dissociation constants of inorganic acids · pdf fileiii table 143 iv references 219 v. ......

104
DISSOCIATION CONSTANTS OF INORGANIC ACIDS AND BASES IN AQUEOUS SOLUTION CONSTANTES DE DISSOCIATION DES ACIDES ET DES BASES INORGANIQUES EN SOLUTION AQUEUSE

Upload: duongmien

Post on 17-Mar-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

DISSOCIATION CONSTANTS OF INORGANICACIDS AND BASES IN AQUEOUS SOLUTION

CONSTANTES DE DISSOCIATIONDES ACIDES ET DES BASES INORGANIQUES

EN SOLUTION AQUEUSE

DIVISION DE CHIMIE ANALYTIQUECOMMISSION DE CHIMIE ELECTROANALYTIQUE*

CONSTANTES DE DISSOCIATION DESACIDES ET DES BASES INORGANIQUES

EN SOLUTION AQUEUSE

D. D. PERRIN

Department of Medical ChemistryInstitute of Advanced Studies

Australian Xational University, Canberra

*1. M. Koithoff, Président (U.S.A.), P. Zuman, Secrétaire (G.B.), 0. Chariot (France), W.Kemula (Pologne), L. Meites (U.S.A.), D. D. Perrin r(Australie), N. Tanaka (Japon);Membres associés: E. Bishop (G.B.), S. Bruckenstein (U.S.A.),J. Coetzee (U.S.A.), Z. Galus(Pologne), H. Nurnberg (Allemagne), R. Robinson (U.S.A.), B. Tremillon (France).

ANALYTICAL CHEMISTRY DIVISIONCOMMISSION ON ELECTROANALYTICAL CHEMISTRY*

DISSOCIATION CONSTANTS OFINORGANIC ACIDS AND BASES IN

AQUEOUS SOLUTION

D. D. PERRIN

Department of Medical ChemistryInstitute of Advanced Studies

Australian Xational University, Canberra

*1. M. Koithoff, Chairman (U.S.A.), P. Zuman, Secretary (U.K.), G. Chariot (France), W.Kemula (Poland), L. Meites (U.S.A.), D. D. Perrin (Australia), N. Tanaka (Japan); Associatemembers: E. Bishop (U.K.), S. Bruckenstein (U.S.A.),J. Coetzee (U.S.A.), Z. Galus (Poland),H. Nurnberg (Germany), R. Robinson (U.S.A.), B. Tremillon (France).

CONTENTS

Introduction 133

I How to use the Table 137

II Methods of measurement and calculation 139

III Table 143

IV References 219

V

INTRODUCTION

Most of the existing tables of dissociation constants of inorganic acids andbases in aqueous solution are fragmentary in character, include little or noexperimental details, and give few references. Easily the most comprehensiveof the previous collections is Stability Constants of Metal-Ion Complexes, compiledby L. G. Sillén and A. E. Martell, and published as Special PublicationNo. 17 of the Chemical Society, London, in 1964. However, because of thenature of this compilation, the pK values in it tend to be overlain by themuch greater bulk of the stability constant data. In many cases, also, it isdifficult to decide by inspection which of the pK values should be taken fromthe wide range sometimes given for a particular substance.

The present Table follows the pattern of the similar Tables for organicacids and organic bases, which were also prepared at the request of theInternational Union of Pure and Applied Chemistry as part of the workof the Commission on Electrochemical Data. The Table of organic acids,compiled by Kortum, Vogel, and Andrussow was published in Pure andApplied Chemistry, 1, 187—536 (1960), and also separately as a book*. TheTable of organic bases, by the present author, was published in 1965 as asupplement to Pure and Applied Chemistry4

For convenience, the dissociation constants of inorganic acids and baseshave been given, in most cases, in the form of pKa values, and the classes ofcompounds include not only conventional acids and bases such as boric acidand magnesium hydroxide, but also hydrated metal ions (which behave asacids when they undergo hydrolysis) and free radicals, such as the hydroxylradical, .OH. All of these reactions have in common the gain or loss of aproton or a hydroxyl ion. On the other hand, the hydrolyses of metal-complexions such as the cobaltammines have been excluded, as being more appro-priate to the stability constant compilation mentioned above.

In general, and largely because of the difficulties attending pK measure-ments on inorganic species, it is not possible to offer a critical assessment ofmost of the published values. In particular cases, such as water, highlyprecise constants are available over a range of temperatures, and theuncertainty is only of the order of 000 1 pH unit. More commonly, only a few,often widely discordant, values have been reported.

This is partly because of the chemical reactivity of the materials them-selves. For example, nitrous acid readily decomposes to dinitrogen trioxide.At concentrations above 001 M, boric acid is appreciably polymerised topolyboric acids; molybdic acid solutions contain Mo70246 and higherspecies; bisuiphite ion is in equilibrium with pyrosuiphite ion, S2052;and many transition and higher-valent metal ions from polynuclear specieson hydrolysis.* G. Kortutu, W. Vogel and K. Andi ussow. Dissociation Constants of Organie Acids in AqueousSolution. Butterworth & Co. Ltd., London, i61.t D. D. Perrin. Dissociation Constants of Organic Bases in Aqueous Solution. Butterworth & Co.Ltd., London, 1965.

133PAC-.B

INTRODUCTION

Often, too, unsatisfactory methods of determination have been used.Thus, pH titration measurements are seldom satisfactory if pK values liebelow 2 or above 12, and in such circumstances can give quite misleadingresults. Again, pK values for the hydrolysis of metal ions have often beenobtained from measurements of the pH values of solutions of their purifiedsalts in water. As Sillén has pointed out (Quart. Rev., 13. 146(1959), inorganicsalts often adsorb tenaciously onto their surfaces traces of acidic or basicimpurities, which persist even on repeated recrystallization, so that themeasured pH values of their solutions may be much higher or lower thanexpected.

Even with experimentally accurate results, extrapolation to thermo-dynamic pK values at I = 0 is not always possible. The usual basis of suchextrapolation is the Debye-Hiickel equation,

— logf+ = Z2AI — bII + KaD

which is used to calculate the activity coefficient term. For precise work,values of a (the "mean distance of nearest approach" of the ions) and b arechosen to fit the data over a range of ionic strengths, so that the value of thepK, extrapolated to I 0, can be obtained. At low ionic strengths and wheremoderate accuracy (say +005 pH unit) is sufficient some simplifyingassumptions can often be made. Thus, Davies' equation (J. Chem. Soc. 1938,2093) is obtained by taking Ka = 1, b = 02; Guntelberg's equation (Z.physik. Chem. Leipzig, 123, 199 (1926)) sets Ka = 1, b 0; and the approxi-mation Ka = 0, b = 0 (i.e.—log f = Zs2 Al)) is also used. However, withmoderately strong acids and bases (pJC values less than 2 or greater than 12),the numerical values of the thermodynamic plC constants depend in parton the assumptions made in deriving them, including the ion-size parametera used in the extended Debye-Huckel equation (see, for example, R. G.Bates, V. E. Bower, R. G. Canham and J. E. Prue, Trans. Faraday Soc., 55,2062 (1959); A. K. Covington, J. V. Dobson and W. F. K. Wynne-Jones,Trans. Faraday Soc., 61, 2057 (1965), E. A. Guggenheim, Trans. Faraday Soc.62, 2750 (1966). Thus, the pK of bisulphite ion at 25° varies from 1927 toF967 as Ka is varied from FO to 17. In the same way, pKb for Ca(OH)2 variesfrom 114 to 127 at 25°, depending on the choice of parameters.

A distinction must also be made between true and apparent pK values.The first pK of carbon dioxide in water as measured is about 64 at 20°,whereas the true pK of carbonic acid (H2C03) is 38. The difference betweenthe apparent and the true pK values is due to the slight extent to whichcarbon dioxide is covalently hydrated in water. Similarly, periodic acidexists as H5106 and H104 (mainly as the latter), so that its measured secondpK (8.3) is very much higher than its first one (about 2).

In the absence of experimental values, especially for some of the oxyacids,attempts have been made to predict pK values, usually from similarities ofstructure. The more commonly used methods are those of J. E. Ricci(J. Am. Chem. Soc., 70, 109 (1948)), L. Pauling (General Chemistry, Freeman,San Francisco, 1947, p. 394), and A. Kossiakoff and D. Harker (J. Am.Chem. Soc., 60, 2047, (1938)). Even in apparently simple cases, there may beconsiderable uncertainty. For example different values would be predicted

134

INTRODUCTION

for germanic acid depending on whether it existed mainly as GeO(OH)2or Ge(OH)4.

Because of the many different kinds of uncertainties inherent in thepresent pK compilation, no attempt has been made to assess the accuracyof each entry. Nevertheless, where possible, I have attempted to select whatappear to be the best available values. The results for hydrogen suiphideillustrate this. Thus, several methods have indicated that the second pK ofhydrogen suiphide is about 14, which is too high for potentiometric titrationmethods to be applicable. Hence the pK2 values that have been obtainedby potentiometric titration are not set out in the Table. Instead, referencesto the papers where they are given are included under "other measurements".This heading also covers results where insufficient experimental details aregiven.

135

I. HOW TO USE THE TABLE

GENERAL ARRANGEMENTThe Table summarizes data recorded in the literature up to the end of

1967 for the dissociation constants of inorganic acids and bases in aqueoussolution. It also includes references to acidity functions for strong acids andbases, and details about the formation of polynuclear species where this isrelevant. The substances are listed alphabetically, with chemical formulae,so that the entries are self-indexing.

Column 1 gives the name of the substance and the negative logarithm ofthe dissociation constant (pICa). Wherever possible, these values are thermo-dynamic ones obtained by extrapolation to ionic strength I = 0, generallyby using some form of the Debye-Huckel equation such as that due to Davies.In all cases, pK values are listed in decreasing extent of protonation.

Column 2 gives the temperature of measurements in °C.Column 3 lists details such as:

I = = ionic strengthc = concentration in mole/i, orm = concentration in mole/1000 g. of water.

It also records any other details relating to the pK value quoted. Designa-tion of a constant as "practical" implies that it includes both the activityof the hydrogen ion (usually as measured by pH meter) and the concentra-tions of the other species.

Column 4 summarises the method of measurement, the procedure used inevaluating the constants, and any corrections that were taken into con-sideration; the symbols have the meanings set out under "Methods ofMeasurement", page 7. Because different investigators rarely use identicalprocedures, these symbols can only serve as guides: for fullest details theoriginal papers should be consulted.

Column 5 gives the literature references which are listed alphabeticallyat the end of the Table.

137

II. METHODS OF MEASUREMENT ANDCALCULATION

The abbreviations in Column 4 of the Table are, with only minor differences,the same as those used in "Dissociation Constants of Organic Bases inAqueous Solution".

CONDUCTOMETRIC METHODSCl Measurements in solutions of salt and acidC2 Measurements in solution of base only

ELECTROMETRIC METHODS[i] Cells without diffusion potentialsEla Method of Harned and Ehlers (J. Am. Chein. Soc. 54, 1350

(1932))(Cell of type Pt (H2)IB, BC1, NaC1IIB, BC1, NaClAgC1Ag,for which E — E0 + (RT/F) in {BH+] [C1]/[B] = — (RT/F)ln K', and extrapolate to I = 0)

Elb Method of Harned and Owen (J. Am. Chem. Soc. 52, 5079(1930)) ,Pt(H2)IB, NaCljAgClAg, where molality of B isM, E = E0 (RT/F) in ([mn+] [mcijf±2). Extrapolate toI = 0 at constant M, then to M = 0)

Elcg Determination of [H+] from cells of the type, GlassJ solution,Cl-AgClAg

Elch Determination of [H+] from the cell, Pt(H2) solution,Cl-AgClAg

Eld Method of Bates (J. Am. Chem. Soc. 70, 1579 (1948)). Deter-mination of K1 and K2 for dibasic acids

Ele Method of Bates and Pinching (J. Res. .J'Tatl. Bur. Std. 43, 519(1949)). A particular case of method Eicg in which thesolution is a buffer comprising a weak base and a weak acid

[ii] Approximately symmetrical cells with diffusion potentialsE2a Method of Owen (J. Am. Chein. Soc. 60, 2229 (1938))E2b Method of Larsson and Adell (. Physik. Chem. 156, 352, 381

(1931)) (Uses cell Pt(1E12)IB, NaClisat. KC1INaOH, NaC1J(H2)Pt and an approx. K to adjust to equal ionic strengths inthe half-cells. From E obtain {H+] and hence K': extra-polation to I = 0 gives K)

E2c Method of Everett and Landsman (Proc. Roy. Soc. London,A215, 403, (1952))(This is like E2b but uses a second weak base of known pKinstead of a strong base. The method gives the ratio of thetwo constants)

139

METHODS OF MEASUREMENT AND CALCULATION

[iii] Unsymmetrical cells with diffusion potentialsE3ag pH measurements in buffer solutions of weak electrolytes

using glass electrodesE3ah Similar measurements using hydrogen electrodesE3bg Measurements of pH changes during titrations using glass

electrodesE3bh Similar measurements using hydrogen electrodesE3b, quin Similar measurements using quinhydrone electrodesE3c Differential potentiometric methodsE3d pH measurements at equal concentrations of salt and base

OPTICAL METHODS01 Direct determination of the degree of dissociation by extinc-

tion coefficient measurements in solutions of weak bases andsalts

02 Colorimetric determination with an indicator of known pK03 Colorimetric determination with an indicator calibrated

with a buffer solution of known pH04 Method of von Halban and Brüll (Helv. Chim. Acta 27, 1719

(1944))(Solutions of the base being studied, plus indicator, arecompared with similar solutions containing alkali andindicator)

05 Light absorption measurements combined with electrometric• measurements06 Light absorption measurements using solutions of mineral

acids of known concentrations and (usually) Hammett'sacidity function, H0

07 Similar to 06 but using solutions of alkalis

OTHER METHODSANALYT Constants derived from chemical analysisCALORIM Calorimetric measurementsCAT Constants estimated from catalytic coefficientsCRYOSC Cryoscopic measurementsDISTRIB Distribution between solventsFP Constants derived from freezing-point dataION Ion-exchange studiesKIN Constants estimated from kinetic measurementsNMR Nuclear magnetic resonance measurementsPOLAROG Polarographic measurementsRAMAN Measurements of Raman spectraREDOX Oxidation-reduction potentialsSOLY Solubility measurementsVAP Vapour pressure measurements

140

METHODS OF MEASUREMENT AND CALCULATION

CALCULATIONS[i] Conductance measurementsRia Method of Davies (The Conductivity of Solutions, Chapman

Hall, London 1930)(By successive approximations, fA is calculated from theDebye-Huckel-Onsager equation in the form

Li = 1 — A(acco)//1o

which assumes that A0 can be obtained from Kohlrausch'slaw of independent ionic mobilities)

Rib Method of Maclnnes (J. Am. Chem. Soc. 48, 2068 (1926))(The quantity Ae =fAAo is determined directly, where i1is the conductance of the weak electrolyte if it were com-pletely dissociated at the ionic strength studied: it is necessaryto know A for strong electrolytes as a function of I)

Ric Method of Fuoss and Krauss (J. Am. Chem. Soc. 55,476 (1933))(The Debye-Huckel-Onsager equation is used in the form,

= c(Ao — A(cco) ) to derive an equation relating A0, cand K, which is solved by successive approximation until A0is constant at all values)

Rid Method of Shedlovsky (J. Franklin Inst. 225, 739 (1938))(This is like Ric but a different equation is used)

Rie Method of Fuoss (J. Am. Chem. Soc. 79, 3301 (1957))

[ii] Differential potentiometric measurementsR2a Method of Kilpi (Z. Physik. Chem. 173, 223, 427 (1935); 175,

239 (1936) (at point of inflection).

141

III.

TA

BL

E

Nam

e, F

orm

ula

and

pK v

alue

T

( °C

) R

emar

ks

Met

hods

R

efer

ence

1. (

Aqu

o) A

lum

iniu

m io

n, A

l 5•

28

15

pK f

or h

ydro

lysi

s of

Al3

, c

= 0

0005

— 0

01 M

in

A1C

13,

extr

apol

ated

agai

nst 1

k E

3ag

S17

515

20

4•98

25

4•

96

25

pK fo

r hyd

roly

sis

of A

13, I

vari

ed fr

om 0

0025

to

0019

, ex

tra-

po

late

d to

1 =

0 E

3ag

H41

502

25

pK f

or h

ydro

lysi

s of

A13

, c

l0 —

10—

2 M

in A

l(C

l04)

3,

extr

apol

ated

to I

= 0

E3a

g F3

3

496

25

pK fo

r hy

drol

ysis

of

A13

+;

also

log

K =

755

for 2

AIO

H2

A12

(OH

)24+

, and

log

K =

689

for

2A

12(O

H)4

2 + 2H

20

E3,

quin

K

12

503

510

4.49

25

25

25

A14

(OH

)102

+ +

2H

pK

for h

ydro

lysi

s of

A13

pK

for h

ydro

lysi

s of

AL

3 pK

for h

ydro

lysi

s of

Al3

, fr

om d

isso

ciat

ion

fiel

d ef

fect

rel

axa-

tio

n tim

es

E3a

g E

3AG

K

IN

K67

11

9 H

64a

288

1122

10

0 25

pK fo

r hyd

roly

sis

of A

l3

pKfo

r A1(

OH

)3 +

H20

A

l(O

H)4

+

H

Hyd

roly

sis

of A

13+

in

2 M

NaC

1O4

at 4

0° g

ives

, m

ainl

y, o

ne o

r m

ore

poly

nucl

ear c

ompl

exes

O

ther

mea

sure

men

ts: B

94,

D23

, F5,

120

, L

i, T

7, W

25.

KIN

C

i K

69

M9

B97

2. A

mid

opho

spho

ric a

cid,

NH

2PO

3H2

300

8'lS

33

82

8 25

25

I

0'2

(KC

1),

"pra

ctic

al"

cons

tant

s I =

1 (N

Me4

Br)

, co

ncen

trat

ion

cons

tant

s, f±

assu

med

sam

e as

fo

r HB

r

E3b

g E

3bg

C13

11

2

38

10.2

5 T

itrat

ion

of 0

1 M

sol

utio

n; p

K o

f NH

3PO

3H2

give

n as

2'l

E3b

R

41

292

7.86

20

E

,Sb

K29

28

8'

2 E

,h

M26

46

7'

7 10

H

15

82

25

RiO

O

ther

mea

sure

men

ts: C

19

Nos

. 1—

2

Nos

. 3—

6

Nam

e, F

orm

ula a

nd p

K va

lue

T(°

C)

Rem

arks

M

etho

ds

Ref

eren

ce

3. A

min

odis

uiph

onic

acid

, NH

(HSO

3)2

8-50

25

pK

3; I

= 1-

0 (N

aC1)

E

3ag

D37

a 4.

Am

inop

hosp

haze

nes,

see

Hex

amin

otri

phos

phaz

ene,

Oct

amin

otet

raph

osph

azen

e.

5. A

min

opho

spho

ric a

cid,

see

Am

idop

hosp

hori

c aci

d.

6. A

mm

onia

, NH

3 10

-081

0

Equ

al c

once

ntra

tions

of

NH

3 an

d K

H p

heno

l su

ipho

nate

, E

lch

B20

9-

903

5 c

vari

ed f

rom

0-0

11 to

0-1

04 M

, ac

tivity

coe

ffic

ient

s ca

lcul

ated

9-

730

10

from

Deb

ye-H

ücke

l equ

atio

n, p

K pl

otte

d ag

ains

t I

9564

15

9-

401

20

9-24

6 25

9-

093

30

8-94

7 35

8-

805

40

8671

45

8•

540

50

10-0

81

0 E

la

B19

9-

904

5 9-

731

10

9564

15

9-

400

20

9-24

5 25

9-

093

30

8-94

7 35

8-

805

40

8670

45

8-

539

50

The

rmod

ynam

ic qu

antit

ies

are

deri

ved

from

thes

e va

lues

. 9.

555

15

Ivar

ies f

rom

0-0

6 to

0-2

0. E

xtra

pola

ted

to z

ero

conc

entr

atio

n of

E

2b

E23

9-

240

25

NH

4 at

eac

h I,

the

n ex

trap

olat

ed a

gain

st I

8-94

6 35

8-

670

45

The

rmod

ynam

ic qu

antit

ies

are

deri

ved

from

thes

e va

lues

.

9867

5

c O

•02

to 0

08; 1

= 00

7 to

02,

ext

rapo

late

d to

I = 0,

c =

0 E

2b

E25

95

29

15

9•21

5 25

89

23

35

8645

45

l0

•19

0 C

I N

24

9'58

18

93

5 25

7'

45

100

645

156

560

218

574

306

468

49

pKb

valu

es

Cl

W29

4•

83

93

504

138

536

182

5.76

22

7 6•

21

271

6•62

29

3 75

8 10

0 ta

king

pKW

= 1

238;

inv

ersi

on o

f suc

rose

C

AT

K

69

Ref

. H

49a

give

s an

equ

atio

n fi

tting

lite

ratu

re v

alue

s of

pK

fr

om 0

° to

300

°.

429

25

pKb

valu

es 1

000

atm

osph

eres

pres

sure

C

l, R

ia

BIO

S 39

1 25

20

00

361

25

3000

43

2 45

10

00

3.95

45

20

00

365

45

3000

4'

71

45

pKj,

valu

es

1 at

mos

pher

e pre

ssur

e C

l, R

ia

H17

43

0 11

00

3.74

25

00

332

4000

29

5 54

00

2•68

68

00

2•42

82

00

221

9600

21

1 11

000

200

1200

0 32

72

Self

-ion

izat

ion

of li

quid

am

mon

ia, f

rom

cel

l pot

entia

l dat

a P3

0

Nos

. 7—

12

Nam

e, F

orm

ula

and

pK va

lue

T( °

C)

Rem

arks

M

etho

ds

Ref

eren

ce

3249

33-2

Se

lf-i

oniz

atio

n of

liqui

d am

mon

ia, f

rom

ther

mod

ynam

ic da

ta

27-6

6 24

8 C

32

29-8

25

Se

lf-i

oniz

atio

n of

liqui

d am

mon

ia, f

rom

ther

mod

ynam

ic da

ta

J13

40

App

roxi

mat

e pK

of N

H2—

, theo

retic

al c

alcu

latio

n S2

9 A

val

ue o

f 4-2

0 at

25°

has

bee

n cl

aim

ed fr

om h

igh

fiel

d co

n-

B35

du

ctan

ce m

easu

rem

ents

to

be t

he t

rue

pKb

of N

H4+

+

+ 0

H

NH

4OH

A

sim

ilar v

alue

, 4-

28 a

t 200

, has

been

est

imat

ed fr

om pu

blis

hed

M43

da

ta

For

pK va

lues

in

met

hano

l-w

ater

mix

ture

s, se

e E

26, P

1 -

Oth

er m

easu

rem

ents

: B51

, F4

1,

H26

, H

37,

K3,

K26

, L

49,

M44

, N25

, 01

6, P

13, S

31, W

22.

