‘Š āŠ‚ D where š‘“ is univalent;hence š‘“(š‘Š) contain an Euclidean disk with center at š‘“(0)and radius greater than š‘Ÿš‘ (0, š‘“), which contradict with thedefinition of š‘Ÿš‘ (0, š‘“). We conclude then that there is a radial

    segment Ī“ jointing š‘“(0) to the boundary of š‘“(D). Let š›¾ beinverse image of Ī“ under š‘“; then š›¾ joint the point 0 to theboundary of D. Thus, fromTheorem 9, it follows that

    š‘Ÿš‘  (0, š‘“) = āˆ«Ī“|š‘‘š‘¤| = āˆ«

    š›¾

    š‘“ (š‘§) |š‘‘š‘§|ā‰„ āˆ«10š¹ (š›¾ (š‘”)) š›¾ (š‘”) š‘‘š‘”

    = āˆ«10š¹ (š›¾ (š‘”))

    š›¾ (š‘”) š›¾ (š‘”)š›¾ (š‘”) š‘‘š‘”ā‰„ āˆ«10š¹ (š›¾ (š‘”)) š›¾ (š‘”) ā‹… š›¾

    (š‘”)š›¾ (š‘”) š‘‘š‘” = āˆ«1

    0š¹ (šœ) š‘‘šœ

    = āˆ«10exp (āˆ’ 2šœ1 āˆ’ šœ) (1 āˆ’ 2 log (1 āˆ’ šœ)) š‘‘šœ ā‰ˆ 0.4104136111,

    (82)

    where we have used Cauchy-Schwarzā€™s inequality in thefourth line, š›¾(š‘”) ā‹… š›¾(š‘”) is the scalar product of š›¾(š‘”) and š›¾(š‘”),and we have made the change šœ = |š›¾(š‘”)| = āˆšš›¾(š‘”) ā‹… š›¾(š‘”), wherešœ ā†’ 1āˆ’ as š‘” ā†’ 1āˆ’. This shows the result.

    While for functions in the classš›½(š‘›)log wehave the following.Corollary 12. Suppose that š‘› āˆˆ N is fixed. If š‘“ āˆˆ š›½(š‘›)log, then

    š‘Ÿš‘  (0, š‘“) ā‰„ āˆ«āˆšš‘›/(š‘›+2)0

    š¹š‘› (š‘”) š‘‘š‘”= āˆ«āˆšš‘›/(š‘›+2)0

    (1 āˆ’ š‘”/š‘Žš‘›1 āˆ’ š‘Žš‘›š‘” )š‘› (1 āˆ’ 2 log (1 āˆ’ š‘Žš‘›š‘”)) š‘‘š‘”.

    (83)

    Proof. Indeed, arguing as in the proof of Corollary 11, fromTheorem 10, it follows that

    š‘Ÿš‘  (0, š‘“) = āˆ«Ī“|š‘‘š‘¤| = āˆ«

    š›¾

    š‘“ (š‘§) |š‘‘š‘§|

    ā‰„ āˆ«āˆšš‘›/(š‘›+2)0

    š¹š‘› (šœ) š‘‘šœ= āˆ«āˆšš‘›/(š‘›+2)0

    ( š‘Žš‘› āˆ’ šœš‘Žš‘› āˆ’ š‘Ž2š‘›šœ)š‘› (1 āˆ’ 2 log (1 āˆ’ š‘Žš‘›šœ)) š‘‘š‘”,

    (84)

    where we have used that šœ = |š›¾(š‘”)| ā†’ š‘Žš‘› as š‘” ā†’ 1āˆ’. Thisshows the result.

    Conflicts of Interest

    The authors declare that they have no conflicts of interestregarding the publication of this paper.

    References

    [1] P. Koebe, ā€œUĢˆber die Uniformisierung reeller analytischer Kur-ven,ā€ in GoĢˆttinger Nachrichten, pp. 177ā€“190, 1907.

    [2] L. Bieberbach, UĢˆber die Koeffizienten Derjenigen Polenzreihen,Welche Eine Schlichte Abbildung des Einheitskreises Vermitteln,S.-B. Preuss. Akad. Wiss, 1916.

  • 10 Journal of Function Spaces

    [3] A. Bloch, ā€œLes theĢoreĢ€mes de M. Valiron Sur les fonctionsEntieĢ€res et La TheĢorie de lā€™ uniformitation,ā€ Annales de laFaculteĢdes Sciences de Toulouse, vol. 17, pp. 1ā€“22, 1925.

    [4] P. L. Duren, Univalent Functions, vol. 259 of FundamentalPrinciples of Mathematical Sciences, Springer, New York, NY,USA, 1983.

    [5] C. Pommerenke, Boundary Behaviour of Conformal Maps,vol. 299 of Fundamental Principles of Mathematical Sciences,Springer, Berlin, Germany, 1992.

    [6] X. Y. Liu and D. Minda, ā€œDistortion theorems for Blochfunctions,ā€ Transactions of the American Mathematical Society,vol. 333, no. 1, pp. 325ā€“338, 1992.

    [7] H. Yanagihara, ā€œSharp distortion estimate for locally schlichtBloch functions,ā€ The Bulletin of the London MathematicalSociety, vol. 26, no. 6, pp. 539ā€“542, 1994.

    [8] M. Bonk, D. Minda, and H. Yanagihara, ā€œDistortion theo-rems for locally univalent Bloch functions,ā€ Journal dā€™AnalyseMatheĢmatique, vol. 69, pp. 73ā€“95, 1996.

    [9] M. Bonk, D. Minda, and H. Yanagihara, ā€œDistortion theoremsfor Bloch functions,ā€ Pacific Journal of Mathematics, vol. 179, no.2, pp. 241ā€“262, 1997.

    [10] I. Graham and D. Minda, ā€œA Schwarz lemma for multivaluedfunctions and distortion theorems for Bloch functions withbranch points,ā€ Transactions of the American MathematicalSociety, vol. 351, no. 12, pp. 4741ā€“4752, 1999.

    [11] T. Terada and H. Yanagihara, ā€œSharp distortion estimate for p-Bloch functions,ā€ Hiroshima Mathematical Journal, vol. 40, pp.17ā€“36, 2010.

    [12] X. Zheng and J.Wang, ā€œDistortion theorems and schlicht radiusfor š‘-Bloch functions,ā€ Journal of Mathematical Research withApplications, vol. 33, no. 1, pp. 45ā€“53, 2013.

    [13] L. V. Ahlfors, Conformal Invariants: Topics in Geometric Func-tion Theory, McGraw-Hill, New York, NY, USA, 1973.

  • Submit your manuscripts athttps://www.hindawi.com

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical Problems in Engineering

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Differential EquationsInternational Journal of

    Volume 2014

    Applied MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical PhysicsAdvances in

    Complex AnalysisJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    OptimizationJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Operations ResearchAdvances in

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Function Spaces

    Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of Mathematics and Mathematical Sciences

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 201

    The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Algebra

    Discrete Dynamics in Nature and Society

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Decision SciencesAdvances in

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Stochastic AnalysisInternational Journal of