7. (

Aqu

o) A

limon

y 11

1 io

n, S

b3

14

25

pK fo

r Sb

0H2

SbO

+ H

SO

LY

K

5 11

-8

25

pK fo

r Sb0

+ H

20

HSb

O2

+ 1-

1+

SOL

Y

0-87

25

pK

for S

b0 +

H20

H

SbO

2 +

H

SOL

Y

P29

11-0

25

pK

for H

SbO

2 +

2H

20

Sb(O

H)4

- +

H

SOL

Y

8. A

ntim

ony

pent

oxid

e, Sb

205

See

also

IDod

eca-

antin

ioni

c ac

id.

255

25

pK fo

r HSb

(OH

)6

Sb(O

H)t

r + H

; I =

0-5(

NM

e4C

1);

E3b

L

17

Sb c

once

ntra

tion

< 1

0 M

; at

hig

her

conc

entr

atio

ns p

oly-

nu

clea

r co

mpl

exes

are

als

o fo

rmed

.

Aqu

o m

etal

ion,

See

ent

ry u

nder

app

ropr

iate

met

al ir

on

9. A

rsen

ic ac

id, H

3AsO

4 20

89

7-05

4 0

I var

ied

from

000

7 to

009

6 (f

or K

1).

Ela

,qui

n A

lO

2-11

4 7-

032

5 an

d 0-0

10 to

021

(fo

r K

2);

2-13

8 7-

015

10

extr

apol

ated

to I

0 2-

163

6-99

9 15

2-

194

6-99

0 20

2-

223

6-98

0 25

2-

265

6-97

4 30

2-

296

6.97

3 35

2-

332

6-97

3 40

2383

69

73

45

2•42

0 69

80

50

pl(r

= 20

14 +

5 x

105

(t

400)

2 =

6971

+ 5

x 10

(1 —

39.4

)2,

tin °C

. T

herm

odyn

amic

quan

titie

s ar

e de

rive

d fr

om th

e re

sults

. 24

9 70

5 11

33

10

E,g

F1

9 2•

19

694

11•5

0 25

19

5 68

7 11

.64

35

2.15

6.

80

1192

50

7•

08

25

Tak

ing

pK2

of H

3P04

as 7

16

E3a

g H

78

2301

25

E

3ag

S3

For

valu

es o

f pK

i in

D20

JH20

mix

ture

s, se

e S3

O

ther

mea

sure

men

ts: B

58,

B86

, C

23, K

48, L

50, M

8, S

54,

W4,

W

5

10. A

rsen

ious

aci

d, H

3AsO

3 (H

AsO

2)

9295

9•

265

15

20

Mol

al s

cale

; c =

0008

, I =

01

(KC

1)

E3d

g A

29

9•18

25

90

9 30

89

7 35

88

85

40

881

45

9•29

4 25

In

KC

I so

lutio

ns,

extr

apol

ated

to I

= 0

E

A28

9•

22

25

Tak

ing

pK o

f bor

ic a

cid

as 9

19

E3a

g H

78

926

908

18

25

"Pra

ctic

al"

cons

tant

, titr

atio

n of

001

7 M

H2A

sO3

E3b

g E

3ag

B86

11

5 94

13

5 13

8 R

oom

32

pK

2 ob

tain

ed fr

om u

ltrav

iole

t spe

ctra

0 C

RY

OSC

G

33

S61

Oth

er m

easu

rem

ents

: B58

, C

li, G

5, K

36, K

48, T

15, W

5, W

25,

Z2

11. A

zido

-dith

ioca

rbon

ic a

cid,

HSC

SN3

167

25

Free

aci

d re

adily

deco

mpo

ses

Cl

S55

12. (

Aqu

o) B

ariu

m io

n, B

a2

062

060

5 15

pK o

f Ba0

H; I

= 01

; f+

calc

ulat

ed b

y D

avie

s' e

quat

ion,

for

extr

apol

atio

n to

I = 0;

fro

m e

.m.f

. dat

a of

H.S

. H

arne

d an

d

Nam

e, F

orm

ula

and

pK va

lue

T(°

C)

Rem

arks

M

etho

ds

Ref

eren

ce

064

25

C.

G. G

eary

, J.A

rn. C

hem

. Soc.

59

2032

(193

7)

069

25

0.72

45

T

herm

odyn

amic

qua

ntiti

es a

re d

eriv

ed fr

om th

e re

sults

. 06

4 25

pK

b of

BaO

H; I =

004

to

017;

usi

ng D

avie

s' e

quat

ion

and

D7

activ

ity m

easu

rem

ents

of

H.

S. H

arne

d and

C. M

. Mas

on,

J.

Am

. Che

m. S

oc. 54

, 144

1 (1

932)

08

5 25

c =

002

— 0.

05

(Ba(

OH

)s),

I

023

to 0

6 (B

a(O

H)s

+

KIN

B

30

BaC

I2),

ext

rapo

latio

n to I =

0, u

sing

Dav

ies'

equ

atio

n 06

2 25

I =

01 t

o 04

5 C

AT

,KIN

B31

07

2 C

once

ntra

tion

cons

tant

; 02

— 1

N B

aC12

; sa

lt ef

fect

on

mdi

- 03

K

39

cato

r 00

0 25

1 =

3 (N

aC1O

4)

E2a

h C

7 O

ther

mea

sure

men

ts: B

32,

K64

13.

(Aqu

o) B

eryl

lium

ion,

Be2

B

eryl

lium

ions

rea

dily

hyd

roly

ze i

n so

lutio

n an

d fo

rm c

on-

dens

ed sp

ecie

s co

ntai

ning

mor

e th

an o

ne b

eryl

lium

ato

m. S

ee,

for e

xam

ple,

C8

and

Ki.

5.7

....7

20

Su

cces

sive

pK

val

ues f

or h

ydro

lysi

s of B

e2; I

01

(N

aClO

4);

E3a

g S3

0 ra

pid-

reac

tion

mea

sure

men

ts;

BeO

H+

qui

ckly

for

ms

trim

er

Bea

(OH

)33+

65

25

pK

for B

e2

BeO

H +

H;

I = 1

(NaC

IO4)

; Be2

0H3

also

E

3bg

M21

fo

rmed

>

6•1

25

pK f

or B

e2

Be0

H +

H;

I = 3

(NaC

lO4)

; rec

alcu

latio

n H

56

of d

ata

from

refs

. C8

and

KI

usin

g a

com

pute

r; a

lso

— lo

g K

= 10

87

for

Be2

+ 2

H20

B

e(O

H)2

+ 2H

+;

cons

tant

s gi

ven

for B

ea(O

H)a

S+ a

nd B

e2O

H3+

10

82

pKb

for

Be(

OH

)2

Be0

H +

OH

—;

c 00

1;

betw

een

E3b

A

9 pH

62 —

54; a

t low

er pH

valu

es d

i- a

nd tn

-nuc

lear

com

plex

es

are

form

ed; c

onst

ants

are g

iven

10

46

pK f

or B

e(O

H)s

+ H

20

Be(

OH

)a +

H;

trac

er c

once

n-

DIS

TR

IB

G39

tr

atio

ns;

also

log

K =

136

5 fo

r B

e2 +

2H

20

Be(

OH

)2

+ 2

H

Nos

. 13

—15

— l

og

K =

8-8

1 fo

r 3B

e2

Bea

(OH

)a3

H- 3H

; —

log

B

37

K =

324

for

2Be2

B

e2O

H3

+ H

; — lo

g K

= 11

0 fo

r B

e2

Be(

OH

)s +

2H

; al

l fo

r I =

0-5(

NaC

1O4)

, c

0-00

1 to

008

M in

Be2

log

K

= 1

09

for

Be2

B

e(O

H)2

± 2

H,

at 2

5° a

nd

K!

I = 3(

NaC

1O4)

; co

nsta

nts a

lso

give

n fo

r di

- an

d tn

-nuc

lear

sp

ecie

s.

Oth

er m

easu

rem

ents

: L40

, W26

.

14. (

Aqu

o) B

ism

uth(

IIJ)

ion,

Bi3

+

158

25

pK fo

r B

i3

BiO

H2

+ H

; I =

3(N

aC1O

4);

[Bi3

] de

ter-

E

3bg

06

min

ed b

y B

i-H

g el

ectr

ode;

mai

n eq

uilib

rium

is 6

Bi3

+ H

20

Bi6

(OH

)126

+ +

12H

, with

logK

= 0-

33

Hyd

roly

sis o

f Bi3

giv

es B

i606

6 +

12H

, with

—lo

g K

0-

53

T9

at 2

and

I ==

1(N

aCJO

4),

and

at

high

er

pH

valu

es

Bi6

O6(

0H)s

3, w

ith lo

gK =

— 8

1 H

ydro

lysi

s of

Bi6

066

(= B

i6(O

H)i+

) gi

ves

Bi9

(OH

)2o7

, 07

B

io(O

H)2

16+

and

Bi9

(0H

)225

; co

nsta

nts a

re li

sted

15. B

oric

acid

, H3B

03

9-50

78

0 M

olal

sca

le;

equi

mol

al c

once

ntra

tions

(0-

003

to 0

03 M

) of

E

lch

Mu

9437

4 5

MaC

I, b

orax

an

d bo

ric

acid

; ex

trap

olat

ed

to I

= 0

usin

g 9-

3785

10

ex

tend

ed D

ebye

-Huc

kel

equa

tion

9-32

55

15

9-27

80

20

9-23

40

25

9194

7 30

9-

1605

35

91

282

40

9-10

13

45

9•07

66

50

9-05

37

55

9-03

10

60

pK =

2237

-94/

T +

0016

883T

— 3

305

(Tin

°K)

The

rmod

ynam

ic qu

antit

ies a

re d

eriv

ed fr

om th

e re

sults

. 9-

440

5 M

olal

sca

le. I

vari

ed fr

om 0

02 to

3 b

y ad

ding

NaC

1; e

xtra

po-.

E

lch

018

9-38

0 10

la

ted

to z

ero

bori

c aci

d co

ncen

trat

ion

at c

onst

ant I

, the

n to I =

0 93

27

15

9-28

0 20

9198

91

64

9132

90

80

9-38

0 9•

327

9-28

0 9-

236

9•19

7 9•

132

9•08

0

9-21

n

898

9-00

25

30

35

40

50

10

15

20

25

30

40

50

E3a

h F3

1 E

3bh

14

E3b

h 19

16. (

Aqu

o) C

adm

ium

ion,

Cd2

10

-2

25

pK f

or

hydr

olys

is

of C

d2;

c =

0-i

to 1

-45

(Cd(

C10

4)s)

; al

so fo

rmed

I = 3(

NaC

1O4 +

Cd(

C10

4)2)

; C

dzO

I13

and

Cd4

(OH

)44-

are

E3b

g, q

uin

B44

90

25

pK f

or

hydr

olys

is

of C

d2;

c =

0-01

to

09 (C

d(C

104)

2)

I = 3(

NaC

1O4 +

Cd(

C10

4)2)

; E

3bg

M12

Nam

e, F

orm

ula

and

pK va

lue

T(°

C)

Rem

arks

M

etho

ds

Ref

eren

ce

9-23

7

Nos

. 16

—18

9-00

Ela

01

5 T

herm

odyn

amic

quan

titie

s ar

deri

ved

from

the

resu

lts

I var

ied

from

0-0

1 to

0-1

2; c

onst

ants

cor

rect

ed u

sing

Deb

ye-

Huc

kel e

quat

ion

and

extr

apol

ated

to I

= 0

pK =

9-02

3 +

8 x

10 (7

6-7

— t

)2 (

tin °

C)

20

I = 00

4. T

he s

econ

d pK

of b

oric

aci

d is

gre

ater

than

14

25

1 =

01 (N

aC1O

4)

25

f= 3(N

aClO

4)

At b

oric

aci

d co

ncen

trat

ions

abov

e 0-

4 M

, hig

her

than

trim

eric

co

mpl

exes

are

als

o for

med

25

I =

3(N

aClQ

4);

bori

c ac

id co

ncen

trat

ions

vari

ed f

rom

0-0

1 to

0-

60 M

. Oth

er e

quili

bria

wer

e:

3H3B

03

H4B

307-

+ 11

+ +

2H20

, log

K =

— 6

84,

3H3B

03

H5B

3092

+

2H

+ H

20, l

og K

= —

154

4 P

olym

eric

spec

ies

are

impo

rtan

t at

conc

entr

atio

ns ab

ove

abou

t 00

1 O

ther

mea

sure

men

ts: B

71, B

88, E

6, F

9, H

l0, H

25, 1

5, 1

6, K

42,

K48

, L15

, L41

, M24

, 017

, P39

.

9.49

9•

3 10

0 25

pK fo

r hyd

roly

sis

of C

d; c

002

(CdC

I2)

pK fo

r hyd

roly

sis

of C

d K

IN

K69

SO

LY

G

14

07

25

pKb

for H

CdO

2 +

H20

C

d(O

H)2

+ 0

H

430

25

I = 3(

NaC

JO4)

, pK

b for

CdO

H

Cd2

+ O

H

DIS

TR

IB D

46

344

2-58

pK

b fo

r Cd(

OH

)2

CdO

H+

+ 0

H

pKb f

or C

d(O

H)3

- C

d(O

H)2

+ 0

H

F72

pKb f

or C

d(O

H)4

2-

Cd(

OH

)3 +

0H

on

assu

mpt

ion t

hat l

og K

=

log

K1

'(3 K

3 K

4 ±

((5

— 2

n)/2

) lo

g (K

/K1)

lo

g K

for C

d2 +

40H

C

d(O

H)4

2- is

abo

ut 9

7 at

25°

O

ther

mea

zure

men

ts: C

12,

G38

, L39

PO

LA

RO

G

L3

17. C

aesi

um h

ydio

xide

, CsO

H

For

alka

linity

fun

ctio

n fo

r C

sOH

sol

utio

ns, s

ee L

12a,

M40

.

18. (

Aqu

o) C

alci

um io

n, C

a2

102—

114

0 pK

b fo

r CaO

H+

; m =

000

2 —

002

Ca(

OH

)2 in

000

3 —

001

E

lb

1317

1•12

—1•

24

10

M C

aCI2

or 0

006

— 0

02 M

KC

1; va

lues

of p

Kb d

epen

d on

choi

ce

1-14

—1-

27

1-36

—1.

45

25

40

of yc

i/You

use

d to

eva

luat

e mol

ality

of h

ydro

xyl i

on.

1-34

15

pK

b fo

r CaO

H; 1

= 0

02 to

0•1

(C

a(O

H)z

+ C

aCI2

);f±

cal—

E

lch

G26

1•37

25

cu

late

d as

sum

ing

Dav

ies'

equ

atio

n 14

0 35

13

7 Q

pK

for C

aOH

; I =

0007

to 0

08

SOL

Y

1329

1-40

25

I =

002

to 0

08

148

40

I=0-

04to

010

extr

apol

ated

to 1

0

assu

min

g Dav

ies'

equ

atio

n;

Ca(

103)

2 in

KO

H so

lutio

ns.

130

25

pKb

for C

aOH

; Ca(

IOs)

2 in

Ca(

OH

)2 so

lutio

ns; e

xtra

pola

ted

SOL

Y

D9

125—

1-34

124—

136

0 0

usin

g D

avie

s' e

quat

ion.

pK

3 fo

r CaO

H+

; I =

018

to 0

30; v

alue

sen

sitiv

e to

cho

ice

of

activ

ity c

oeff

icie

nt

I = 00

25 to

008

KIN

13

32

151

25

I = 00

3 to

0-1

5; e

xtra

pola

ted u

sing

Dav

ies'

equ

atio

n; re

- ca

lcul

atio

n of d

ata

of G

. K

ilde,

Z. A

norg

. A

ligem

. C

hem

., 21

8 11

3 (1

934)

SOL

Y

D6

1-31

25

R

ecal

cula

tion

of d

ata

of F

. M. L

ea a

nd G

. E

. Bes

sey,

J. C

hem

.

Soc.

193

7 16

12

C2

B30

C,'

No.

19

Nam

e, F

orm

ula a

nd p

K va

lue

T(°

C)

Rem

arks

M

etho

ds

Ref

eren

ce

146

25

1 =

013

to

02

4 (C

a(O

FI)z

+ Ca

C12

);

c 00

2 —

OO

3 K

IN

B30

12

9 25

C

a(O

H)2

; ext

rapo

late

d us

ing

Dav

ies'

equ

atio

n 1 =

002

to 0

05; f

calc

ulat

ed f

rom

Gug

genh

eim

's eq

uatio

n C

AT

, KIN

B31

1 03

(P

hil.

Mag

., 19

, 588

(19

35))

C

once

ntra

tion

cons

tant

; 02

— 1

N C

aC12

; fr

om s

alt

effe

ct o

n in

dica

tor

03

K39

06

4 25

1

3(N

aClO

4)

For t

he a

cidi

ty f

unct

ion

of C

a(O

H)2

sol

utio

ns fr

om 0

—95

° an

d 1=

001

to 0

20, s

ee B

18

Oth

er m

easu

rem

ents

: G42

E2a

h C

7

19. C

arbo

nic

acid

, H2C

03

6577

65

17

0 5 A

ppar

ent

pK

valu

es;

doub

le

extr

apol

atio

n pr

oced

ure

to

elim

inat

e ef

fect

of a

dded

NaC

i an

d to

obt

ain

valu

es a

t zer

o E

lch

H29

64

65

10

bica

rbon

ate c

once

ntra

tion

6•42

0 15

63

82

20

6351

25

63

27

30

3.3Ø

9 35

62

96

40

6289

45

62

87

50

6579

0

pK1

3404

71/T

— 1

4843

5 +

003

2786

T(T

in °K

) T

herm

odyn

amic

quan

titie

s ar

e de

rive

d fr

om th

e re

sults

. A

ppar

ent p

K v

alue

s; I

0004

— 0

2, e

xtra

pola

ted

to 1

0

Elc

h H

31

6517

5

6464

10

64

19

15

6381

20

63

52

25

6327

30

63

09

35

6298

40

6•

290

45

6•28

5 50

65

14

5 A

ppar

ent

pK v

alue

s; I =

0003

— 3

; ex

trap

olat

ed t

o I

0 E

3bh

N7

6421

15

by

fitti

ng to

an

exte

nded

Deb

ye-H

ucke

l equ

atio

n 6.

349

25

631O

35

6•

294

45

pKi =

6572

— 0

0121

73t +

0000

1332

9i2 (

tin °C

) 65

83

0 A

ppar

ent

pK v

alue

s; 0

001

N in

KH

CO

3, K

C1,

H

C1,

an

d C

l,Rld

S4

0

6429

15

sa

tura

ted C

O2

solu

tions

63

66

25

6•31

7 38

63

5 25

A

ppar

ent p

K va

lue

E2b

, qu

in

A45

6•35

25

A

ppar

ent p

K v

alue

E

lc, q

uin

A44

63

8 25

A

ppar

ent p

K va

lues

, mol

al sc

ale,

I

atm

osph

ere,

C

l R

IO

590

I var

ied

from

0000

1 to

01,

10

35 a

tmos

pher

e 54

8 20

50 a

tmos

pher

e 51

5 29

30 a

tmos

pher

e 63

2 35

1

atm

osph

ere

585

1030

atm

osph

ere

5•45

20

35 at

mop

sher

e 51

2 29

30 a

tmos

pher

e 63

2 45

1

atm

osph

ere

589

1015

atm

opsh

erc

5•50

20

10 at

mos

pher

e 5•

16

3000

atm

osph

ere

630

55

1 at

mos

pher

e 58

6 10

20 at

mos

pher

e 54

9 20

10 at

mos

pher

e 5•

17

2950

atm

osph

ere

631

65

1 at

mos

pher

e 58

8 10

50 at

mos

pher

e 55

1 20

60 at

mos

pher

e 52

6 28

00 at

mos

pher

e 10

625

0 I v

arie

d fr

om 0

02 to

016

; ext

rapo

late

d to

I = 0

usin

g ext

ende

d E

3ah

1139

1055

7 5

Deb

ye-H

ucke

l equ

atio

n 10

•490

10

lO

430

15

10•3

77

20

1032

9 25

Nos

. 21

—23

Nam

e, F

orm

ula a

nd p

K va

lue

T(°

C)

Rem

arks

M

etho

ds

Ref

eren

ce

1029

0 30

10

250

35

10•2

20

40

1019

5 45

10

•172

50

pK

s = 29

02•3

9/T

— 6

4980

+ 0

0237

9T (T

in °K

) T

herm

odyn

amic

quan

titie

s ar

e de

rive

d fr

om th

e re

sults

. 10

179

60

I var

ied

from

000

5 to

01;

extr

apol

ated

aga

inst

I E

,g

C45

10

•153

70

10

142

80

1014

0 90

pK

2 =

290

910/

T —

611

9 +

002

272T

(Tin

°K)

1064

1 0

Dou

ble

extr

apol

atio

n, f

irst

to

valu

es i

n pu

re a

queo

us N

aC1

E3a

h W

9 10

•397

18

so

lutio

ns,

then

aga

inst

I to I =

0 10

32

25

1=0

N6

635

1033

25

1 =

1(N

aCl)

VA

P E

9 6•

29

1017

50

6•

24

1014

10

0 63

3 10

25

150

655

1042

20

0 64

2 10

13

100

Cl

R49

6•

77

1037

15

0 72

7 10

80

200

789

1130

25

0 8•

70

120

300

646

1014

10

0 C

l R

48

681

1041

15

6 71

4 20

0 10

96

218

634

1025

25

1

vari

ed f

rom

001

to

02; e

xtra

pola

ted

agai

nst I

E3a

g M

5 63

1 10

20

38

Ivar

ied

from

001

to

02; e

xtra

pola

ted

agai

nst I

E3a

g M

G

381

5 T

rue

pK fo

r H2C

03

H +

HC

03; h

igh

fiel

d co

nduc

tivity

C

W

23

3.75

15

m

easu

rem

ents

37

6 25

3.

78

35

380

38

380

45

3•68

05

T

rue p

K fo

r HaC

O, c

alcu

late

d fr

om a

ppar

ent

pK, u

sing

rate

s of

hydr

atio

n an

d de

hydr

atio

n D

31

388

375

25

235

Tru

e pK

for H

2CO

3; fr

om hi

gh fi

eld c

ondu

ctiv

ity m

easu

rem

ents

, ta

king

pK

0ba

6352

T

rue p

K fo

r H2C

Oa;

from

rapi

d-re

actio

n m

easu

rem

ents

C2

KIN

B34

S13

382

302

389

356

380

4 T

rue p

K fo

r H2C

OS;

150

atm

osph

eres

; pre

ssur

e ju

mp

met

hod.

O

ther

mea

sure

men

ts: B

79,

BlO

l, B

ill, C

40,

C41

, F6,

F34

, H

42, K

6, K

7, K

S, K

9, K

l0, K

28, K

43, M

22, M

28, M

45, N

i2,

R37

, SI,

S69

.

Cl

L38

20. C

aro'

s ac

id,

see

Pero

xym

onos

uiph

uric

acid

21. (

Aqu

o) C

eriu

m(I

II) i

on, C

e3

9 25

pK

for

hyd

roly

sis

of C

e3;

from

hyd

roly

sis o

f "p

ure"

sal

ts;

c 00

01 —

05

ss C

es(S

04)s

C

e3(O

H)5

4 w

as f

orm

ed a

t 25°

by

hydr

olys

is of

005

M C

e2

in 3

M L

iCIO

4 O

ther

mea

sure

men

ts: R

8, S

72

E3a

g M

38

B49

22. (

Aqu

o) C

eriu

m(I

V) i

on, C

e4

0'O

G

—0'

32

—0•

72

5 15

25

I 11

— 4

(HC

IO4,

N

aCIO

4);

c =

I —

14

x I0

M; di

- m

eriz

atio

n w

as i

mpo

rtan

t 06

R

20a

—1•

l8

35

070

—09

11

l15

082

25

l6

25

1= 0

9 to

l7(

HC

lO4)

I

x 10

M C

e(IV

); po

lym

eris

atio

ri w

as n

eglig

ible

. pK

valu

es fo

r hyd

roly

sis

to C

eOH

3 an

d Ce(

OH

)s2;

I =

2(H

C1O

4, N

aClO

4); c

= 3

5 x l0

M Ce(

IV);

fro

m

pH-d

epen

denc

e of r

edox

pot

entia

l

06

RE

DO

X

Ola

138

—02

2 25

pK

for

Ce0

H3

Ce(

0H)2

2 +

H; H

C10

4 co

ncen

trat

ion

from

02

— 0

.4

from

pH

-dep

ende

nce

of re

dox p

oten

tial

Oth

er m

easu

rem

ents

: D2a

RE

DO

X

S42

23. C

hlor

aniin

e, se

e M

onoc

hior

amin

e

cn

Nos

. 24

—28

Nam

e, F

orm

ula a

nd p

K va

lue

T(°

C)

Rem

arks

M

etho

ds

Ref

eren

ce

24. C

hior

ic ac

id, H

C1O

3 —

2-7

T

heor

etic

al pr

edic

tion,

bas

ed o

n st

ruct

ure

K52

25. C

hior

osui

phur

ic ac

id, H

C1S

O3

For p

K in

sul

phur

ic a

cid,

see

Bi 1

26. C

hior

ous

acid

, H

CIO

2 1-

94

25

Spec

tral

dif

fere

nces

extr

apol

ated

to

zero

tim

e; c

= 00

01

to

0-00

3 M N

aC1O

2, a

cidi

fied

with

HC

1O4;

ac

tivity

coe

ffic

ient

s fr

om D

ebye

-Huc

kel

equa

tion

1-97

19

—20

c =

0001

— 0

1 M

NaC

1O2;

ext

rapo

latio

n aga

inst

I 1-

96

20

06

E3b

g

L18

D5

H66

1-

99

23

"Pra

ctic

al"

cons

tant

; con

cent

ratio

n of

HC

IO2

025

M

Oth

er m

easu

rem

ents

: L20

, Ti

E3b

g, R

2a L

36

27. C

hrom

ic a

cid,

H2C

rO4

6-44

4 5

E3b

g L

35a

6-47

8 15

6-

488

25

6-52

4 35

6-

569

45

6-64

2 60

64

72

15

05

L35

a 6-

500

25

6-53

3 35

65

93

45

6-40

18

T

itrat

ion o

f 002

5 M

H2C

rO4

E3b

g B

81

647

18

Titr

atio

n of

0-04

M K

2CrO

4 E

3bg

B88

65

2 25

I =

0001

8 to

0-0

028;

f + ca

lcul

ated

from

Dav

ies'

equ

atio

n E

3bg

H72

65

2 25

1 =

0002

to 0

-004

05

65

0 25

I

001

to 0

16; e

xtra

pola

ted

to I =

0;

E3a

g N

16

K =

0023

for

CrO

72 +

H20

2H

CrO

4 07

4 25

I a

bout

016;

HC

l/KC

1 so

lutio

ns

E3c

h 66

0 20

2

I = 0

1; c

orre

cted

to I =

0 by

Dav

ies'

equ

atio

n, tr

acer

con-

D

IST

RIB

H

13

cent

ratio

ns

—08

3 15

C

once

ntra

tion

cons

tant

s cor

rect

ed f

or fo

rmat

ion

of C

rO3C

I;

06

Ti l

b —

061

25

I = 1(

LiC

IO4,

LiC

I, H

C1O

4, H

G!)

042

35

649

25

c= 2

5 x

lO5M

05

B

5

—09

8 25

In

HC

JO4

solu

tions

05

1 25

In

H2S

04 s

olut

ions

, us

ing

H_

scal

e 06

L

14

0•76

25

In

HC

1 so

lutio

ns,

usin

g H

_ sc

ale

06

—1•

91

25

In H

NO

3 sol

utio

ns, u

sing

H0

scal

e 06

1'

74

25

In H

3P04

solu

tions

, us

ing

H0

scal

e 06

101

25

In H

CIO

4 so

lutio

ns, u

sing

H_

scal

e 06

pi

tT1

vari

es w

ith t

he p

roto

n so

urce

bec

ause

of t

he fo

rmat

ion

of

spec

ies

such

as

HC

rO3C

1 and

HC

rO3(

OSO

3H)

—08

l 25

I =

10;

in M

C!

solu

tions

, cor

rect

ing

for t

he f

orm

atio

n of

06

H

12

CrO

3C!

The

equ

ilibr

ium

con

stan

t fo

r C

r207

2 +

H20

2H

CrO

r D

13

is 0

0265

at 2

00 a

nd 0

O30

3 at

25°

Oth

er m

easu

rem

ents

: B24

, B

100,

H78

, Jia

, JO

, M

iS,

S7,

S41,

S4

3a, S

66, T

ila, T

12

Ca

. .

3 ..j

28

. (A

quo)

Chr

onnu

m(I

II)

ion,

Cr +

366

25

pK fo

r hyd

roly

sis

of C

r3; I

00

014

— 0

04; e

xtra

pola

ted t

o E

3ag

H4l

6_

o 3•

95

25

pK fo

r hyd

roly

sis

of C

r3; c

orre

cted

for C

r3 —

SO

4 ion

-pai

r C

l T

l9

form

atio

n; I =

0 33

4 46

2 pK

for h

ydro

lysi

s of

Cr3

; I =

0068

(L

iC!O

4);

from

var

iatio

n 05

P3

6

301

636

of a

ppar

ent s

tabi

lity

cons

tant

of C

rNC

S2 w

ith p

H

283

737

of C

rNC

S2 w

ith p

H

265

84•8

24

9 94

•6

405

15

1 =

0068

(LiC

IO4)

; ext

rapo

latio

n from

resu

lts a

t 46—

95°

P36

382

25

466

0 pK

for h

ydro

lysi

s of

Cr3

C

l B

53

401

25

3.47

50

29

9 75

2•

58

100

4•26

20

pK

for h

ydro

lysi

s of

Cr3

; I =

05 (N

aNO

3)

E3b

g Ji

S 3•

90

15

pK fo

r hyd

roly

sis

of C

r3; I

0

KIN

B

94

Cul

cc

Nos

. 29

—36

Nam

e, F

orm

ula

and

pK va

lue

T(°

C)

Rem

arks

M

etho

ds

Ref

eren

ce

41

—'5

6 20

Su

cces

sive

pK

val

ues f

or hy

drol

ysis

of C

r3; I

= 01

(N

aC1O

4);

rapi

d-fl

ow m

easu

rem

ents

E

3ag

S30

410

555

25

Succ

essi

ve "p

ract

ical

" pK

valu

es fo

r hyd

roly

sis o

f Cr3

; I =

004

to 0

4 E

3ag

E18

39

6 25

05

.

Oth

er m

easu

rem

ents

: B54

, C

15,

D23

, L4

29. (

Aqu

o) C

obal

t(II

) ion

, Co2

9•

96

985

15

25

pK fo

r hyd

roly

sis

of C

o2 at

I =

025

and

075

(NaC

1O4)

E

3bg

B64

962

35

9•50

45

89

87

30

10

0 pK

for h

ydro

lysi

s of

Co2

; I =

0l(K

C1)

pK

for h

ydro

lysi

s of

Co2

O

ther

mea

sure

men

ts: A

7, D

23, G

12, P

31

E3b

g K

IN

C12

K

68

30. (

Aqu

o) C

obal

t(II

I) io

n, C

o3'

210

125

pK fo

r hyd

roly

sis

of C

o3; I =

1(N

aCIO

4)

06

S79

198

18•5

17

8 23

6 1•

71

282

The

abov

e va

lues

are

unc

erta

in b

ecau

se h

igh

coba

ltic

conc

en-

trat

ions

and

low

acid

ities

favo

ur fo

rmat

ion o

f pol

ynuc

lear

spec

ies

S80

31. (

Aqu

o)

Cop

per(

II)

ion,

Cu2

T

he p

K fo

r Cu2

is n

ot k

now

n; h

ydro

lysi

s of

Cu2

giv

es al

mos

t en

tirel

y po

lynu

clea

r com

plex

es of

the

type

, C

ufl(

OH

)2fl

_22+

; P1

9

80

797

25

18

form

atio

n con

stan

ts fo

r C

uz(0

H)s

2 fr

om 1

5—42

° ar

e gi

ven.

pK

for

Cu2

C

uOH

+ H

; I =

3(N

aClO

4):

the

maj

or

spec

ies

form

ed i

s C

us(O

H)2

2+,

with

— lo

g K

= 1

06

pK f

or C

u24

Cu0

H +

H+

; th

e m

ajor

spe

cies

fo

rmed

is

Cu2

(011

)22+

, with

— l

og K

10

•89

Hyd

roly

sis

of C

u2 g

ives

Cu2

(OH

)s2,

w

ith —

log

K a

t 25°

ra

ngin

g fr

om 1

05 t

o 10

9

E3b

g

E3b

g

B33

P15

114

25

Pred

ictio

n of

pK

fo

r C

u(O

FT)2

H

CuO

2 +

H

l3l

25

pK fo

r HC

uO2

H +

Cu0

22

<12

8 pK

for C

u(O

H)2

sH

CuO

s +

H-1-

SO

LY

SO

LY

M3

Jil

Oth

er m

easu

rem

ents

: A

5, C

12, C

36,

D8,

F35

, K5,

K39

, Q3

32. C

yani

c aci

d, H

CN

O

376

0 C

orre

cted

to

I = 0

by e

xten

ded

Deb

ye-H

ucke

l eq

uatio

n;

E3a

g C

S 36

4 10

ex

trap

olat

ed to

zer

o tim

e to

allo

w fo

r dec

ompo

sitio

n 35

7 18

34

6 25

3.

37

35

348

45

354

18

I va

ried

fro

m 0

06 to

0.2

; io

nic

stre

ngth

cor

rect

ion

doub

tful

; E

3ag

J4

extr

apol

ated

to

zer

o tim

e 3.

47

25

1=0

E3a

g M

60

Oth

er m

easu

rem

ents

: A19

, B67

a, T

4 33

. Dec

abyd

rode

cabo

ric a

cid,

H2B

10H

1, F

or a

cidi

ty fu

nctio

n, s

ee M

50

34. D

ecav

anad

ic ac

id, H

6V19

028

-

365

20

pK5;

I =

02;

also

log

K

= —

750

for

10

VO

2 +

8H

20

E3a

g S5

14

H; a

nd lo

g K

= -

235

for

25 V

4O12

+

3H

20

HV

1902

55—

+

50H

3'

O

58

25

pKs,

pl

(6;

I = l(

NaC

IO4)

; to

tal

vana

dium

con

cent

ratio

ns

E3a

g R

32

2 >

< 10

— 2

>

< 10

t; a

lso

log

K

— 6

75 f

or l0

VO

+

8H20

H

2V10

0284

- + 14

H-1

- 35

25

I

3(N

aCIO

4)

370

1 1

(NaC

IO4)

; 00

25 —

01

M in

vat

iada

te

05

E

C17

61

2 I

l(N

aCIO

4); r

apid

titr

atio

n 44

5 75

2 20

I =

01(N

Me4

CI)

; ra

pid-

reac

tion

stud

ies;

com

plex

form

atio

n oc

curs

with

alk

ali c

atio

ns

E 05

S3

2

219

33

Satu

rate

d N

a2SO

4 so

lutio

n; u

p to

01

M N

a3V

O4

solu

tions

; C

RY

OSC

N13

al

so lo

g K

24

for H

2V10

0284

+

1411

1-

l0V

O2

+ 8

H20

O

ther

mea

sure

men

ts: C

16

35. D

eute

rium

chl

orid

e, D

C1

For

Ham

met

t aci

dity

func

tion

in D

20, s

ee H

63

36. D

eute

rium

oxi

de, D

20

10

Mol

al sc

ale;

ext

rapo

late

d to

I =

0 C

34a

Elc

h C

32a,

15

526

20

l5l3

6 25

14

955

Nam

e, F

orm

ula

and

pK va

lue

T(°

C)

Rem

arks

M

etho

ds

Ref

eren

ce

1478

4 30

14

468

40

1418

2 50

15

439

10

Mol

ar sc

ale

15•0

49

20

1486

9 25

14

699

30

1438

5 40

14

103

50

1722

4 10

M

ole

frac

tion

scal

e 16

834

20

1665

3 25

16

482

30

1616

6 40

15

880

50

pKm

= 49

1314

/ T

7511

7 +

0020

0854

T (

T in

°K

) T

herm

odyn

amic

quan

titie

s ar

e de

rive

d fro

m th

e re

sults

. 15

08

15

Mol

ar s

cale

; I =

004

to

010,

ext

rapo

late

d to

I

0 E

2bh

W35

14

71

25

1437

35

14

•807

20

M

olal

scal

e, ta

king

pK

14

073

for H

20

E3a

h S3

1 14

812

25

Mol

al sc

ale

AN

AL

YT

K24

l4

81

25

Usi

ng 0•

01 a

x B

a(O

H)2

in H

20/D

20 m

ixtu

res;

mol

al s

cale

. E

3ag

S3

1486

25

M

olar

sca

le, I

= 0

E3b

h G

31

14•8

56

25

Mol

ar s

cale

, I =

0 E

3bh

G31

a 14

•80

25

I=0

Elc

d A

2 Fo

r pK

val

ues of

H20

JD20

mix

ture

s, se

e G

31, G

3 1 a

37. D

eute

rio-

amm

onia

, ND

3 9.

757

4.9

20

I = 0;

in 0

20; t

akin

g pK

of N

H3

in H

20 a

s 92

65

pK; r

ough

est

imat

e E

3ah

S31

L24

38. D

eute

rio-

arse

nic

acid

, D3A

sO4

2596

25

pK

i in

020;

I = 0;

from

mea

sure

men

ts in

D20

/H20

mix

ture

s E

3ag

S3

Nos

. 37

—44

39. D

eute

rioc

arbo

nic

acid

, D

2C03

67

7 10

96

25

25

App

aren

t pK

in D

20; t

akin

g pK

i for

CO

2 in

H20

= 63

5 In

D20

; met

er st

anda

rdiz

ed in

112

0; p

K2

for

H2C

03 in

H20

E

3a,q

uin

E3a

g C

40

G29

ta

ken

as 1

033

1093

25

In

DsO

; ta

king

p1(

2 for

H2C

03 in

H20

as

1033

E

3ag

C41

40. D

eute

riod

isul

phur

ic ac

id, D

2S20

7 Fo

r pK

5 in

con

cent

rate

d H

2S04

, see

F21

41. D

eute

riohy

draz

ine,

N2D

4 90

8 86

9 17

30

"P

ract

ical

" co

nsta

nt; i

n D

20; I =

(KG

!)

E3d

g F1

2

911

18

"Pra

ctic

al" c

onst

ant,

in D

20; I

= 1(

KC

1)

E3d

g B

102

42. D

eute

rioh

ydra

zoic

acid

, DN

3 50

1 20

In

D20

; I =

0 E

3bg

B10

8

43. D

eute

rio-

iodi

c aci

d, D

103

115

25

In D

20;

taki

ng p

1( o

f 111

03 in

112

0 =

085

C1,

Rld

M

2

44. D

eute

riop

hosp

hori

c aci

d, D

3P04

23

50

25

In D

20; I

= 0;

extr

apol

ated

from

mea

sure

men

ts in

D20

/H20

m

ixtu

res

E3a

g S3

2362

25

In

D20

; tak

ing

pKi f

or H

3P04

in H

zO a

s 212

8 C

M

2 23

1 25

In

DsO

; met

er s

tand

ardi

sed

in 1

120;

taki

ng p

Ki f

or H

3P04

in

H20

as

211

E3a

g G

29

7884

6 78

499

7823

3

5 10

15

In D

20;

usin

g K

D2P

O4/

Na2

DPO

4 m

ixtu

res

from

000

5 to

00

25 M

, and

NaC

1 00

05 M

); e

xtra

pola

ted

to I =

0

Ela

G

8

7•79

86

20

7•77

96

25

7766

7 30

7.

7547

35

7•

7484

40

7.

7433

45

77

435

50

p1(2

= 2

2021

1/T

— 5

9823

+ 00

2138

8T (T

in °

K)

The

rmod

ynam

ic qu

antit

ies

are

deri

ved

from

the r

esul

ts.

Nos

. 45

-56

Nam

e, F

orm

ula

and

pK va

lue

T( °

C)

Rem

arks

M

etho

ds

Ref

eren

ce

7-75

0 25

In

DsO

; ext

rapo

late

d fr

om m

easu

rem

ents

in D

20fH

20 m

ix—

ture

s; ta

king

pK

2 fo

r H3P

04 in

H20

as 7

.290

; 1

0 2-

188

7-66

6 20

In

D20

; I =

0; t

akin

g pK

i an

d pK

2 fo

r H

3P04

in

wat

er as

E,q

uin

E3a

h

R38

S31

1-98

3, 7

-207

45. D

eute

rios

uiph

uric

acid

, D2S

04

2-33

25

In

DsO

; pK

2; I =

0, f

rom

plo

t of

sol

ubili

ty o

f A

g2SO

4 in

SO

LY

L

30

2.69

50

di

lute

D2S

04 i

n D

20 a

s fun

ctio

n of

Ifro

m 0

1 to

1-0

M

2-98

75

D

2S04

32

9 10

0 35

9 12

5 3•

91

150

421

175

452

200

4-84

22

5 pK

2 =

0-01

2317

5T—

- 22-

8656

5/ T—

1-2

5398

6 (T

in K

) T

herm

odyn

amic

quan

titie

s ar

e de

rive

d fr

om th

e re

sults

. O

ther

mea

sure

men

ts of

pl(s

, see

B7,

D39

Fo

r H

amm

ett a

cidi

ty fu

nctio

n in

D20

, see

H63

Fo

r se

lf-d

isso

ciat

ion

cons

tant

of D

2S04

see

F2 1

46. D

iiam

idop

hosp

hori

c aci

d, (N

H2)

2P02

H

492

18

1=0

Cl

K29

483

25

47. D

iflu

orop

hosp

hori

c aci

d, HP

O2F

2 Fo

r ba

sic p

K in

sul

phur

ic a

cid,

see

Bli

48. D

iimid

otri

pbos

phor

ic a

cid,

H20

3P.N

H.P

O2H

NH

.P03

H2

—'1

'2

3-03

66

1 9.

84

25

Con

cent

ratio

n con

stan

ts, 1

0-

1 (N

Me4

Br)

'-0

e—

.2

3-83

70

2 99

2 I =

0-2(

NM

e4B

r)

E3b

g 11

2

,...O

2 3-

94

7-74

9-

95

1 0-

3 (N

Me4

Br)

'-.

11

,s2

3-36

6-

86

10-0

0 1 =

1(M

NeB

r)

f + as

sum

ed s

ame

as fo

r HB

r

52.D

ithio

nic a

cid,

H2S

206

The

oret

ical

pred

ictio

ns o

f pR

i and

pK

2 fr

om st

ruct

ure

K52

Val

ues

of p

Ki

and

pK2

coul

d be

ser

ious

ly i

n er

ror

beca

use

of

-sl

—.'2

2 32

4 68

0 95

0 --

'1

—24

35

9 70

2 92

8 37

50

expe

rim

enta

l lim

itatio

ns

1 =

01; s

ame

rem

arks

as

abov

e I =

01

E3b

g Il

l

49. D

iper

osm

ic a

cid,

See

Osm

ic(V

HI)

aci

d

50. D

iper

ruth

enic

aci

d, (

hydr

ated

Ru0

4)

1117

20

? D

istr

ibut

ion

betw

een

CC

14 a

nd w

ater

D

IST

RIB

M

15

l424

1l

•9

PKb

for H

2RuO

5 H

RuO

4 +

0H

2 S4

8

51. D

isui

phur

ic ac

id, H

2S20

7 —

12

—8

—13

8 T

heor

etic

al pr

edic

tions

(Ric

ci's

met

hod)

of p

ICi an

d pK

s T

heor

etic

al pr

edic

tions

(Pau

ling'

s met

hod)

of p

Ki a

nd p

K2

G24

185

252

10

20

pK in

con

cent

rate

d H2S

04; m

olal

sca

le

pK in

con

cent

rate

d H2S

04; m

olal

sca

le

FP

B13

B

74

53. D

ithio

nous

acid

, see

Hyp

osui

phur

ous a

cid

54. D

odec

a-an

timon

ic ac

id, H

12(S

b(O

H)6

)12

<1•

55

<15

5 <

F55

155

295

4.35

5'

75

715

25

pKi,

pK2,

pJ(

pK4,

pK

s, pI

Ca

p1(7

, pK

s, al

l at I

= 05

(NM

e4C

1);

this

aci

d ex

ists

in

equ

ilibr

ium

with

mon

onuc

lear

sp

ecie

s at

Sb(V

) con

cent

ratio

ns ab

ove 10

M an

timon

y

E3b

L

17

55. D

odec

ahyd

rodo

deca

bori

c aci

d, H

2B12

H12

Fo

r ac

idity

fun

ctio

n, s

ee M

50

56. D

odec

atun

gstic

acid

, H10

W12

041

—.3

6 52

7 62

8 20

pK

s, p

K9,

pK

io; I

= 0l

(NaC

I); r

apid

-rea

ctio

n te

chni

que

E3a

g S3

3

Nos

. 57

—69

Nam

e, F

orm

ula

and

pK va

lue

T( °

C)

Rem

arks

M

etho

ds

Ref

eren

ce

57.

(Aqu

o) D

yspr

osiu

m(I

II) i

on, D

y3+

81

0 25

pK

a for

hyd

roly

sis of

Dy3

; titr

atio

n of

000

4—00

09 M

Dy(

C10

4)3

with

002

M B

a(O

H)2

; I =

03(N

aC1O

4)

E3b

F3

3a

58. (

Aqu

o) E

rbiu

m(I

II)

ion,

Er3

79

9 25

pK

5 for

hydr

olys

is o

f Er;

titra

tion o

f 000

4—00

09 M

Er(

C10

4)a

with

002

M B

a(O

H)s

; I =

03(N

aClO

4)

E3b

F3

3a

59. A

quo)

Eur

opiu

m(I

II)

ion,

Eu3

83

1

-88

25

25

pKa

for h

ydro

lysi

s of

Eu3+

; tit

ratio

n of

0004

—00

09 M

Ba(

OH

)u;

I = 0

3(N

aClQ

) pK

for h

ydro

lysi

s of

Eu3

; hyd

roly

sis

of "p

ure"

salt;

a 00

01—

00

1 M

Eu2

(S04

)3

E3b

E3a

g

F33a

M38

60. F

erri

c io

n, s

ee Ir

on(J

II) i

on

61. F

erri

cyan

ic a

cid,

H3F

e(C

N)6

<

1 25

pK

3; c

l0

- E

3bg

J14

62. F

erro

cyan

ic a

cid,

FT

4Fe(

CN

)o

22

417

257

435

3 4.

3 41

7 23

4.

28

425

25

25

17

25

25

25

pK3,

pK

4; c

l0

; I =

001

to 0

5; ex

trap

olat

ed to

I =

0 pK

3, p

K4;

I = 0

pKa,

pK4;

I=0

pK4;

I = 0

001

to 0

.25;

ext

rapo

late

d ag

ains

t 1+

pJ

(, pK

4 va

riat

ion

of re

dox

pote

ntia

l with

pH

; ext

rapo

late

d to

1=

0 pK

4; v

aria

tion

of re

dox

pote

ntia

l with

pH

O

ther

mea

sure

men

ts: K

37

E3b

g

E3b

g E

3bg

RE

DO

X

RE

DO

X

J14

H74

N

14

L7

H20

a

K46

63. F

erro

us io

n, se

e Ir

on(I

I) i

on

64. F

luor

opho

spho

ric a

cid,

H2P

O3F

Ø

.5

480

5•12

40

25

"P

ract

ical

"co

nsta

nts

E3b

E

D

32

R47

65. F

luor

osui

phur

ic ac

id, H

FSO

3

66. (

Aqu

o) G

adol

iniu

m(I

II) i

on, G

d3

For p

K5

in s

ulph

uric

aci

d, s

ee B

i 1

—88

25

pK

for h

ydro

lysi

s of

Gd3

; hyd

roly

siso

f "pu

re"

salt;

c =

0001

E3a

g M

38

835

25

001

M G

d2(S

04)3

pK

5 for

hydr

olys

is o

f Gd3

; titr

atio

n of

0004

—00

09 M

Gd(

C10

4)3

with

002

M B

a(O

H)2

; I =

03(N

aCIO

4)

E3b

F3

3a

67.

(Aqu

o) G

alliu

m(H

I)io

n, G

a3

334—

343

2.95

28

35

25

25

18

pK fo

r hyd

roly

sis

of G

a3; c

00

04—

025 M

in G

a3

pK fo

r hyd

roly

sis

of G

a2; I

05

(NaC

10)4

Su

cces

sive

pK

val

ues f

or hy

drol

ysis

of G

a3

E3b

g 06

E

3ah

M39

W

20

F32

l03

11•7

18

Su

cces

sive

pK

valu

es fo

r hyd

roly

sis o

f Ga(

0H)r

to G

a(O

H)5

2 an

d G

a(O

H)6

3 68

5 20

pK

fo

r G

a(0H

)3 +

H20

G

a(O

H)4

— +

H;

c =

0005

122

1•40

1•

75

212

20

0025

M in

Ga(

OH

)4; f

rom

pH

of hy

drol

ysed

alka

li-m

etal

salts

Su

cces

sive

pK

val

ues

for

hydr

olys

is o

f G

a3 t

o G

a0H

2,

Ga(

OH

)s+

and

Ga(

OH

)a;

I 1 (N

aCI)

D

IST

RIB

A

17

68. G

erm

anic

aci

d, H

4GeO

4 (H

2GeO

3)

902

1282

25

pK

i, pK

s; I

= 05

(NaC

IO4)

E

3bg

Hi

898

1l74

25

I =

1(N

aC1O

4)

Bel

ow 0

004

M,

germ

anic

aci

d is

mai

nly

mon

omer

ic; a

t hig

her

conc

entr

atio

ns an

oct

ager

man

ic a

nion

is a

lso

form

ed

903

1233

25

pK

1, p

I(s;

I =

05(N

aC1)

; log

K =

2914

for

8G

e(O

H)4

+

E3b

g,h

17

898

15

30H

(G

e(O

H)4

)s(O

H)3

3 1=

0 E

Scg

A25

8.

92

20

8•73

25

8•

62

30

9•l

127

908

12

I = 2(

KC

1)

In 0

5 M

Na2

SO4

E3b

E

C

9 L

42

1243

12

31

25

32

1=3(

NaC

I)

In sa

tura

ted

Na2

SO4

solu

tion

E3b

h C

RY

OSO

110

K63

.

Oth

er m

easu

rem

ents

: G15

, G52

, P43

, R

35,

S26

69. G

old(

IU) h

ydro

xide

, Au(

OH

)s

<11

7 13

36

>15

3 25

Su

cces

sive

Kp

valu

es fo

r ion

izat

ion t

o H

2AuO

32, H

auO

2 an

d A

uO33

, SO

LY

Ji

l

C)'

73. H

exam

etap

liosp

hori

c aci

d, H

6P60

18

2 56

0 78

2

Nos

. 70

—79

Nam

e, F

orm

ula a

nd p

K va

lue

T( °

C)

Rem

arks

M

etho

ds

Ref

eren

ce

70. (

Aqu

o) H

afni

um(I

V) i

on, H

f4

—01

2 0•

23

042

052

25

Succ

essi

ve p

K v

alue

s fo

r hy

drol

ysis

of

Hf4

; 1

1 (H

CIO

4);

usin

g lo

w (

radi

o-is

otop

e) 11

f4+

co

ncen

trat

ions

; at

con

cent

ra-

tions

abo

ve 1

0 M

pol

ymer

s (m

ainl

y tri

mer

s and

tetr

amer

s) a

re

also

form

ed

DIS

TR

IB

P24

71. H

epta

mol

ybdi

c ac

id, H

6Mo7

O24

f_

.3.7

43

3 25

pK

5, p

1(6;

1 =

3(N

aC1O

4);

conc

entr

atio

n co

nsta

nts;

als

o lo

g K

= 57

•7 f

or 7

MoO

42

+ 8

H

Mo7

0246

+

4H

20

Elc

g,h

SS

72. H

exad

ecap

olyp

hosp

hori

c aci

d, H

15P1

6049

-.

.'2

2•92

64

8 60

8 '-.

-2

264

648

802

252

650

818

25

37

50

Con

cent

ratio

n co

nsta

nts:

I =

1(N

Me4

Br)

; f±

assu

med

sam

e as

for H

Br;

firs

t tw

o of

thes

e pK

valu

es m

ay b

e ser

ious

ly in

erro

r be

caus

e of e

xper

imen

tal d

iffi

culti

es

E3b

g Il

l

No

deta

ils

K3a

74. H

exax

nino

trip

hosp

haze

ne, N

3P2(

NH

2)6

<32

76

5 77

0 25

25

pK

i, p1

(2; I

0 pK

2;I=

O

E

E

FlO

Fl

i

75. H

exap

olyp

hosp

hori

c aci

d, H

8P60

19

—2l

21

9 59

8 81

3

—43

22

2 58

3 80

2 '-i

3 22

2 5•

81

8•00

25

37

50

Con

cent

ratio

n co

nsta

nts;

I =

1 (N

Me4

Br)

; f

assu

med

sa

me

as fo

r HB

r; lo

wes

t tw

o pK

valu

es u

ncer

tain

bec

ause

of

expe

rim

enta

l dif

ficu

lty

Con

cent

ratio

n con

stan

ts, a

s ab

ove

E3b

g

E3b

g

112 Ill

76. (

Aqu

o) H

olm

ium

(I1I

) ion,

Ho3

80

4 25

pK

a for

hydr

olys

is o

f Ho3

; titr

atio

n of

0004

—00

09 M

Ho(

C10

4)3

with

0.0

2 M B

a(O

H)2

; I

0'3(

NaC

IO4)

E

3b

F33a

77. H

ydra

zine

, N2H

4 —

0-88

8-

li 20

1=

0 02

,E

S28

027

7•94

25

I =

0

E3b

g Y

15

8-24

15

If

rom

001

to 0

15; e

xtra

pola

ted

to I =

0

E3d

g W

2 7-

99

25

7-82

35

8-

60

10

"Pra

ctic

al"

cons

tant

; I =

1 (K

G!)

E

3dg

1310

2 8-

40

18

8-20

25

81

5 8-

07

25

30

"Pra

ctic

al"

cons

tant

; I =

0-3(

NaC

IO4)

"P

ract

ical

" co

nsta

nt; 0

-02—

0-05

M h

ydra

zine

O

ther

mea

sure

men

ts: B

78,

G21

, H78

Fo

r H_

acid

ity f

unct

ion

of hy

draz

ine

see

D26

, F8,

S12

, S7

3

E3b

g E

3dg

J5

H59

78. H

ydra

zino

suip

huri

c ac

id, N

H3N

HSO

3 3-

85

0007

5 M s

olut

ion

E3b

g A

39

79. H

ydra

zoic

acid

, HN

3 4-

72

25

1=0

Elc

g Y

16

4-65

, 468

46

2 25

22

1

= 0-

01 t

o 0-

03

I = 00

3 to

10;

pK

corr

ecte

d us

ing D

ebye

-HU

ckel

equ

atio

n an

d E

3bg

4-59

25

ex

trap

olat

ed ag

ains

t 1

05

E3a

g B

ilO

H78

4-

68

20

1=0

E3b

g B

IOS

4-69

2 15

I =

0-02

E

Scg

S36

4-68

6 17

-5

4-68

4 20

4-

682

22-5

4-

680

25

4-68

0 27

-5

4-68

0 30

47

0 20

I =

0.01

to 0

-04,

ext

rapo

late

d to

1

0 E

3bg

B67

a 4-

64

26

4-58

33

45

5 —

6-21

10-1

20

25

I = 0-

1 to

13(

KC

1);

extr

apol

ated

aga

inst

ji

pK o

f mon

ocat

ion,

H2N

3, u

sing

Ho

func

tion

for H

2S04

pK

of d

icat

ion,

H3N

32, u

sing

Ho

func

tion

for H

2S04

and

dat

a by

A. H

antz

sch

(Ber

., 63

B 1

782

(193

0))

Oth

er m

easu

rem

ents

: B88

, H

21, H

64, 0

9, W

15

E3b

D

IST

RIB

Q4

136

Nos

. 80

—84

Nam

e, F

orm

ula

and

pK v

alue

T

(°C

) R

emar

ks

Met

hods

R

efer

ence

80. H

ydri

odic

aci

d, F

li -.

.---

9 25

U

sing

Rao

ult's

law

V

AP

B25

25

C

alcu

latio

n fro

m th

erm

odyn

amic

data

M

l

81. H

ydro

brom

ic a

cid,

HB

r t..

i—8

25

Usi

ng R

aoul

t's la

w

VA

P B

25

-—9

25

Cal

cula

tion

from

ther

mod

ynam

ic d

ata

For

Ham

met

t aci

dity

func

tion

of H

Br,

see

P11

, VS

Ml

82. H

ydro

chlo

ric

acid

, H

C1

7.3

0 V

AP

R21

68

10

4 20

6•1

25

5.9

30

5.4

40

—5•

1 50

7•4

0 V

AP

W33

i---

-7

25

Ass

umin

g fr

ee H

C1

is li

ke fr

ee H

CN

B

25

—7

25

Cal

cula

tion f

rom

ther

mod

ynam

ic da

ta

—7

25

Cal

cula

tion f

rom

ther

mod

ynam

ic d

ata

Ml

—7

Ass

umin

g sol

ubili

ties o

f fre

e H

C1

and R

C1

(whe

re R

= C

H3,

C

2H5,

etc

.) in

wat

er fa

ll in

regu

lar

sequ

ence

E

2

-.—

6 A

ssum

ing K

HF/

KH

C1

KH

,o/K

u,s

109

S22

326

360

I = 0;

in su

perh

eate

d st

eam

, den

sity

052

5 g/

ml

Cl

P12

3•42

37

3 0•

525

3.47

37

8 05

25

4•11

37

0 04

47

4•14

37

3 0•

447

424

378

0447

43

2 38

3 0•

447

461

373

0•39

9 4.

74

378

0399

pK o

f H2C

l; th

eore

tical

pre

dict

ion

S29

3 pK

of H

CI;

theo

retic

al p

redi

ctio

n Fo

r plC

valu

es o

f 1-I

C1 in

supe

rhea

ted s

team

bet

wee

n 400

and

7ØQ

O,

with

den

sitie

s fr

om 0

3 to

0-8

g/c

m3,

see

F26

Fo

r pK

val

ue i

n ab

solu

te et

hano

l, se

e S2

2 Fo

r Ham

met

t aci

dity

func

tion

of H

CI s

ee B

27,

B75

, D

21 (

in th

e pr

esen

ce of

LiC

1 an

d M

aCi)

, G17

and

G18

(tem

pera

ture

rang

e),

PlO

(in

the

pres

ence

of a

dded

salts

), P

11, V

8.

For

HA

aci

dity

fun

ctio

n, se

e Y

5 Fo

r H

aci

dity

func

tion,

see

P27

Fo

r H0'

, H0"

, H an

d FI

R' a

cidi

ty f

unct

ions

of H

C1,

see

A36

83. H

ydro

cyan

ic a

cid,

HC

N

9216

25

T

akin

g pK

of

m-b

rom

ophe

nol a

s 90

04;

00l—

005

M b

orax

02

A

22

buff

ers;

ext

rapo

latio

n to I =

0, u

sing

ext

ende

d D

ebye

-Huc

kel

equa

tion;

fres

hly p

repa

red c

yani

de so

lutio

ns

963

10

I = 0-

002

to 0

024;

ex

trap

olat

ion

to I =

0 u

sing

ext

ende

d E

3bg

123

949

15

Deb

ye.H

ucke

l equ

atio

n, fr

eshl

y pr

epar

ed c

yani

de so

lutio

ns

936

20

9-21

25

9-

11

30

8-99

35

88

8 40

8-

78

45

The

rmod

ynam

ic qu

antit

ies

are

deri

ved f

rom

the

resu

lts

936

20

I = 00

1 to

0-0

4, e

xtra

pola

ted

to I

= 0

E3b

g B

67a

9-19

26

9-

05

33

930

28

E3b

G

lO

Oth

er m

easu

rem

ents

: A20

, B84

, B

87,

B88

, H

28, K

36

84. f

lydr

oflu

oric

aci

d, H

F (H

2F2)

3-

18

25

for 1

= 0;

0-0

1—0i

M in

HF,

000

2—O

01 M

in

KF;

ove

r th

ese

Cl,R

lb

Eli

3-40

50

te

mpe

ratu

res,

K

1 fo

r F—

+ H

F H

F2

is 3

4, 4

0, 4

7, 4-

8, 4

9,

3-64

75

5-

7, 5

8, 8

, res

pect

ivel

y 3-

85

100

4-09

12

5 43

4 15

0

Nos

. 85

—89

Nam

e, F

orm

ula

and

pK va

lue

T(°

C)

Rem

arks

M

etho

ds

Ref

eren

ce

4-58

17

5 4.

89

200

321

25

Dat

a fi

t pK

= 2-

75 +

295/

T —

F91

log

T +

0014

T (

T in

°K

) T

herm

odyn

amic

quan

titie

s ar

e de

rive

d fr

om th

e re

sults

fo

r I =

0; 0

001

M in

NaP

; dilu

te H

F so

lutio

ns

Cl

E21

3-

10

15

for 1

0;

usin

gPb-

Hg/

PbFs

inst

eado

fAgJ

AgC

l,0-0

01—

FOM

in

Elc

h B

90

317

25

HF,

I(i f

or F—

+

HF

HF

2— w

as 3

-94,

386,

4-3

2 at

15, 2

5, 3

3-25

35

29

6 0

Rec

alcu

latio

n of

dat

a by

E. D

euss

en

C

W28

3•

16

25

(Z. A

norg

. A

ligem

. Che

m.,

44 31

2 (1

905)

); K

1 fo

r F

+ H

F H

F2—

was

243

, 2-7

0 at

0, 2

316

25

Tak

ing

aHF2

—/(

aHF8

F-)

= 5-

4 E

B

95

'-..—

9 pK

of H

2F+

; th

eore

tical

pre

dict

ion

Oth

er m

easu

rem

ents

: A15

, A41

, B67

, B

98,

B99

, C

24,

C30

, C31

, D

10, D

41,

F3,

F29,

P28

, R

33, R

34,

R50

(at

100

, 156

, 21

8°),

S7

8 Fo

r Ham

met

t aci

dity

func

tion

of H

F, se

e B26

, H

80, N

2 (i

n et

ha-

nol-

wat

er m

ixtu

res)

, P11

S29

85. H

ydro

gen

pero

xide

, H20

2 11

-86

15

1 0-

05 to

48(

NaC

IO4)

; ex

trap

olat

ed a

gain

st 1

4; c

= 0-

55 M

E

3ag

E22

11

-75

20

H20

2 11

-65

25

11-5

5 80

11

-45

35

11-8

1 20

E

3bg

K4

11.9

2 10

C

AL

OR

S2

11

•62

25

11-3

4 35

11

-21

50

12-1

1 0

KIN

J2

2 12

-23

0 D

IST

RIB

12

-19

0 C

l 11

-85

19

01

J17

88. H

ydro

gen

sesq

uiox

ide,

H20

3 9—

10

89. H

ydro

gen

suip

hide

, H2S

7.

33

5 7•

24

10

7•13

15

70

5 20

6•

97

25

6.90

30

6•

79

40

6-69

50

66

2 60

7•

57

0 7'

06

25

6.82

50

70

2 25

20

70

0

7•0

1 1•

58

30

I 0.

1 (p

hosp

hate

buf

fers

) co

rrec

ted

to I

0

by D

ebye

- H

ucke

l equ

atio

n 01

M

51

In st

rong

hyd

roge

n pe

roxi

de so

lutio

ns (a

bove

seve

ral p

er c

ent

H20

2 in

wat

er),

sup

erac

idity

is o

bser

ved,

giv

ing

low

er v

alue

s of

pK

whi

ch p

ass t

hrou

gh a

flat

min

imum

(8.

7) n

ear 5

0%

M34

, K32

Oth

er m

easu

rem

ents

: E24

86. H

ydro

gen

poly

suip

hide

3•

8 63

20

Fo

r H2S

4; I =

01

(NaC

1O4)

; rap

id-f

low

mea

sure

men

ts; 3

.4 an

d 56

for H

2S5

E3a

g S3

0

87. H

ydro

gen

sele

nide

, H2S

e 15

0 22

E

stim

ated

unc

erta

inty

± 0

6 pH

uni

ts;

the

dire

ct t

itrat

ion

of

H2S

e w

ith K

OH

giv

es lo

w p

K2

valu

es b

ecau

se o

f aer

ial o

xida

- tio

n

SOL

Y

W27

14

25

Val

ue n

eede

d to

fit e

xper

imen

tal E

'/pH

plot

PO

LA

RO

G

L35

38

9 11

0 25

IC

—' 0

03; t

itrat

ion o

f H2S

e in

the

dark

E

3bg

H9

3.73

25

•9

c =

O00

8—0•

1 M H

2Se

Cl

H61

3.

77

B10

4

The

oret

ical

pre

dict

ion

C46

140

147

1385

30

c =

000

1 to

001

7 M

in H

2S

I var

ied

from

0•0

1 to

017

, pho

spha

te b

uffe

rs

Ext

rapo

latio

n of

mea

sure

d pK

ver

sus

alka

li co

ncen

trat

ion

Cl

W30

C1,

Rlb

L

44

01

E14

07

FP

,C

J3a

05

M54

7•26

707

6•99

6•

91

696

687

679

666

6•54

6•91

681

668

656

645

637

688

6.99

68

1 65

4 6•52

6•59

10

25

35

50

18

20

25

35

45

25

25

25

25

25

25 0 25

20

25

40

80

90

120

138

E3b

g T

20

E3b

g Y

17

Cl

E13

Nam

e, F

orm

ula a

nd p

K va

lue

T(°

C)

Rem

arks

M

etho

ds

Ref

eren

ce

Nos

. 90

—96

E3a

g, V

AP

G35

1475

13•9

0 14•15

1289

12

24

1068

927

855

Val

ues o

f pK

2 (o

btai

ned

from

titr

atio

ns)

give

n in

this

ref

eren

ce

are

prob

ably

too

low

c =

0001

—00

4 M in

H2S

1 at

mos

pher

e pr

essu

re

500

atm

osph

ere

pres

sure

10

00 at

mos

pher

e pre

ssur

e 15

00 a

tmos

pher

e pr

essu

re

2000

atm

osph

ere

pres

sure

C

alcu

late

d fro

m t

herm

odyn

amic

dat

a an

d po

tent

ial m

easu

re-

men

ts

I = 1

(KC

1); H

g el

ectr

ode v

ersu

s cal

omel

C

alcu

late

d fro

m p

ublis

hed

ther

mod

ynam

ic d

ata

Oth

er m

easu

rem

ents

: A40

, E20

, K31

, K49

, K66

, K71

, P9,

S29

, S6

2, S

71, T

6a, W

i, W

3, Z

i

M13

E

W18

P3

2

90. H

ydro

gen

264

tellu

ride

, H2T

e 18

c =

0003

—00

9 M H

2Te

Ci

H61

2

B104

11

1216

25

25

Value of pKs needed to fit Er/pH plot

Value of pK2 needed to fit E'/pH plot

POLAROG

POLAROG L35

P7

91. H

ydro

pero

xy ra

dica

l, H

O

4.4

23

4.45

23

45

r.

.,2

pK f

or H

Ol

H+

+ 0

s; fro

m p

H-d

epen

denc

e of

reac

tion

with

tetr

anitr

omet

hane

; spe

cies

gen

erat

ed by

elec

tron

irra

diat

ion

pH-d

epen

denc

e of r

ate

of re

actio

n w

ith te

tran

itrom

etha

ne

puls

ed ra

diol

ysis

exp

erim

ents

es

timat

e

KIN

0 0

G46

Ria

C

46a

Ui

20

estim

ate

Wi 1

92. H

ydro

suip

huri

c ac

id, s

ee H

ydro

gen

suip

hide

93. H

ydro

xyla

min

e, N

H2O

H

6186

15

60

63

20

5948

25

I = 0.

25, 1

, 225

(NaC

1O4)

; ex

trap

olat

ed to

I = 0

usin

g Deb

ye H

Uck

el e

quat

ion

E3b

g L

47

5730

35

604

20

5.96

25

pK =

2775

.7/ T

—58

899

+ 00

0847

82T

(T

in °

K)

The

rmod

ynam

ic qu

antit

ies

are

calc

ulat

ed fr

om th

e re

sults

fo

r I =

0; t

akin

g pK

of 3

,4-d

initr

ophe

nol a

s 54

6, 5

42,

and

538

02

R22

584

30

598

25

5.93

25

Fo

r I

0 E

3ag

DIS

TR

.IB

H8

5.97

25

60

4 30

I =

0002

3 to

002

3; e

xtra

pola

ted

agai

nst j

1 "P

ract

ical

" co

nsta

nt; I

1(

KC

1)

E3b

g E

3ag

1351

B

103

649

30

"Pra

ctic

al"

cons

tant

; I

1(K

CI)

; in

D20

O

ther

mea

sure

men

ts: F

28, 1

15, M

1El,

M52

, M

53, R

28, S

83,

W21

E3a

g

94. H

ydro

xyla

min

e-N

,N-d

isul

phon

ic ac

id, H

ON

(HSO

3)2

1185

25

pK

3; I =

16(K

2S04

?)

E3a

g A

8a

95. H

ydro

xyla

min

e-N

-sul

phon

ic ac

id, H

0.N

H.O

SO2H

R

oom

12

38

642

1220

73

•8

pKs;

I =

l5(K

2S04

) I =

16(N

a2C

O3

or N

aSSO

4)

E3a

g A

8a

1210

83

.5

96. H

ydro

xyla

min

e O

-sul

phon

ate,

NH

30S0

3 14

8 45

1

= 1

(NaC

lOi)

E

3ag

C3

-

Nos

. 97

—10

1

Nam

e, F

orm

ula a

nd p

K v

alue

T

(°C

) R

emar

ks

!t'fe

thod

s R

efer

ence

97

. Hyd

roxy

l rad

ical

, OH

1 1-

9 23

Pu

lse

radi

olyt

ic m

etho

d R

I 1 1-

8 -.

23

Puls

e ra

diol

ysis

; pK

obt

aine

d fr

om p

H-d

epen

denc

e of

rate

fo

rmat

ion o

f rad

ical

ion,

C03

of

W

9a

98. H

ypob

rom

ous

acid

, HO

Br

891

10

0 F1

8 86

6 25

84

9 25

8-

23

50

8-80

8-

60

1565

25

-28

E3b

g K

u 8-

47

35.5

5 8-

36

45.5

5 86

8 22

1 =

002

to

0-i

E3b

g S4

4 3-

69

20

c =

0-0

1—0-

02 M

Br0

O

ther

mea

sure

men

ts: C

14, F

2, K

iG, L

29, S

53, S

64

E3b

g S4

5

99. H

ypoc

lilor

ous a

cid,

HO

C1

7-82

5 0

Mea

sure

d re

lativ

e to

pK

2 of

H3P

04;

03

M46

a 7-

754

5 1 =

0-05

to 0

-2; e

xtra

pola

ted

to 1

= 0

7-

690

10

7-63

3 15

7-

582

20

7-53

7 25

7-

497

30

7-46

3 35

7-

49

7-30

10

25

Fo

r 1

0; c

= 0

-01

M H

OC

1 E

3bg

FiG

7-

18

35

7-05

50

7-

50

10

For

1 0;

c 00

03 M

HO

CI

05

013

7-31

25

7J

9 35

7-

06

50

7.82

0

Ext

rapo

late

d to

zer

o tim

e, a

nd t

o I =

0 us

ing

Deb

ye-H

ucke

l E

3ag

04

772

10

equa

tion

7.65

15

7•

53

25

7.49

35

74

6 45

75

3 25

E

3bg

1-17

75

0 20

E

3bg

S45

7.49

25

M

59

766

06

For I

= 0;

usi

ng D

ebye

-Hüc

kel e

quat

ion

E3b

g A

38

7.55

20

74

2 27

"P

ract

ical

" co

nsta

nt;

c =

025

M H

OC

1 E

3bg,

R2a

L

36

Oth

er m

easu

rem

ents

: B85

, D

4, G

2, G

27,

S4,

S46,

S52

, S5

3, S

58,

Yll

H65

, H

73,

12,

K17

,

100.

Hyp

oiod

ous

acid

, 110

1 10

64

25

Als

o pK

= 1

448

for 1

20H

1202

— +

H

E,h

02

1 9.

7 22

E

3bg

J19

r..il

l 25

F3

9 12

.4

20

KIN

S5

1 9.

49

25

pKb

for H

OI

1 +

OH

—; i

odin

e el

ectr

ode

E

M57

13

5 25

pK

of H

2OI

05

A18

15

4 25

pK

of H

sOI;

cells

of t

ype

E

B28

Pt

,12,

Ag,

H/S

at.K

NO

3/I,

12, H

, Pt

101.

Hyp

onitr

ous

acid

, H22

O2

751

0 I

006;

from

rate

s of

dec

ompo

sitio

n K

IN

P34

7•22

20

7•

09

30

ll35

25

1l09

50

10

97

55

11-i

18

E

3ag

732

15

For I =

0 K

IN

H79

72

1 11

54

25

7•17

35

69

2 10

90

45

Usi

ng b

orat

e bu

ffer

s in

dete

rmin

ing

1(2

1110

45

U

sing

NaO

H so

lutio

ns

Nos

. 10

2—10

8

Nam

e, F

orm

ula a

nd p

K v

alue

T

(°C

) R

emar

ks

Met

hods

R

efer

ence

705

25

For I

= 0

E3b

g L1

0 11

4 25

03

67

5 10

85

25

1= 1

Oth

er m

easu

rem

ents

: A3,

P33

K

IN

BlO

G

102.

Hyp

opho

spho

ric

acid

, H4P

206

219

677

948

20

<2

281

727

1003

"P

ract

ical

" co

nsta

nt;,

1=01

(K

C1)

C

once

ntra

tion

cons

tant

s; ti

trat

ion

of 0

01 M

Na4

P2O

6 in

004

9 M

HC

1 w

ith 0

1 M

NaO

H

E3b

h E

3bh

S35

T16

103.

Hyp

opho

spho

rous

acid

, H3P

02

123

25

ForI

=0

C1,

Rlc

P8

10

7 18

"P

ract

ical

" co

nsta

nt;

titra

tion

of 0

11 N

H3P

02 w

ith 0

11 N

N

aOH

E

3bg

M48

102

16

1=01

6 E

3a

G44

a 11

2 30

1=

016

12

45

1=05

7 10

3 16

1

= F

13(K

C1)

; co

ncen

trat

ion

cons

tant

O

ther

mea

sure

men

ts: B

89,

G43

, K

41, M

33, N

26

104.

Hyp

osui

phur

ous

acid

, H

2S2O

4 03

5 24

5 25

C

l j3

10

5. I

mid

odip

hosp

hori

c aci

d, H

203P

.NH

. P0

3H2

—45

26

6 73

2 10

22

25

Con

cent

ratio

n co

nsta

nts;

I =

01(

NM

e4B

r);f +

assu

med

sam

e as

forH

Br;

pK

i may

be

seri

ousl

y in

erro

r bec

ause

of ex

peri

men

tal

diff

icul

ties

E3b

g 11

2

2•85

70

8 9•

72

25

1 =

02

2 28

1 70

5 9•

77

25

1=03

-.

45

305

762

1036

25

1=

10

—.1

.8

260

716

9.79

37

1=

01;

as ab

ove

Ill

-.-1

8 26

8 69

9 95

2 37

I =

03

—.1

•8

2•8l

69

0 94

1 50

1=

01

-..l8

2.

83

688

932

50

I 03

106.

(Aqu

44

3

4.4

o) I

ndiu

m(

39

4.4

III)

ion,

J3+

25

25

Succ

essi

ve p

K v

alue

s fo

r hy

drol

ysis

of

In3

to I

nOH

2+ a

nd

In(O

H)s

; I =

3(N

aCIO

4);

usin

g In

-Hg

elec

trod

e;

abov

e 00

01 M

, ind

ium

for

ms

In{(

OH

)2In

](3+

fl)+

Su

cces

sive

pK

valu

es fo

r hy

drol

ysis

of I

n3; I

= 3

(NaC

1O4)

; tr

acer

am

ount

s of

Ii-

iS+

D

IST

RIB

1341

R31

1189

6.95

1155

11

32

20+

2

25

Succ

essi

vepK

b va

lues

forh

ydro

lysi

sofI

n3to

InO

H2,

In(O

H)2

an

d In

(0H

);I=

1

pK fo

r hyd

roly

sis

of In

3 to

form

a m

ixed

hyd

roxy

-chl

oro

corn

- pl

ex; I

= 3(

NaC

1);

= 00

01—

004 M

In3;

a bi

nucl

ear

1n2(

OH

)2 ch

ioro

com

plex

is

als

o fo

rmed

O

ther

mea

sure

men

ts: H

43, H

51, M

36, M

37

DIS

TR

IB

E3a

g

H19

1348

107.

lodi

c ac

id, H

103

(H51

06)

0804

25

O

btai

ned

by t

hree

inde

pend

ent

met

hods

, tak

ing

ion-

size

par

a-

met

er o

f 5A

; val

ue d

epen

ds o

n io

n-si

ze a

ssum

ed; e

mf m

etho

d C

1,E

, and

K

IN

P26a

0785

25

du

e to

A.

K. C

ovin

gton

and

J. E

. Pru

e, J

. Che

m. S

oc.

1955

, 37

01

Solu

bilit

y of A

g103

in H

NO

3 an

d K

NO

3, e

xtra

pola

ted

agai

nst

j1;J

00

08—

05

SOL

Y

L25

0815

30

08

4 35

07

88

0.77

3 07

73

25

25

25

Solu

bilit

y of B

a(IO

a)s

in 1

:1 e

lect

roly

te so

lutio

ns, e

xtra

pola

ted

agai

nst

11; 1

00

025

to 1

1

= 0.

0026

to 0

01; e

xtra

pola

ted

agai

nst 1

1 C

alcu

late

d fro

m d

ata

of C

. A.

Kra

us a

nd H

. C

. Par

ker,

J. A

m.

SOL

Y

04

Cl,

Ric

N3

H14

F3

8

0807

058

25 0

Che

m. S

oc., 4

4, 2

429

(192

2)

Cal

cula

ted f

rom

dat

a of

C. A

. K

raus

and

H.

C. 1

arke

r, J

. Am

. C

hem

. So

c. 4

4, 2

429

(192

2),

taki

ng a

n io

n si

ze o

f 3A

C

l, R

ic

FP

L17

a

A4

072

18

Cl

074

30

For I

= 0

Oth

er m

easu

rem

ents

: D

44a,

K18

, K60

, M2,

012

, R36

. Fo

r H

0 ac

idity

fun

ctio

n of

aque

ous H

103,

see

D18

NM

R

H67

108.

(Aqu

o) I

ron(

II) i

on, F

e2

6.93

67

4 20

pK

for h

ydro

lysi

s of

Fe2+

; I =

05-2

(NaC

1O4)

E

3bg

B65

25

64

9 35

Nos

. 10

9—11

2

Nam

e, F

orm

ula a

nd p

K va

lue

T(°

C)

Rem

arks

M

etho

ds

Ref

eren

ce

634

40

7•15

68

20

25

pK

for h

ydro

lysi

s of

Fe2

; I

1 (N

aCIO

4)

ESb

g B

63

8•3

7.9

25

25

pK fo

r hyd

roly

sis

of F

e2

pK fo

r hyd

roly

sis

of F

e2; c

= 00

2—0'

08 M

FeC

I2; h

ydro

lysi

s of

"p

ure"

sal

ts

SOL

Y

E3a

g L

19

G13

72

3-

3 25

C

once

ntra

tion c

onst

ants

; I =

05(K

CI)

pK

for h

ydro

lysi

s of

Fe2

, fro

m ra

te o

f H20

2 de

com

posi

tion a

s fu

nctio

n of

pH

in p

rese

nce

of F

e2; I

= 1 (

NaC

1O4)

lo

g K

for F

e2 +

30H

Fe

(OH

)s

is e

stim

ated

from

pol

aro-

gr

aphy

to b

e 78

5 in

1.3

75 N

]a0H

O

ther

mea

sure

men

ts: H

45, L

34

KIN

W

14

S21

109.

(Aqu

o) I

ron(

Ill)

ion,

Fe3

2-

71

246

15

25

pK fo

r hyd

roly

sis

of F

e3; c

once

ntra

tion

cons

tant

; I =

0-01

05

T

21

2-29

35

2-

30

2-34

20

25

pK

for h

ydro

lysi

s of

Fe3

; I =

0025

to 0

45 (

NaC

1O4,

HC

1O4)

; ex

trap

olat

ed to

I =

0 06

R

iG

2-38

18

pK

for h

ydro

lysi

s of

Fe3;

I = 0

01 to

0-0

3; ex

trap

olat

ed to

1 =

0 06

M

30

2-19

25

2-

02

32

2-96

18

I =

1(N

aClO

4);

cons

tant

s are

als

o gi

ven

for 2

FeO

H2

2-79

25

Fe

2(O

U)2

4 2-

61

32

2.17

2-19

25

25

pK f

or h

ydro

lysi

s of

Fe3

; I

0-01

5 to

3-0

; ex

trap

olat

ed t

o 1 =

0 u

sing

Deb

ye-H

ucke

l equa

tion;

cons

tant

s are

als

o gi

ven

for 2

FeO

H2

Fes(

OH

)s4

For

1=0

06

06

M31

S47

2-63

20

—22

1 =

0-1(

KN

O3)

05

P3

5 2-

80

25

I = 0-

5(N

aC1O

4)

06

W20

2-

92

21

1 =

0-55

; in

D20

06

11

75

2-74

3-

31

2-83

4-

59

20

25

Suc

cess

ive p

K va

lues

for

hydr

olys

is of

Fe3

+; I =

1(N

aClO

4);

— lo

g K

= 2

-85

for 2

Fe2

+ 21

120

Fe2(

OH

)24+

+ 2

H

Succ

essi

ve p

K v

alue

s for

hyd

roly

sis

of F

e3

RE

DO

X

E

P18

118

2-83

25

C

3.05

3•

26

25

Succ

essi

ve p

K v

alue

s fo

r hy

drol

ysis

of

F&

; 1 =

3(N

aC1O

4);

also

— lo

g K

= 2

9l fo

r 2Fe

3 +

2H20

Fe

2(O

H)2

4 +

2H

V

alue

s of

lo

g K

for

2Fe3

+ 21

120

Fe2(

OH

)24

+ 2

H,

RE

DO

X

H46

M56

fr

om 1

5410

, are

est

imat

ed fr

om m

agne

tic m

easu

rem

ents

O

ther

mea

sure

men

ts: A

31, B

10,

B52

, B

53, B

76, B

91,

B94

, C

30,

120,

_L5,

_L33

,_01

0, S8

1

110.

Isoh

ypop

hosp

liori

c aci

d, H

4P20

6 4•

5 8•

5 pK

2, pl

C;

c 00

2 M

E3b

g B

60

F67

626

25

pK2,

pK

; I

01 t

o FO

(E

t4N

C1)

;ext

rapo

late

d to

1= 0

; pK

i es

timat

ed as

O6

E3b

g C

IOa

111.

(A

quo)

Lan

than

um(1

II) io

n, L

a3

'-.40

25

pK

for

hyd

roly

sis

of L

a3;

from

hyd

roly

sis

of "

pure

" sa

lt;

= 00

01—

001

M L

a2(S

O)3

E

3ag

M38

906

25

pK5 f

or h

ydro

lysi

s of

La3

; titr

atio

n of

0004

—00

09 M

La(

C10

4)a

E3b

F3

3a

898

10•1

56

3.3

25

25

20

25

with

002

ss B

a(O

H)2

; J =

Q.3

(Na0

104)

di

tto, u

sing

002

M N

aOH

pK

for

hyd

roly

sis

of L

a3;

.1 =

3(Li

C1O

4);

c O

i—F0

M

La(

C10

4)s;

als

o —

logK

= 9

95 fo

r 2L

a3 +

H20

L

a2O

H5

+ H

; oth

er s

peci

es i

nclu

de L

as(O

H)9

6 and

La6

(OL

i)jo

5 pK

b; c

= 00

l s La

CI3

pK

b; e

stim

ated

from

solu

bilit

y m

easu

rem

ents

of I.

M. K

oith

off

and

R. E

lmqu

ist,

.1. A

m. G

/zem

. Soc

., 53

, 121

7 (1

931)

E3b

g

E3b

g

B43

W17

D

8

-.5

18

pKa

DIS

TR

IB

V6

112.

(A

quo)

Lea

d(II

) ion

, Pb2

7•

78

18

pKfo

rhyd

roly

siso

fPb2

;for

I = 0;

c =

0005

—04

M (P

bNO

3)2;

al

so

log

K =

— 7

30 f

or 2

Pb2

+ 11

20

Pb2O

H3

+ H

, an

d lo

g K

= —

209

3 fo

r 4P

b2 +

4H

20

Pb4(

OH

)44

4W

E3b

g PI

G

866

793

8'84

71

101

1 15

20

25

25

25

pK fo

r hyd

roly

sis

of P

b2; P

b4(O

H)4

4 is

als

o for

med

pK

for h

ydro

lysi

s of

Pb2;

I = 2(

NaC

1O4)

; als

o log

K =

—19

35

for 4

Pb2 +

4H

20

Pb4(

OH

)44

+ 4W

pK

for h

ydro

lysi

s of

Pb2

; I =

2(aN

0s);

also

log

K =

— 7

11

for

2Pb2

+ 11

20

Pb2O

H3 +

H;

logK

= —

2F

72

for

4Pb2

+ 41

120

Pb4(

OH

)44

+ 4

W

pK va

lues

for

step

wis

e hyd

roly

sis o

f Pb2

to P

bOH

, (P

bOH

)2

and

(Pb(

OH

); I

= 1 (

KN

O3)

E3b

g F4

H

76

E3a

g 11

77

POL

AR

OG

G

38

25

pK v

alue

s fo

r st

epw

ise

hydr

olys

is o

f Pb2

; I

0-3(

NaC

IO4)

; Pb

-Hg

elec

trod

e 25

I =

3(N

aC1O

4)

25

pK fo

r PbO

H

Pb +

0H

100

pK fo

r hyd

roly

sis

of P

b2

At h

igh

lead

con

cent

ratio

ns, P

b2+

als

o hy

drol

yses

to P

b2O

H3

and

Pb4(

OH

)44+

(co

nsta

nts a

re gi

ven)

A

t 25°

and I =

2(N

aCIO

4), l

og K

= 1

2-62

for

Pb2

+ 30

H

Pb(O

H)3

- A

t 25°

andl

= 0,

logK

= 13

-90 fo

r Pb2

+ +

3OH

Pb(O

H)3

At 2

5° an

d I

0, lo

g K =

13.9

5 for

Pb2+

+ 3O

H—

a Pb(

0H3—

A

t 20°

, lo

g K =

124

5 fo

r Pb2

± 3

0H

Pb(O

H)3

Oth

er m

easu

rem

ents

: C36

, G

49, G

51,

T14

, W26

78

9-4

10-8

7.9

9-6

11-5

7-

8 5.

99

:Nam

e, Fo

rmul

a an

d pK

valu

e T

(°C

) R

emar

ks

Met

/sod

s R

efer

ence

Nos. 113—118

C6

Lith

ium

ion,

Li

SOL

Y

G7

KIN

K

69

08,P

4

POL

AR

OG

011

POL

AR

OG

N27

PO

LA

RO

G V

9 PO

LA

RO

G H

52

• 11

3. (

Aqu

o)

0-26

0-20

0-

18

0-20

0-

19

—0-

08

—0-

53

0-32

0-18

0-36

0-13

0-

89

1-13

1-

51

Elc

h G

26

5 pK

b; 1

0-

02 t

o 01

; f ± c

alcu

late

d us

ing

Dav

ies'

eq

uatio

n;

e.m

.f. d

ata f

rom

H. S

. Har

ned

and

H. R

. Cop

son,

J. A

m.

Che

m.

Soc.

, 55,

220

6 (1

933)

, an

d H

. S.

Har

ned

and

J. G. D

onel

son,

J.

Am

. Ciz

em.

Soc.

, 59,

128

0 (1

937)

15

25

35

45

25

pK

b;f +

from

Dav

ies'

equ

atio

n 25

pK

a 25

pK

a 25

pK

b; c

once

ntra

tion

cons

tant

; I

3(N

aC1O

4); ta

king

f 0H

=

id

- pK

b; c

once

ntra

tion

cons

tant

; fr

om s

alt

effe

ct

on i

ndic

ator

; 1=

1(L

iC1)

I =

0-2(

LiC

l) 49

pK

b;fo

rl=

O

93

138

C2,

Rlb

C

2,R

Id

C2,

Rle

E

2ah

D3

S65

02

03

K38

C2

W29

l•42

18

2 1•

59

227

176

271

For

alka

linity

func

tion

of L

1OH

solu

tions

, see

L12

a, M

40,

S73

114.

(Aqu

o) L

utec

iuin

(III

) ion

, L

u3

6•6

790

798

20

25

25

pKb

for L

uOH

2 L

u3 +

OH

-; c

00

1 M

LuC

ia

pKa f

or hy

drol

ysis

of L

u3; ti

trat

ion o

f000

4—00

09 M

Lu(

C10

4)3

with

002

M B

a(O

H)2

; I =

03(N

aCIO

4)

ditto

, usi

ng 0

02 M

NaO

H

E3b

g E

3b

W17

F3

3a

115.

(Aqu

o) M

agne

sium

ion,

Mg2

2•

58

2•l

25

18

pKb;

for I

= 0;

c =

003

s M

gC12

pK

b E

3bg

SOL

Y

S74

G28

260

24

25

18

pKb;

I = 0

pKb;

con

cent

ratio

n co

nsta

nt;

c 01

—05

N M

gCI2

; sal

t ef

fect

on

indi

cato

r

E3b

g 03

H

71

K39

12.2

12

•8

25

30

pK fo

r hyd

roly

sis

of M

g2; I

= 3(

NaC

l, M

gCI2

) pK

for h

ydro

lysi

s of

Mg2

, I =

01 (K

C1)

; c 00

1 M

E

3bg,

h

E3b

g L

22

C12

976

100

pK fo

r hy

drol

ysis

of M

g2+

; ta

king

pK

w =

123

8; c

= 0

06 M

MgC

12;

rate

of i

nver

sion

of su

cros

e K

IN

K69

116.

(Aqu

o) M

anga

nese

(II)

ion,

Mn2

10

•93

1076

15

20

pK

for

hydr

olys

is o

f Mn2

; I =

0002

to 0

04; e

xtra

pola

ted

to

I = 0

by fi

tting

ext

ende

d D

ebye

-Huc

kei e

quat

ion

E3b

g P2

0

10•5

9 25

10

38

30

10•1

9 36

10

•10

42

106

9.54

30

10

0 pK

for h

ydro

lysi

s of

Mn2

; I =

01(K

C1)

pK

for

hydr

olys

is o

f Mn2

E

Sbg

KIN

C

12

K69

117.

(Aqu

o) M

anga

nese

(III

) ion

, M

n3

006

r——

02

—O

•7

25

23

23

pK fo

r hyd

roly

sis

of M

n3; I

= 4(M

n(C

104)

2,H

C1O

4)

I = 5

3 to

61

(Mn(

C10

4)2,

HC

IO4)

I =

6(H

C1O

4,

NaC

1O4)

06

06

06

W13

Fl

D

34

118.

Man

gani

c aci

d, H

2MnO

4 10

15

35

pK2;

I 01

K

IN

L37

-

Nos

. 11

9—12

7

Nam

e, F

orm

ula a

nd p

K va

lue

T(°

C)

Rem

arks

M

etho

ds

Ref

eren

ce

119.

(A

quo)

Mer

cury

(I) i

on, H

ga2+

50

4-6

25

pK f

or h

ydro

lysi

s of

Hgs

2; I =

05(N

aC1O

4);

mea

sure

men

ts

incl

uded

Hg

elec

trod

e; a

llow

ed fo

r equ

ilibr

ium

, Hg

+ H

g2

Hg2

2+; e

arlie

r rep

orte

d va

lues

are t

oo lo

w b

ecau

se o

f the

hydr

o-

lysi

s of

Hg2+

al

so p

rese

nt

c =

0-00

6 M

, as

per

chlo

rate

E3b

g F2

3

E3a

g N

17

120.

(A

quo)

Mer

cury

(II)

ion,

Hg2

+

3-49

2-

47

25

Succ

essi

vepK

valu

esfo

r the h

ydro

lysi

s of

Hg2

; 1=

3(C

a(C

l04)

2,

Mg(

C10

4)2)

E

3bg

A12

3-55

2-

68

25

I = 3(

NaC

1O4)

C

onst

ants

are

al

so

give

n fo

r H

g2O

HS+

, H

g2(O

H)2

2+

and

Hg4

(OH

)35+

3-

70

2-65

3-

23

2-93

25

25

I =

0-5(

NaC

1O4)

I

3(N

aC1O

4)

E3b

g 11

54

SOL

Y

D48

2-

49

2-85

25

SO

LY

G

6 6-

72

13

— l

og K

for

Hg2

H

g(O

H)2

+ 2

H; I

= 0

l(NaN

O3)

E

3bg

A21

6-

52

20

6-26

30

6-

00

40

6-22

20

I =

0, b

y ex

trap

olat

ion

agai

nst 1

6-

26

25

Rat

io of

succ

essi

ve c

onst

ants

for h

ydro

lysi

s of H

g2+

is ab

out 0

-04

— lo

g K

for H

g2

Hg(

OH

)2 +

2H

SO

LY

G

4 14

-85

14-7

7 21

-4

25

25

30

pKfo

rHg(

OH

)2 +

H20

H

g(O

H)s

+ H

pK

for H

g(O

H)2

+ H

20

Hg(

OH

)3 +

U

log

K fo

r Hg2

+ 20

H

Hg(

OH

)2 I =

2(N

aNO

3)

Oth

er m

easu

rem

ents

: B56

, D

2, G

38,

G49

, K33

SOL

Y

F40

POL

AR

OG

N

18

121.

Mol

ybdi

c aci

d, H

2M00

4 Se

e al

so H

epta

mol

ybdi

c aci

d, T

etra

mol

ybdi

c ac

id

Aci

difi

catio

n of m

olyb

date

solu

tions

give

s pol

ymer

ic sp

ecie

s, of

w

hich

Mo7

0246

is

bel

ieve

d to

be th

e si

mpl

est t

o be

form

ed in

ap

prec

iabl

e am

ount

s. S

ee A

43, G

30

4-08

25

C

once

ntra

tion c

onst

ant;

I = 3(

NaC

IO4)

; fo

rmat

ion

of M

o7O

246 i

s im

port

ant e

ven

dow

n to

c =

6 x

10 M

Elc

g,h

S8

—.3

6 3-

89

25

1 =

3(N

aClO

4);

mor

e re

fine

d va

lues

from

dat

a gi

ven

in S

8 E

lcg,

h S9

4-00

4-

21

3-52

4-

84

3.57

4-

75

115

3-75

0-

9

03

0-8

20

22

22

21

25

22

22

1 =

0002

3; c

= 10

—i M

mol

ybda

te

I = 0-

1; fr

om e

lect

rom

igra

tion i

n N

aNO

3 so

lutio

ns

I = 0

1; fr

om e

lect

rom

igra

tion

in N

aCIO

4 sol

utio

ns

1=0-

465

pK fo

r pro

ton

addi

tion;

I 05

(NaG

IO4,

HC

1O4)

c =

l0 M

mol

ybda

te

pK fo

r pro

ton

addi

tion,

fro

m e

lect

rom

igra

tion i

n N

aNO

3 so

lu-

tions

pK

for p

roto

n ad

ditio

n, N

aClO

4 sol

utio

ns

Oth

er m

easu

rem

ents

: N23

, S59

05

05

06

R24

C

22

Y9

R25

C22

122.

Mon

obro

mam

ine,

NH

2Br

6-39

1=

0 05

J7

123.

Mon

ochi

oram

ine,

NH

2C1

15

25

pKb;

est

imat

e ba

sed

on pK

-low

erin

g by

chlo

rine

subs

titut

ion

in

dial

kyla

min

es

W10

124.

(A

quo)

Neo

dym

ium

(III

) ion

, N

d 8-

5 9 8-43

25

25

25

pK fo

r hyd

roly

sis

of N

d8 to

NdO

H2;

I =

3(N

aC1O

4)

pK fo

r hyd

roly

sis

of N

d3; h

ydro

lysi

s of

"pur

e" sa

lts;

C =

0001

— 0

-01

M N

d2 (S

O4)

3 pK

a for

hyd

roly

sis of

Nd3

; titr

atio

n of

0-00

4--0

-009

M N

d(C

l04)

3 w

ith 0

-02

M B

a(O

H)s

; I =

0-3(

NaC

1O4)

E3b

, qui

n E

3ag

E3b

T10

M

38

F33a

125.

(A

quo)

Nep

tuni

um(I

V) i

on, N

p4

2-30

2-

49

25

25

pK fo

r hyd

roly

sis

of N

p4; I

= 2(

NaC

1O4)

I =

2(N

aCIO

4);

D20

solu

tion

At l

ow a

cidi

ties,

pol

ymer

izat

ion b

ecom

es i

mpo

rtan

t

05

S76

126.

(A

quo)

Nep

tuni

um(V

) ion

, Np5

8-

9 pK

for N

p02

+ H

20

NpO

2OH

+ H

K

57

127.

(A

quo)

Nic

kel(

II) i

on, N

i2+

10

-22

10-0

5 9-

86

9-75

15

20

25

30

pK fo

r hyd

roly

sis

of N

i2+

; I =

0-00

16 to

0-0

43;

extr

apol

ated

to

I = 0

by fi

tting

to e

xten

ded

Deb

ye-H

ucke

l equ

atio

n E

3bg

P22

Nos

. 11

8—13

2

14.6

129.

Nitr

amid

e, N

o2N

H2

6•48

65

9 6•

5

Bas

ed o

n pK

= 71

7 fo

r o-n

itrop

heno

l Fo

r I =

0; c

= 00

02—

003

M

T13

B

92

Nam

e, F

orm

ula

and

pK va

lue

T(°

C)

Rem

arks

M

etho

ds

Ref

eren

ce

9•58

36

94

3 42

89

4 25

pK

for h

ydro

lysi

s of

Ni2

; I =

0007

to 0

55, e

xtra

pola

ted

to

1=0

E3b

g C

43

9•23

—9•

49

25

pK fo

r hyd

roly

sis

of N

i2,

as n

itrat

e, s

ulph

ate,

chl

orid

e an

d pe

rchl

orat

e E

3bg

K65

9•4

30

1 0.

1 (K

C1)

E

3bg

C12

86

0 10

0 A

t 25

°, I

= 3(

NaC

lO4)

, an

d c =

01—

08 M

th

e m

ain

hydr

olys

ed sp

ecie

s is

Ni4

(OH

)44

Oth

er m

easu

rem

ents

: AG

, D

23,

G12

, S25

KIN

K

69

B10

9

128.

Nio

bic a

cid,

H8N

b6O

19

1088

13

8 25

pl

C7,

pK

s; 1

= 3

(KC

I); c

= 00

5—01

4M in

nio

bate

E

3bh

N15

74

18

—20

ac

idic

pK

ba

sic p

K

BI

25

15

02

Cl

05

130.

Nitr

ic a

cid,

HN

O3

—12

7 25

M

olal

sca

le;

from

vap

our p

ress

ure a

nd ac

tivity

coe

ffic

ient

dat

a V

AP

DiG

fo

r 2—

14 M

HN

O3

—1•

19

25

Mol

ar sc

ale

—16

5 0

RA

MA

N

K61

1•37

25

1•24

50

1•68

0

NM

R

H69

1•44

25

1•18

70

1•32

26

±2

RA

MA

N

R13

1•53

25

M

olal

ca1

e; fr

om v

apou

r pre

ssur

e and

isop

iest

ic m

easu

rem

ents

; V

AP

112

—F3

1 50

2—

28 m

ol. k

g.—

' —

1•16

75

—1-

0 to

—1-

3 —

1-6

0 25

Fr

om v

apou

r pre

ssur

e ari

d ac

tivity

coe

ffic

ient

dat

a Fr

om

diel

ectr

ic c

onst

ant;

extr

apol

atin

g fr

om n

on-a

queo

us

VA

P K

2 W

34

solu

tions

1-44

2.09

25

25

A

ssum

ing

spec

ies

form

ed is

HN

O3.

3H20

C

alcu

late

d pK

for a

1:1

HN

O3 :

H20

spe

cies

R

AM

AN

an

d N

MR

H62

—3-

78

25

Cal

cula

ted p

K fo

r unh

ydra

ted

nitr

ic a

cid

Oth

er m

easu

rem

ents

: H68

, K

52, M

7, N

23a,

P23

, R12

, W

33

Ref

. H49

a giv

es an

equa

tion

fitti

ng lit

erat

ure v

alue

s of p

K fr

om

00 t

o 30

00

For

Ham

met

t aci

dity

func

tion

of H

NO

3, se

e B

12,

D19

, D21

(in

pr

esen

ce of

LiN

O3

and

NaN

O3)

, L13

(in

pre

senc

e of

NaC

1O4)

, an

d P1

1.

For

(Jo)

aci

dity

fun

ctio

n of

HN

O3,

see

D27

Fo

r HR

* ac

idity

fun

ctio

n of

HN

O3,

see

Y4.

131.

Nitr

ous

acid

, H

NO

2 3-

230

3-20

3 15

20

Fo

r I =

0; e

xtra

pola

ted

from

resu

lts in

001

M N

aNO

2, 0

-03M

N

aNO

3, an

d 0-

21 M

NaC

1O4

E3b

g L

47

3-11

3 35

3.

49

0 1 =

0-00

1 01

K

27

3.34

12

5 3-

22

30

3-46

0

I = 0-

002;

usi

ng fl

owin

g so

lutio

ns

01

S15

3-29

25

3-

15

50

3-14

8 3-

15

25

20

1 =

0-04

to

2-0

(NaC

1O4)

; ex

trap

olat

ed to

I = 0

"P

ract

ical

" con

stan

t; I =

0012

E

3bg

E3b

g L4

8 B

83

3.26

25

Fo

r I =

0; fr

om I

= 0-

17,

assu

min

g y÷

= 0-

773

KIN

L

27

3-29

2-

80

—8-

1

25

25

25

"Pra

ctic

al"

cons

tant

; I = 0

.07(

NaC

IO4)

I =

l(NaC

1O4)

pK

for n

itros

oniu

m i

on (

NO

+) f

orm

atio

n fro

m H

NO

2, u

sing

H

func

tion

for H

C1O

4 so

lutio

ns

05

06

V4

D28

—7-

86

20

pK fo

r nitr

oson

ium

ion

(NO

) for

mat

ion

from

HN

O2,

usi

ng C

0 fu

nctio

n fo

r H2S

04 so

lutio

ns

Oth

er m

easu

rem

ents

: A33

, B22

, B

59,

D33

, L26

, Ri!

, S23

06

S37

132.

Oct

amin

otet

raph

osph

azen

e, N

4P4(

NH

2)8

5-22

7-

55

25

1=0

E

FlO

5-

IS

7-50

25

1=

0 E

Fl

i

Nos

. 13

3—14

4

Nam

e, F

orm

ula

and

pK va

lue

T(°

C)

Rem

arks

M

etho

ds

Ref

eren

ce

133.

Ort

hoph

osph

oiic

aci

d, se

e Ph

osph

oric

aci

d

134.

Osm

ic a

cid,

H20

s05

12-0

14

-5

25

App

aren

t pK

val

ues;

1

1; t

he n

eutr

al

spec

ies

is m

ainl

y os

miu

m te

trox

ide

07

SIl

120

<15

25

D

IST

RIB

40

12-1

25

25

E

stim

ated

true

pK

of o

smic

aci

d D

istr

ibut

ion b

etw

een

CC

14 a

nd w

ater

D

IST

RIB

Y

12

135.

Osm

ium

tetr

oxid

e, se

e O

smic

aci

d

136.

oc-

Oxy

hypo

nitr

ous

acid

, H2N

203

2-51

9-

70

1 Fo

r I =

0; f

rom

I = 0

02 to

1-0

E

3bg

S75

137.

(A

quo)

PaJ

iadi

um(I

I) io

n, P

d 13

-0

12-8

12

-4

14-1

25

25

St

epw

ise p

Kb

valu

es fo

r Pd

2 E

3bg

06

124

138.

Par

amol

ybdi

c ac

id, s

ee H

epta

mol

ybdi

c ac

id

139.

Per

bori

c ac

id

7-91

25

A

ppar

ent p

K fo

r H3B

O3

+ H

202

H +

(HsB

Os.

HsO

s);

I = 0

; fro

m r

esul

ts i

n 01

M K

C1

E3c

g A

24

7-71

25

A

ppar

ent p

K fo

r H3B

03 +

2H

202

H +

(HQ

BO

S.2H

202)

; 1=

0 <

8 0

c =

0-02

—00

7 M

bor

ate

DIS

TR

IB

M25

7-

77

18

140.

Per

chio

ric

acid

, HC

IO4

From

R

aman

spe

ctro

scop

y,

the

diss

ocia

tion

cons

tant

is gr

eate

r th

an 3

8 Pe

rchi

oric

aci

d is

com

plet

ely d

isso

ciat

ed u

p to

6—S

M

From

Ram

an s

pect

rosc

opy,

pe

rchi

oric

aci

d is

com

plet

ely

dis-

so

ciat

ed u

p to

10

M

1i49

A16

C

35

—2•

4 to

—31

25

V

AP

K2

—21

2 25

A

ssum

ing

spec

ies

is H

C1O

4.7H

20

RA

MA

N,

H62

N

MR

48

25

Ass

umin

g spe

cim

is H

C1O

43H

2O

—16

1 10

M

olal

sca

le;

vapo

ur p

ress

ure

and

isop

iest

ic

mea

sure

men

ts;

VA

P 11

2

—F5

4 01

—14

mol

kg1

1•47

40

170

0 N

MR

11

69

—1•

58

25

—l•

42

70

—7

The

oret

ical

pred

ictio

n (R

icci

's m

etho

d)

G24

8 T

heor

etic

al pr

edic

tion

(Pau

ling'

s met

hod)

7.3

The

oret

ical

pred

ictio

n K

52

—86

T

heor

etic

al pr

edic

tion

S29

—14

pK

of H

2C1O

4+; t

heor

etic

al p

redi

ctio

n O

ther

mea

sure

men

ts: H

68, W

33

For

Ham

met

t ac

idity

fun

ctio

n of

HC

IO4,

see

B66

, D

21

(in

pres

ence

of L

iC1O

4 an

d N

aClO

4)

H20

, H22

, P1

1, P

17,

Y8.

Fo

r H

R(J

o) a

cidi

ty f

unct

ion

of H

C1O

4 se

e D

27

For H

* ac

idity

func

tion

of 11

0104

see

Y4

For

H_

acid

ity f

unct

ion

of H

C1O

4 se

e B

69

For H

acid

ity f

unct

ion

of H

C1O

4 se

e H

60

141.

Per

chio

ryl a

mid

e, H

2NC

1O3

3.7

86

Titr

atio

n of

0015

M d

ipot

assi

um sa

lt w

ith 0

4 N

min

eral

aci

ds

E3b

g M

10

142.

Per

chro

mic

aci

d, H

2CrO

5 43

0 22

49

5 22

A

lso

K =

1•4

for H

2CrO

4 +

H20

2 H

2CrO

S +

H20

A

lso

K =

073

for H

2CrO

4 +

H20

2 H

2CrO

S +

1120

E

3ag

05

F20

143.

Per

hydr

oxyl

radi

cal,

see

Hyd

rope

roxy

radi

cal

144.

Per

iodi

c ac

id, H

5106

16

4 83

6 14

98

25

155

827

25

2•23

80

1 10

2•

21

8O1

20

2•20

8•

02

30

c =

10'

M pe

riod

ate

I = 00

06 to

001

; c =

000

5—00

08 M

per

ioda

te;

Deb

ye-H

Uck

el

equa

tion

for e

xtra

pola

tion

I = 0.

2 to

13

(NaN

O3)

; ext

rapo

late

d ag

ains

t I

05

E3b

g

E,q

uin

C38

N

8

121

Nos

. 14

5—15

6

Nam

e, F

orm

ula a

nd p

K v

alue

T

(°C

) R

emar

ks

Met

hods

R

efer

ence

221

804

40

222

807

50

834

0 8•

33

25

c =

0002

—00

5 M p

erio

date

; ta

king

K =

2400

for d

imer

izat

ion c

onst

ant o

f per

ioda

te d

iani

on

E3b

B

107

843

45

125

16

——

08

—10

Titr

atio

n of 0

2 M

K2H

3102

pK

for H

5106

+ H

I(

OH

)6+

va

lue

pred

icte

d by

Ric

ci's

met

hod

Tru

e pK

valu

es o

f H51

06 h

ave

been

cal

cula

ted

from

exp

eri-

m

enta

l res

ults

by

assu

min

g K

= 40

for H

4IO

2H

20 +

IOC

O

ther

mea

sure

men

ts: C

37, L

ii, R

36

For

Ho

acid

ity fu

nctio

n of

aque

ous p

erio

dic

acid

see

D18

E3b

g 06

S6

1 M

32

C37

145.

Per

man

gani

c ac

id,

HM

nO4

—22

5 25

T

n H

CIO

4 so

lutio

ns

06

B5

146.

Per

oxyd

ideu

teri

omon

osui

phur

ic ac

id, D

2S05

10

40

19

InD

2O

K72

147.

Per

oxyd

ipho

spho

ric a

cid,

H4P

203

518

767

25

I = 0

01

to

1;

extr

apol

ated

ag

ains

t $,

NM

e4

salt

titra

ted

with

HC

1 E

3bg

C39

—03

0.

5 es

timat

es,

by a

nalo

gy w

ith s

imila

r aci

ds

148.

Per

oxym

onop

hosp

hori

c aci

d, H

3P05

ii

5•5

128

25

13

—.4

•85

25

"Pra

ctic

al"

cons

tant

s; I

(f

or K

i) 0

14

(for

K

2),

-..0

•15

(for

K3)

I

15

05

KIN

B21

F24

12•5

35

8 K

IN

K53

149.

Per

oym

onos

u1pb

uric

aci

d, H

2S05

10

25

A

NA

LY

T M

41

0•7

75

9•3

25

9•4

25

I 02

1>

1;

poor

end

poin

t; de

com

posi

tion

E3b

g E

3bg

G36

B

9

150.

Per

oxyn

itrou

s ac

id,

H0.

ON

O

<6

155.

Pho

spho

rain

idic

aci

d, se

e A

mid

opho

spho

ric a

cid

156.

Pho

spho

ric

acid

, H3P

04

2056

20

73

2•08

8 2•

107

2127

2•

148

2171

21

96

2224

22

51

2277

23

08

2338

Y2

23

151.

Per

rhen

ic a

cid,

HR

CO

4 —

1•25

25

In

HC

1O4

solu

tions

06

B

5

152.

Per

tech

netic

aci

d, H

TcO

4 03

15

254

Pred

icte

d fr

om p

K v

alue

s of

HR

eO4(

(—_2

.25)

1.

25)

and

HM

nO4

R39

C

26

153.

Per

xeni

c ac

id, H

4XeO

6

105

24

Est

imat

e c =

0003

M

E3b

g 05

A30

154.

Pho

sphi

ne, P

H3

29

28

27

pK f

or P

H3

± H

20

PHs

pK1

for P

H4

+ O

H- P

H3+

+ H

30;

isot

ope

H20

ex

chan

ge

KIN

W

16

0 1

= 0

01 t

o 03

1; e

xtra

pola

ted

to I =

0 5 10

15

20

25

30

35

40

45

50

55

60

pKi =

7993

1f T

— 4

5535

+ 0

0134

86T

(Tin

°K

) T

herm

odyn

amic

valu

es a

re d

eriv

ed fr

om th

e re

sults

Fo

r I =

0 21

20

7227

12

465

18

2161

72

07

1232

5 25

Elc

h B

14

E3a

h B

57

Nos

. 15

6—16

0

Nam

e, F

orm

ula a

nd p

K v

alue

T

(°C

) -

Rem

arks

M

etho

ds

Ref

eren

ce

7165

12

180

37

2•23

2 2•

048

2076

21

24

2•18

5 2•

260

2•17

2 2l

26

2•12

8 19

83

2•12

21

5 20

1 18

8 —

1•

77

c 1•

58

C

0•3

I = 0

01

to 0

10;

extr

apol

ated

usi

ng D

ebye

-Huc

kel e

quat

ion

Elc

h N

22

125

25

37.5

50

25

H

50

25

ForI

=0

Cl

M17

25

C

M

2 72

07

20

25

25

For I =

0 Fo

r I =

0 c =

0005

8 M

; 1

atm

osph

ere

500

atm

osph

ere

1000

atm

osph

ere

1500

atm

osph

ere

2000

atm

osph

ere

E3a

h S3

1 C

AL

OR

IMI1

3 C

l E

12

7•31

31

0 I =

002

to

045;

ext

rapo

late

d us

ing

Deb

ye-H

ücke

l equ

atio

n;

Ela

B

15,

B16

72

817

5 c =

0003

—00

9 M (

NaH

2PO

4 or

KH

2PO

4),

7253

7 10

00

03—

006

M(N

a2H

PO4)

; 7•

2312

72

130

15

20

0003

—00

9 M

(NaC

1)

7•19

76

25

7'18

91

30

7185

0 35

71

809

40

7•18

09

45

7l83

1 50

71

870

55

7194

4 60

B

etw

een

00 an

d 50

°,

pl(s

= 20

730/

T—

5988

4 +

0020

912T

(T

in °

K)

The

rmod

ynam

ic va

lues

are

deri

ved

from

the

resu

lts

7•21

78

20

1=00

13 to

O16

6, ex

trap

olat

ed to

l=0;

E

ta

N21

72

058

25

c =

003

and

006

M N

a2H

PO4,

7•

1973

30

00

4 an

d 00

6 M

NaH

2PO

4, 00

3 an

d 00

6 M

NaC

1

7•19

18

35

7189

0 40

71

888

45

7191

2 50

7•

2797

5

1 =

002

4 to

0108

; ext

rapo

late

d to

I =

0;

Ela

G

45

7•25

25

10

c 00

06—

0026

M K

H2P

O4,

72

305

15

0003

—00

13 M

KN

aHPO

4, 0

010—

0043

M N

aC1

7212

9 20

72

004

25

7l90

2 30

71

828

35

7•17

83

40

7175

8 45

71

764

50

pK2

1775

812/

T—

3976

2 +

0017

5089

T (

Tin

°K)

The

rmod

ynam

ic va

lues

are

deri

ved

from

the

resu

lts

7198

8 25

I =

003

to 0

25; e

xtra

pola

ted

to I =

0

Ela

E

19

7189

l 30

7•

1814

35

7•

1777

40

7•

1776

45

7•

1796

50

7•

1859

55

71

918

60

Res

ults

are

also

give

n for

10%

and

20%

met

hano

l-w

ater

solu

tions

T

herm

odyn

amic

valu

es ar

e de

rive

d fr

om th

e re

sults

72

1 60

E

,g

C44

72

4 70

7•

24

80

7•24

90

12

375

25

1 =

001

to 0

51;

extr

apol

ated

to

I = 0;

tak

ing

pK =

1032

9 03

V

2 fo

r HC

03

For

valu

es o

f pK

i in

H20

fD20

mix

ture

s, se

e S3

Fo

r va

lues

of p

K2

in H

20/D

20 m

ixtu

res,

see

R38

O

n th

e ass

umpt

ion t

hat s

ome H

3P04

dim

eriz

es to

H6P

204

in st

rong

E

17

solu

tions

, a p

Ki

valu

e of

052

is

deri

ved

for

the

latte

r fr

om

cond

ucta

nce m

easu

rem

ents

Nos

. 15

7—16

5

Nam

e, F

orm

ula a

nd p

K v

alue

T

(°C

) R

emar

ks

Met

hods

R

efer

ence

Oth

er m

easu

rem

ents

:A1,

B58

, B

82,

B88

, B

98,

BlO

l, G

20, C

27,

Dl,

D38

, ES,

F27

, G

i, G

44, G

46, H

il, 11

2, J2

0,J2

1, K

41, K

48,

K68

, L

8, L

45,

L46

, M8,

M9a

, M

27,

M28

, M

48,

P38,

P4

0,

R38

, S32

, S3

9, S

43,

S49,

T6,

W12

Fo

r Ham

met

t aci

dity

func

tion o

f H3P

04, s

ee D

37, G

17 a

nd G

18

(tem

pera

ture

rang

e), H

48,

L13

(in

the

pre

senc

e of

NaG

1O4)

, P1

1 Fo

r Ho'

, Ho"

, HR

and

Hit'

acid

ity f

unct

ions

of H

3P04

, see

A36

157.

Pho

spho

ric

tria

mid

e, P

O(N

H2)

3 <

36

25

c =

Ohs

E

Fl

O

158.

Pho

spho

rous

aci

d, H

3P03

19

4 67

3 c

001—

004M

; ex

trap

olat

ed to

I =

0 T

2 —

48

670

120

670

>14

18

20

Fo

r I =

0 Fo

r I =

0; m

easu

rem

ents

at th

ree

conc

entr

atio

ns w

ere

assu

med

to

fit

a cu

rve,

pK

= pK

o +

aP

E,q

uin

E3a

h K

41

F30

—50

20

c =

hi H

3P03

in H

2S04

; phe

nolp

htha

lein

cat

ion

as in

dica

tor

Oth

er m

easu

rem

ents

: B58

, G

44, M

48,

N26

Fo

r Ham

met

t aci

dity

func

tion o

f H3P

O3,

see

B12

06

159.

(A

quo)

Plu

toni

um(I

II) i

on, P

u3

7•22

25

pK

for h

ydro

lysi

s of

Pu3

; I =

007

(H

C1O

4)

E3b

g K

58

7.37

25

1 =

002

(H

G!)

160.

(A

quo)

Plu

toni

uni(

IV) i

on, P

u4

1•77

0

pK fo

r hyd

roly

sis

of P

u4; I

= 2(

NaC

1O4)

R

3 15

1 12

.5

127

25

141

15

pK fo

r hyd

roly

sis

of Pu

4+; I =

2(L

iC1O

4, H

C1O

4)

RE

DO

X

R2

126

25

106

344

151

160

25

25

I = I (

NaC

!04)

1

= 05

(NaC

IO4)

R

ED

OX

06

R

6 K

58

070

25

ForI

=0

- 19

17

3 19

4 16

10

5

154

25

25

25

25

I=2(

NaC

1O4)

In D

20,

I = 2(

NaC

1O4)

I =

1.1

(NaC

1)

In D

s0; I

= I (

NaC

lO4)

06

06

KIN

R5

H58

R

4

161.

(Aqu

o) P

luto

nium

(V) i

on, Pu

02

9•6

9•7

25

pK fo

r hyd

roly

sis

of P

uO2;

I =

0003

(H

G!)

I

0003

(HC

IO4)

E

3b

K55

162.

(A

quo)

Plu

tony

l ion

, Pu0

22

3.39

52

5 9-

52

333

405

571

571

9-7

53

20

25

Succ

essi

ve p

Kva

lues

for h

ydro

lysi

s of P

u022

; (Pu

O2)

2(0H

)3

and

(PuO

2)2(

0H);

are

als

o fo

rmed

pK

val

ues f

or h

ydro

lysi

s of P

uO22

in d

ilute

HN

O3

pK v

alue

s fo

r hy

drol

ysis

of

Pu0

22,

igno

ring

pol

ynuc

lear

co

mpl

exes

SOL

Y

E3a

g E

,g

M49

K62

K

54

01

163.

Pol

ypho

spho

ric

acid

, H62

P600

181.

See

als

o Hex

adec

a-, H

exa-

, Tn-

and T

etra

-pol

ypho

spho

ric a

cids

72

2 81

7 25

C

once

ntra

tion c

onst

ants

; I =

1 (N

Me4

Br)

;f as

sum

ed sa

me a

s E

3bg

112

for H

Br

728

803

37

Con

cent

ratio

n con

stan

ts, a

s ab

ove

7-28

80

3 50

164.

(A

quo)

Pot

assi

um io

n, K

20 to

—2-

S 25

pK

b Fo

r pK

val

ues

of K

OH

in s

uper

heat

ed s

team

bet

wee

n 40

0 an

d 70

00, w

ith d

ensi

ties f

rom

0-3

to 0

8 g/

cm3,

see

F26

Fo

r H

— a

cidi

ty f

unct

ion

of K

OH

see

S34,

Yl

VA

P K

2

165.

(A

quo)

Pra

seod

ymiu

m(I

II) i

on, P

r3

85

855

25

pK fo

r hyd

roly

sis

of P

r3 to

Pr0

H2;

1 =

3(N

aC1O

4)

25

pKa f

or hy

drol

ysis

of P

r3; t

itrat

ion o

f 0-0

04—

0-00

9 M P

r(C

104)

3 w

ith O

02M

Ba(

OH

)2; I

= 0-

3 (N

aC1O

4)

25

pK fo

r hyd

roly

sis

of Pr

3+; h

ydro

lysi

s of

"pur

e" sa

lts; c

= 00

01—

00

25M

Pr2

(S04

)s

E3b

,qui

n T

10

E3b

F3

3a

E3a

g M

38

E3b

g Il

l

Nos

. 1G

3—16

9

Nam

e, F

orm

ula a

nd p

K va

lue

T(°

C)

Rem

arks

M

etho

ds

Ref

eren

ce

166.

(Aqu

o) P

roto

actin

ium

(IV

) ion

, Pa4

0.

14

038

I 25

Suc

cess

ive pK

valu

es fo

r hyd

roly

sis

to P

aOH

3, P

a(O

H)s

2 an

d Pa

(OH

)s+

; I =

3(H

C1O

4, L

iCIO

4)

DIS

TR

IB G

48

167.

(A

quo)

Pro

toac

tiniu

m(V

) ion

, Pa5

10

5 25

pK

for P

a(O

H)3

2+ +

H20

Pa

(OH

)4 +

H; I

3(

LiC

1O4

HC

1O4)

D

IST

RIB

G47

168.

Pyr

opho

spho

ric a

cid,

H4P

207

2•28

67

0 9.

37

25

For

1 0

E3b

g N

9 95

3 25

I =

000

5 to

003

5; ex

trap

olat

ed to

I =

0 E

3bh

W24

9•

57

40

9.39

18

Fo

r I =

0; c

alcu

late

d fro

m m

easu

red p

H va

lues

of pa

irs o

f E

3ah

K44

sa

lts o

n pr

ogre

ssiv

e di

lutio

n; c

orre

cted

for

hyd

roly

sis

657

962

25

ForI

= 0

;I=

= O

OO

l5to

O00

19 (f

orK

3)I=

000

4to0

018

E3b

g M

42

(for

K4)

; ac

tivity

coe

ffic

ient

s ca

lcul

ated

by

Deb

ye-H

ucke

l eq

uatio

n 67

0 98

8 30

Fo

r 1

0; s

alts

adde

d to

sodi

um py

roph

osph

ate,

HC

I mix

ture

s E

3ah

M47

to

var

y I

(0.0

015

to 0

24 fo

r K3,

002

l to

034

for

K4)

; ex

tra-

po

latio

n us

ing

Deb

ye-H

Uck

el

equa

tion

1.52

2.

36

660

925

25

For 1

0

E3b

g D

15

0.44

25

Fo

r I

0 C

AL

OR

IM 1

13

227

663

929

25

For 1

0;

ext

rapo

late

d fro

m r

esul

ts f

or I

001

(K sa

lt),

E3b

g B

40

usin

g D

ebye

-Huc

kel e

quat

ion

264

676

942

25

NM

e4 sa

lt sol

utio

ns; e

xtra

pola

tion

to I =

0 ag

ains

t (con

cen.

E

3bg

L6

trat

ion)

*; P

2O7

form

s co

mpl

exes

with

K+

, Na+

and

Li+

22

2 63

6 91

1 25

"P

ract

ical

" co

nsta

nts;

I 01

(N

Me4

CI)

; 08

2 1.

81

6.13

89

3 25

"P

ract

ical

" co

nsta

nts;

1

1(N

Me4

C1)

; pK

1 va

lue

is e

xper

i-

men

tally

unc

erta

in

2.3

25

617

908

0 C

once

ntra

tion c

onst

ants

;f±

ass

umed

E

3bg

Ill

22

23

603

897

10

sam

e as

for

HB

r; I

01

(N

Me4

Br)

; th

e pK

i va

lues

are

un

cert

ain

20

20

6•12

89

5 25

I =

01

1•9

l•95

G

•13

8•94

37

I =

01

1•7

l•97

6•

12

8•93

37

1=

O2

17

191

608

888

37

1= 0

3 19

1•

98

613

8•97

50

1=

01

13

192

6•06

89

0 50

I =

02

12

212

6.04

88

8 50

1=

03

1•3

212

6•16

8•

92

65

1 =

01

12

217

601

8•72

65

1=

10

088

200

628

910

25

Prob

ably

"pr

actic

al"

cons

tant

s; N

Me4

pyr

opho

spha

te so

lu-

tions

: I =

005

(NM

e4B

r); v

alue

s of p

Kj

are

expe

rim

enta

lly

unce

rtai

n

E3b

g M

35

0.84

19

6 61

2 9•

01

1=01

0 0•

82

183

605

8•87

I =

042

0.79

17

2 5•

76

871

1 =

100

1•04

2•

04

6•37

91

8 50

1=

005

0.95

19

9 63

4 91

1 1=

010

0•86

1•

82

590

8•77

I =

0•42

08

3 1•

64

574

864

1= 1

14

1•14

2•

55

638

9•26

60

1=

0.05

10

5 20

2 63

3 91

9 I =

010

09

8 09

8 1•

76

1•60

5.

94

5•72

8•

79

8•62

1=

042

1= 1

14

" 1.

04

1•97

6•

26

9•23

65

I =

005

097

194

6•26

9•

16

I = 01

0 09

2 17

1 59

0 87

7 I =

042

091

1•54

5•

72

861

1 =

114

1.00

1•

91

617

916

70

1=00

5 0.

94

1•89

6•

14

9•06

1=

010

089

166

587

8•71

I =

042

O•9

7 15

0 57

2 8•

58

I = 11

4 09

7

2•5

--47

2•12

27

F75

584

568

60

598

801

8•00

83

87

4

• 65

5 27

4 25

25

"Pra

ctic

al"

cons

tant

s; c

= 0

08—

018M

pyro

phos

phat

e "P

ract

ical

" co

nsta

nts;

I =

075(

NaN

O3)

Pr

obab

ly "

prac

tical

" co

nsta

nts;

I = 0

1(N

aNO

s)

Con

cent

ratio

n cons

tant

s:1 =

1 (N

Me4

Br)

; N

Me4

+ p

yrop

hos-

E3b

E

3bg

E3b

g E

3bg

M4

Y3

J8

112

252

608

561

8•45

7•

68

20

25

phat

e so

lutio

ns; f±

ass

umed

sam

e as

for

HB

r "P

ract

ical

" co

nsta

nts;

1=

01(K

C1)

"P

ract

ical

" co

nsta

nts;

I =

1 (K

NO

3)

Oth

er m

easu

rem

ents

: Al,

F26,

K22

, K35

, M48

, M58

, 014

E3b

h E

3bg

S35

W6

169.

(A

quo)

Rho

dium

(I1I

) 3.

43

pK

spec

ies for

Rh3

R

hOH

2 +

H;

c =

000

15M

; po

lym

eriz

ed

E3b

g F2

2 pr

obab

ly fo

rm sl

owly

Nos

. 17

0—17

6

Nam

e, F

orm

ula a

nd p

K v

alue

T

(°C

) R

emar

ks

Met

hods

R

efer

ence

2'92

20

3•

40

25

3.20

45

30

8 60

1 =

1 (N

aC1O

4);

brid

ged

com

plex

es pr

obab

ly fo

rm sl

owly

pK

for h

ydro

lysi

s of

Rh3

; hyd

roly

sis o

f "pu

re"

salts

05

E

3ag

C28

S8

2a

170.

Rut

heni

um te

trox

ide,

see

Dip

erru

then

ic a

cid

171.

(A

quo)

Sam

ariu

m(I

II) i

on, S

m3

834

25

pKa f

or hy

drol

ysis

of S

m3+

; titr

atio

n of 0

004—

0009

M S

m(C

l04)

s w

ith 0

02 M

Ba(

OH

)2; I

= 03

(NaC

1O4)

E

3b

F33a

172.

(A

quo)

Sca

ndiu

m(I

II) io

n, S

c3

4.93

25

509

10

441

40

4•61

25

5•

1 51

25

511

25

pKfo

r hyd

roly

sis

of Sc

3; I

1(N

aCIO

4); c

00

01—

0O2M

Sc

(C10

4)a;

als

o log

K =

387

for 2

Sc0H

2 Sc

s(O

H)2

4+

pK fo

r hyd

roly

sis

of S

c3; I

= 1 (

NaC

1O4)

; lo

g K

for d

imer

izat

ion i

s 35

3 at

100

, 333

at 4

1= 0

01

Succ

essi

ve p

K v

alue

s fo

r hy

drol

ysis

of

Sc3

to S

c0H

2 an

d Sc

(OH

)s+

; I =

1(N

aC1O

4); t

he m

ain

spec

ies

are

poly

nucl

ear

spec

ies,

Sc

{(0H

)sSc

]n(S

H; f

rom

re-

exam

inat

ion

of d

ata

of

M. K

ilpat

rick

and

L. P

okra

s, J.

Elect

roch

em.

Soc.

100

, 85

(195

3);

101,

39

(195

4)

pK fo

r hyd

roly

sis

of S

c3; I

= 1 (N

aClO

4); a

lso

— lo

gK =

614

for 2

Sc3

+ 21

120

Sc2(

0H)2

4 +

2H

; lo

gK =

1300

for 3

Sc3

+ 41

120

Sca(

OH

)45+

+ 4

Ht

— lo

gK =

17•4

7 fo

r 3Sc

3 +

5H

20

Scs(

OH

)54+

+ 5

H.

E3a

,qui

n

E3a

,qui

n

E3b

g

K19

K20

B47

A42

a

173.

Sel

enic

aci

d, H

2SeO

4 13

6 0

1 46

10

15

2 15

1•

58

20

166

25

173

30

1 =

0007

to 0

019;

ext

rapo

late

d to

I = 0

usin

g D

avie

s' e

quat

ion

Elc

h N

4

182

35

189

40

196

45

The

rmod

ynam

ic qu

antit

ies a

re d

eriv

ed fr

om th

e re

sults

. F8

3 0

Ext

rapo

late

d to

I =

0, u

sing

the

Deb

ye-H

ucke

l lim

iting

E

lc,q

uin

P5

1 84

5 5

expr

essi

on f

or a

ctiv

ity c

oeff

icie

nts

1•86

10

18

7 15

19

0 20

19

2 25

19

5 30

1 70

to 1

78

25

Rec

alcu

latio

n of

dat

a by

V.

S.

K.

Nai

r (J

. In

org.

N

ucle

ar

C33

C

hew

., 26

, 19

11

(196

4)),

us

ing

an e

xten

ded

Deb

ye-H

ucke

l eq

uatio

n; th

e va

lue

of pK

2 is

sen

sitiv

e to

the

cho

ice

of io

n si

ze

para

met

er

For H

0 va

lues

of s

elen

ic ac

id,

see

Ml a

, W5a

O

ther

mea

sure

men

ts: G

i 6

174.

Sel

enio

us ac

id, H

2SeO

3 26

2 83

2 25

Fo

r I

0 E

,g

H6

254

802

18

Titr

atio

n of

QO

4ss

H2S

eO3

E3b

g B

88

242

808

E3b

g R

40

240

806

c =

OO

SM

H2S

eO3;

adde

d N

aOH

04

W

19

2•46

25

C

l R

27

240

OO

1N so

lutio

ns

04

264

827

25

I = 01

(KC

1);

conc

entr

atio

n co

nsta

nts

E3b

g K

lOa

Val

ues

are

also

giv

en fo

r met

hano

l-, e

than

ol-,

and

2-p

ropa

nol-

w

ater

mix

ture

s 23

3 25

co

ncen

trat

ion c

onst

ant, I =

01

DIS

TR

IB S

38a

Oth

er m

easu

rem

ents

: B58

, G

20

175.

Sel

enoc

yani

c ac

id, H

SeC

N

25

from

hyd

roly

sis

of sa

lts

E,g

B

67a

<1

176.

Sili

cic

acid

, H4S

iO4

9.77

25

pK

1 ex

trap

olat

ed ag

ains

t I to

I =

0 SO

LY

G

41

97O

35

98

5 11

8

20

pKi,

pI(s

; cal

cula

ted

from

pub

lishe

d e.

m.f

. dat

a;

G40

Nos

. 17

7—18

1

Nam

e, F

orm

ula

and

pK v

alue

T

(°C

) R

emar

ks

Met

hods

R

efer

ence

97

119

25

I = 0'

02 to

004

; ext

rapo

late

d ag

ains

t Ito

1 =

0 9•

1 11

9 30

99

25

C

l 95

1 1l

77

25

pKi,p

K2

E3b

h 03

966

1170

94

114

30

20

pKi,p

K2;

pKs—

.pK

4-.1

2 pK

i, pK2; p

I(3

= 13

7 E

3ah

E,g

,h

F15

M29

99

1 25

pKi; H4SiO4 prepared by hydrolysis of it

s met

hyl e

ster

; 1

0 Cl

S26

946

9.3

25

60

pJCi; I =

05 (NaC1O4)

In 001M borax solutions; eq

uilib

rate

d w

ith p

owde

red

quar

tz

E SOLY

B50a

V3

9•1

70

9•1

80

91

90

91

100

92

90

In unbuffered solutions of alkali

SOLY

8•83

346

160 atmospheres

SOLY

V47

932

1033

355

364

180 atmospheres

200 atmospheres

Oth

er m

easu

rem

ents

: B62

, 11

3, H

10, H

27, 1

3 (in 05 M N

aCl)

, J18, L

2 (i

n 05

M N

aC1O

4 an

d 3M

NaC

lO4)

, M55

(col

loid

al si

licic

ac

id),

R27

(co

lloid

al s

ilici

c ac

id)

177.

(A

quo)

Silv

er io

n, A

g >

111

25

pK fo

r hyd

roly

sis

of A

g; I

= 1(

AgN

O3)

H

ydro

lysi

s of

Ag

give

s A

gOH

, Ag(

OH

)2

and

poss

ibly

pol

y-

nucl

ear

spec

ies

E,g

B

46

3•50

360

25

25

log

K fo

r Ag

+ 2

0H

Ag(

OH

)s;I

= 3

(NaC

1O4)

; no

ap

prec

iabl

e am

ount

s of A

gOH

for

med

I =

3(N

aClO

4)

DIS

TR

IB

SOL

Y

A27

3.99

25

lo

g K

for A

g +

20H

A

g(O

H)2

SO

LY

B

50

3•64

121

3•02

25

25

25

log

K f

or A

g +

2011

Ag(

OH

)2;

calc

ulat

ed f

rom

dat

a gi

ven

inJl

O

Est

imat

ed p

K o

f AgO

H

Ag0

+ H

I

1 (N

aC1O

4);

log

K fo

r Ag

+ O

H—

A

gOH

SOL

Y

SOL

Y

SOL

Y

R14

JI0

G45

a

469

log

K fo

r Ag

+ 20

11-

Ag(

OH

)2

Oth

er m

easu

rem

ents

C

lO,

F5,

G49

, K50

, L21

, L39

.

00

178.

(A

quo)

Sod

ium

ion,

Na

—0-

81

—0-

81

—0-

77

—0-

88

—0-

81

—0-

45

—0-

46

—0-

57

—0-

72

—0-

62

—1-

9

5 pK

i; I =

0-02

to

01; f

calc

ulat

ed u

sing

Dav

ies'

equ

atio

n;

15

e.m

.f. d

ata o

f H. S

. Har

ned a

nd G

. E. M

annw

eile

r, J.

Am.

Che

m.

Soc.

, 57,

187

3 (1

935)

25

35

pKa;

I =

002

to 0

4; f±

calc

ulat

ed u

sing

Dav

ies'

equ

atio

n;

e.m

f. d

ata o

f H. S

. Har

ned

and W

.J. H

amer

, J. A

m. C

henz

. Soc

., 55

, 449

6 (1

933)

25

pK

25

pKb

For

alka

linity

func

tion

for N

aOH

solu

tions

, see

M40

Fo

r in

dica

tor a

cidi

ty f

unct

ion H

. for

NaO

H so

lutio

ns, s

ee E

4,

S34,

Yl

For J

fun

ctio

n fo

r NaO

H so

lutio

ns se

e B

68,

G32

CA

T,K

IN B

31

VA

P K

2

_ 17

9. (

Aqu

o)

180.

(Aqu

o)

0-78

Stan

nous

ion,

see

(Aqu

o) T

in(I

I) io

n

Stro

ntiu

m i

on, S

r2+

0-80

08

2 0-

86

5 15

25

35

pK o

f Sr0

H; I

= 00

2 to

01

; f±

calc

ulat

ed u

sing

Dav

ies'

eq

uatio

n; f

rom

e.m

.f.

data

due

to

H.

S. H

arne

d an

d T

. R

. Pa

xton

, J. P

hys.

Che

m.,

57, 5

31 (

1953

)

Elc

h G

26

089

45

082

023

0-96

25

25

The

rmod

ynam

ic qu

antit

ies a

re d

eriv

ed fr

om th

e re

sults

pK

b of

Sr0

H; c

once

ntra

tion

cons

tant

; c =

02 —

1N(S

rCI2

an

d Sr

(N0g

)); s

alt e

ffec

t on

indi

cato

r pK

a of

Sr0

H; I

3(

Na0

104)

1

0.02

to

0065

; ex

trap

olat

ion

to I

= 0

usin

g D

avie

s'

equa

tion;

solu

bilit

y of

Sr(

I0a)

2 in

NaO

H so

lutio

ns

03

E2a

h SO

LY

K39

C7

C29

181.

Sul

pham

ic a

cid,

NH

2SO

3H

1-03

1-

02

099

099

10

15

20

25

For

I = 0;

in

mos

t of t

he c

ells

, co

ncen

trat

ion

of N

H2S

O3H

, N

H2S

O3N

a an

d N

aCI

wer

e ap

prox

imat

ely

the

sam

e (0

005—

O

OS4

M)

Ela

K

23

0-98

30

45 5 15

25

35

45

Elc

h G

26

Elc

h

No.

182

Nam

e, F

orm

ula a

nd p

K va

lue

T( °

C)

Rem

arks

M

etho

ds

Ref

eren

ce

098

35

100

40

1025

45

10

4 50

0-

979—

1013

1.

00

058

25

25

95

For I

0;

val

ue v

arie

s slig

htly

with

met

hod

of ca

lcul

atio

n Fo

r 1

0 I =

1(N

aClO

)

Cl

C1,

Rld

K

IN

S65

T5

C2

182.

Sul

phur

ic a

cid,

H2S

04

158

0 pK

2; I =

0005

to

002;

cal

cula

ted

from

ext

ende

d D

ebye

- E

lch

N5

1433

5

Huc

kel e

quat

ion;

val

ues

of pK

2 ar

e se

nsiti

ve t

o th

e pa

ram

eter

s 18

0 15

us

ed in

the

Deb

ye-H

ucke

l equ

atio

n 1•

96

25

209

35

222

45

191

18

pK2;

for

I 0;

re-

exam

inat

ion

of li

tera

ture

val

ues

obta

ined

K

15

©

199

25

from

con

duct

ivity

data

2•

28

50

176

5 pK

2; I

= 00

1 to

004

; ex

trap

olat

ed u

sing

ext

ende

d D

ebye

- E

lch

Dli

180

10

Huc

kel e

quat

ion

1434

15

19

2 20

19

9 25

2•

05

30

2•11

35

2•

17

40

2•30

50

1 .

0 1

= 0;

from

publ

ishe

d con

duct

ivity

data

, usi

ng lim

iting

Ons

ager

eq

uatio

n 1

68

0 1

= 0;

from

pub

lishe

d fr

eezi

ng po

int d

epre

ssio

n da

ta

FP

1•90

10

pK

2; fo

r I =

0 E

2bg

K21

20

0 20

20

4 25

2l

3 30

2•

17

35

2•22

40

I 98

7 25

Fo

r 1

0; re

-exa

min

atio

n of l

itera

ture

val

ues f

rom

con

duct

o-

D44

m

etry

, spe

ctro

phot

omet

ry an

d po

tent

iom

etry

19

75

25

For I =

0; A

g/A

gC1

elec

trod

e re

plac

ed b

y H

g/H

g2SO

4;

ion

Elc

h C

34

para

met

er in

Deb

ye-H

ucke

l equ

atio

n ta

ken

as 1

9 19

4 25

Fo

r I

0; A

g2SO

4 in

NaC

1O4/

HC

IO4

solu

tions

SO

LY

K

13

199

25

RA

MA

N

Y13

18

9 25

p1

(2; I =

0; m

olal

sca

le;

solu

bilit

y of

Ag2

SO4

in d

ilute

H2S

04

SOL

Y

L31

23

7 50

pl

otte

d as

func

tion

of io

nic

stre

ngth

2•

70

75

301

100

333

125

369

150

409

175

449

200

494

225

PK2 =

128

3108

/T — 1

2319

95 + 004223215 T (T in

°K)

The

rmod

ynam

ic va

lues

are

deri

ved

from

the

resu

lts

260

100

pK2; molar scale; at density of 1

g.cm3; values at lower

Cl

Q5

2•83

150

densities are also given

313

200

335

250

358

300

308

100

Mol

al sc

ale

Cl

4•03

20

0 18

8 25

pK

2; fo

r I =

0; u

sing

cat

ion-

perm

sele

ctiv

e mem

bran

e IO

N

Wi a

20

3 35

221

50

F99

25

pK2;

I = 0

; mol

al sc

ale;

sol

ubili

ty o

f CaS

O4

in d

ilute

H2S

04

SOL

Y

M13

a 20

3 30

ov

er a

rang

e of

ioni

c str

engt

hs

214

40

218

45

227

50

2•36

60

31

5 12

5 3•

56

150

390

175

424

200

458

225

498

250

Nos

. 18

2-18

3

Nam

e, F

orm

ula

and

pK va

lue

T(°

C)

Rem

arks

M

etho

ds

Ref

eren

ce

534

275

5-71

30

0 60

6 32

5 6-

41

350

pl(2

= 1

9-88

58 lo

g T

+ 0-

0064

73T

— 5

6889

— 2

307-

9/T

(T

in °

K)

pKi;

theo

retic

al pr

edic

tion

S29

pK o

f H3S

O4+

; th

eore

tical

pre

dict

ion

—3-

3 to

—3-

5 pl

i; m

ole

frac

tion

equi

libri

um c

onst

ant;

pred

ictio

n W

31

pK1;

pre

dict

ion,

base

d on

stru

ctur

e K

52

— 1

-7

pKi;

pred

ictio

n; m

ole

frac

tion

equi

libri

um c

onst

ant

for

H20

D

30

+ H

2S04

H

3O +

HSO

4—

—3-

0 pK

i; pr

edic

tion

(Pau

ling'

s met

hod)

G

24

—2-

0 pK

i; pr

edic

tion

B5

—3-

59

pKi;

from

wat

er a

ctiv

ity d

ata

W32

Fo

r pK

i va

lues

of H

2S04

from

400

—80

0°C

and

den

sitie

s fro

m

0-40

to 0

-85

g.cm

3 (p

ress

ures

to

4700

bar

s), s

ee Q

5 Fo

r ef

fect

of p

ress

ure o

n pI

(s, s

ee H

70

—8-

3 pK

of H

aSO

4 (n

ot h

ydra

ted)

R

AM

AN

H

62

4.95

25

pK

for

1:1

H2S

04:H

20 s

peci

es

For

self

-dis

soci

atio

n co

nsta

nts o

f H2S

04 a

t 10,

25,

40°

, se

e B

13,

G25

, K25

, S24

A

t 10

36°,

aut

opro

toly

sis c

onst

ant o

f H2S

04 =

1-7

x l0

, for

G

23

2H2S

04 v

H3S

O4 +

HS0

4 A

t 10

-36°

, ion

ic se

lf-d

ehyd

ratio

n con

stan

t of H

2S04

= 7

x 10

, fo

r 2H

2S04

v H

3O +

HS2

07

For

com

pute

d pK

val

ues f

or th

e re

actio

ns H

2S04

± nH

2O

H. n

H2O

+ H

S04,

and

HS0

4 +

nH2O

. n

HsO

+

S04

2, se

e R

20

Oth

er m

easu

rem

ents

of p

K2

valu

es: A

37, B

2, 1

177,

D17

, E5,

E7,

F1

4, F

17, G

44, H

18, K

14, K

30, L

50, M

9a, N

23a,

R6,

R9,

R15

, S4

3, S

50, S

77,

Z3

For H

amm

ett a

cidi

ty fu

nctio

n of

H2S

04, s

ee B

12, B

72, D

30, G

17

and

G19

(te

mpe

ratu

re r

ange

),

H20

, J1

6, P

11,

R44

, S1

O

(KH

SO4)

For

Hx(

Jo) a

cidi

ty fu

nctio

n of

H2S

04, s

ee A

34, D

29

For

C0

acid

ity f

unct

ion

of H

2S04

, see

D29

Fo

r H

x* ac

idity

fun

ctio

n of

H2S

04, s

ee Y

4 Fo

r H

acidi

ty f

unct

ion

of H

2S04

, see

B73

Fo

r HA

aci

dity

fun

ctio

n of

H2S

04, s

ee Y

G, Y

7 Fo

r H

0" 'a

cidi

ty f

unct

ion

of H

2S04

, see

A35

Fo

r H

0' a

cidi

ty f

unct

ion

of H

2S04

, see

JIG

Fo

r H' ac

idity

fun

ctio

n of

H2S

04, s

ee B

70

For H

_ ac

idity

fun

ctio

n of

H2S

04, s

ee B

69

For

H5

acid

ity f

unct

ion

of H

2S04

, see

H60

Fo

r H

0 ac

idity

fun

ctio

n of

alco

holic

H2S

04, s

ee Ji

Fo

r H aci

dity

fun

ctio

n of

alco

holic

H2S

04, s

ee 1

14

183.

Sui

phur

ous

acid

, H2S

03

163

0 Fo

r I =

0; re

calc

ulat

ion o

f dat

a giv

en in

refe

renc

es C

l and

M45

C

1,R

lb

J12

1•74

10

18

1 18

18

9 25

19

8 35

21

2 50

15

1 0

D14

15

8 5

l•64

10

17

0 15

17

7 20

18

2 25

17

6 25

R

46

2•34

70

2•

62

100

3•1

130

3.5

150

1 86

25

A

ppar

ent p

K v

alue

; 1

atm

osph

ere

Cl

E12

16

9 50

0 at

mos

pher

es

151

1000

atm

osph

eres

13

4 15

00 a

tmos

pher

es

120

2000

atm

osph

eres

17

64

7205

25

1 =

002

to 0

13 (f

or pK

i), 0

014

to 0

12 (f

or pl

C2)

; ext

rapo

late

d E

lcg

T3

tol=

0 19

0 72

05

25

E3b

g Y

14

Nos

. 18

4—19

2

Nam

e, F

orm

ula

and

pK va

lue

T(°

C)

Rem

arks

M

etho

ds

Ref

eren

ce

717

7•30

10

25

Fo

r I

0; c

<00

5; ex

trap

olat

ion

by D

ebye

-Huc

kel e

quat

ion

E3b

g A

32

7•45

50

69

6 In

aqu

eous

sol

utio

ns, b

isui

phite

ion

s ar

e in

equ

ilibr

ium

with

py

rosu

iphi

te io

n; a

t 25°

, K =

7 x

102

for [

S205

2—]/

[HSO

3j2

Oth

er m

easu

rem

ents

: B84

, B

87,

B88

, C

l, C

42, F

7, F

13,

F34,

K

34, M

8, M

45, S

38a,

S43

.

E3b

g R

40

G34

184.

Tan

talic

aci

d 96

13

18

—20

A

cidi

c pK

B

asic

pK

SO

LY

B

i

185.

Tel

luri

c ac

id, H

6TeO

6 80

3 11

45

770

1095

5 25

c

==

O0O

5i.i

H6T

eO6;

ext

rapo

late

d to

I =

0 us

ing

sim

ple

Deb

ye-H

ucke

l re

latio

n E

3bg

E15

75

9 10

80

35

728

1027

61

768

1119

7•

70

1104

14

25

18

25

25

The

rmod

ynam

ic qu

antit

ies

are

deri

ved

from

the

resu

lts

Titr

atio

n of

004

M a

cid

For I

= 0;

at h

igh

conc

entr

atio

ns, p

olyt

ellu

rate

s are

form

ed

pKs

E3b

g E

3ag

07

B88

E

l 81

9 0

For I

0

E3b

,qui

n A

26

798

10

761

25

7.43

35

71

2 45

760

800

25

12

pKi

= 8

180

— 2

36 >

<

10—

2 t (

tin °C

) c =

0O1M

; pol

ytel

lura

tes a

re fo

rmed

whe

n c i

s gr

eate

r tha

n 01

c =

006M

FI6

TeO

6 E

3ag

Cl

J2

F25

781

22

763

32

748

42

7.37

50

761

25

For I =

0 >

15

pK3

Other measurements: B58, B79c, L43, R26

E3b

,R2a

A

23

S61

186.

Tel

luro

us a

cid,

H2T

eO3

246

316

25

conc

entr

atio

n con

stan

ts, I

= 0

1 pK1 fo

r pro

tona

tion o

f H2T

cO3

pK2

for m

ono-

anio

n fo

rmat

ion

35

54—58

25

pKi f

or p

roto

natio

n of H

sTeO

s;

pK2

for m

ono-

anio

n fo

rmat

ion

2 Fo

r pr

oton

atio

n of H

TeO

3; fr

om th

erm

odyn

amic

data

27

7-

7 25

Fr

om h

ydro

lysi

s of

salts

DIS

TR

IB

SOL

Y

03

S38a

117

L9

B58

187.

(Aqu

o) T

erbi

um(I

ll) io

n, T

b3

816

25

pKa

for h

ydro

lysi

s of

Tb3

; titr

atio

n of

0004

—00

09 M

Tb(

C10

4)3

with

0-0

2M B

a(O

H)s

; I =

03 (N

aC1O

4)

E3b

F3

3a

188.

Tet

ra(h

ydro

gen

sulp

hato

)ars

enio

us a

cid,

HA

s(H

SO4)

4 For

pK in

H2S

04, s

ee B

li

189.

Tet

ra(h

ydro

gen

sulp

hato

)bor

ic a

cid,

HB

(HSO

4)4

For p

K in

H2S

04, s

ee Bl 1

190.

Tet

ram

etap

hosp

hori

c ac

id, H

4P40

12

278

25

pK4;

for I

= 0;

from

resu

lts at

I -' 0-

01 (

K+

salt)

, usi

ng D

ebyc

- H

ucke

l equ

atio

n 27

4 25

pf

(4; f

or I =

0; u

sing

ass

umed

val

ue fo

r mob

ility

of H

P401

23

ion

2-60

6-4

8-22

11-4

No details

E3b

g

C2

B40

D12

K3a

191. Tet

ram

olyb

dic a

cid,

H2M

o4O

13

14

15

I = l(

NaC

lO)

DIS

TR

IB C18

192 T

etra

pero

xych

rom

ic a

cid,

H3C

rO8

716

30

pK3;

I = 3(

NaC

1O4)

7-

40

40

7-60

50

KIN

Q

i

C,'

Nos

. 19

3-19

8

195.

(A

quo)

Tha

llium

(III

) ion

, T13

1

•07

1•16

1•

01

1•10

pK fo

r hyd

roly

sis

of T

l3; I

= 1 5(

NaC

104)

I =

3(N

aC1O

4)

I = F

5(N

aCIO

4)

I = 3(

NaC

IO4)

pK

for h

ydro

lysi

s of

Tl3

, as

sum

ing

TlO

H2,

but

not

T

13,

can

exch

ange

with

Tl;

I = 6(

HC

IO4

+ N

aC1O

4)

pK fo

r hyd

roly

sis

of Tl

3+, a

ssum

ing

T10

H2,

but

not

T13

, can

ex

chan

ge w

ith T

l; I =

3(H

C1O

4 +

Na0

104)

; da

ta o

f R. J

. Pr

estw

ood a

nd A

. C. W

ahi,

J. A

m.

Che

in.

Soc.

, 71,

313

7 (1

949)

. pK

val

ues

for

succ

essi

ve

hydr

olys

is

of T

l3;

I = 3(

NaC

IO4)

; fr

om p

oten

tials

of T

l+/T

la+

elec

trod

e

Nam

e, F

orm

ula

and

pK va

lue

T( °

C)

Rem

ark

Met

hods

R

efer

ence

193.

Tet

rapo

lyph

osph

oric

aci

d, H

6P40

13

1•36

22

3 66

3 83

4 25

pK

a, p

K4,

pK

5, p

K6;

"pr

actic

al"

cons

tant

s; I

= 1(

NM

e4N

O3)

; N

Me4

+ s

alt;

extr

apol

ated

aga

inst

(co

ncen

trat

ion)

co

mpl

ex

form

atio

n occ

urs

with

Na+

, K+

, or

gua

nidi

nium

ion

E3b

g W

8

738

911

25

pKs,

pKs;

forl

=0

194.

(Aqu

o) T

halli

um(I

) ion

, T1

081

0 pK

; I =

0005

to 0

09;

extr

apol

atio

n to

I =

0 us

ing

Dav

ies'

SO

LY

B

29

082

25

equa

tion;

solu

bilit

y of

T11

03 in

KO

H so

lutio

ns

085

40

O85

25

T

herm

odyn

amic

quan

titie

s ar

e de

rive

d fr

om th

e re

sults

. pK

b; I

= 00

2 to

005

; ex

trap

olat

ion

to I

= 0

usin

g D

avie

s'

equa

tion

KIN

B

30

0.42

25

pK

b; I

= 00

8 to

025

C

AT

,KIN

B31

04

8 25

pK

b; m

olal

sca

le; c

= 00

009—

0009

C

2 L

32

—0•

5 —

07

—0•

8 —

1•0

—1•

1 11

4 14

9

25

25

40

40

25

322

418

25

35

45

25

06

R23

KIN

H

23

KIN

J9

B41

196.

Thi

ocya

nic a

cid,

HC

NS

——

2 B

y in

terp

olat

ion f

rom

pK

valu

es in

wat

er fo

r HB

r, H

C1,

HN

O3,

M

46

and

HF,

and

in

etha

nol f

or H

Br,

HC

1, H

NO

3, H

CN

S an

d H

F —

185

25

From

solv

ent

(Cd4

) ex

trac

tion

of a

seri

es o

f NaC

1O4,

H

C1O

4 D

IST

RIB

m

ixtu

res a

t con

stan

t I; e

xtra

pola

ted

agai

nst I

-—14

25

Fr

om H

_ de

pend

ence

of

Fc3

— C

NS

re

actio

n an

d hy

dro-

06

—07

ly

sis

of N

ON

CS

I = 3;

23

M in

HC

1O4

Oth

er m

easu

rem

ents

: B67

a, S

82

KIN

T

18

197.

Thi

osui

phur

ic a

cid,

H2S

202

0.6

174

146

25

25

I =

009

to 0

91,

extr

apol

ated

to I =

0 us

ing

Dav

ies'

equ

atio

n C

once

ntra

tion

cons

tant

; I =

0-01

6 to

007

E

3bg

E3a

g P2

D

25

156

25

E3b

g Y

18

Oth

er m

easu

rem

ents

: J3, K

40

198.

(Aqu

o) T

hori

um(I

V) i

on, T

h4

389

420

25

Succ

essi

ve p

K v

alue

s fo

r hy

drol

ysis

of

Th4

, as

sum

ing

only

E

3ag

P6

mon

onuc

lear

sp

ecie

s: 1

= 00

5 to

05(

NaC

1O4)

; c =

0000

1—

001

M T

h(N

0a)4

; ext

rapo

late

d to

I = 0

4.3

3.4

25

Succ

essi

ve p

K v

alue

s for

hyd

roly

sis o

f Th

at ve

ry sl

ight

deg

rees

E

3ag

K56

of

hydr

olys

is;

I = 1

(NaC

1O4)

; al

so —

log

K =

47 f

or 2

Th4

+

2H

20

Th2

(0H

)26

+ 2

H

432

416

0 Su

cces

sive

pK

val

ues f

or hy

drol

ysis

of T

h4; I

= 1(

NaC

1O4)

; a

lso

E2a

,qui

n B

4 lo

g K

= 5

60 f

or 2

Th4

+ 2

H20

T

h2(O

H)2

6+ +

2H

; —

log

K =

227

9 fo

r Th4

(0H

)s'°

; —

log

K =

438

4 fo

r Th6

(OH

)159

+

412

3-69

25

log

K =

4-6

1 fo

r Ths

(0H

)s6;

lo

g K

= 1

901

for T

h4(0

H)o

1O;

— l

og K

= 3

676

for T

h0(0

H)1

5 22

9 22

1 95

lo

g K

= 2

55 fo

r Th2

(OH

)2;

E2a

g —

log

K =

104

9 for

Th4

(0H

)610

; —

log

K =

206

3 fo

r Th6

(OH

)m°

11-6

4 10

80

1062

10

45

25

1 =

05(N

aC1O

4), r

adio

-tra

cer

Con

cent

ratio

n of

Th(

IV);

IO

N

B32

a su

cces

sive

pK

b va

lues

. 9-

40

9-35

8-

99

808

1 =

0l(N

aC1O

4);

succ

essi

ve pK

b va

lues

SO

LY

N

ia

At

25°

and

I = 3

(NaC

l), c

= 00

001—

01 M

in

Th4

, —

log

H57

K

= —

91 fo

r Th4

+ +

2H

20

Th(

0H)2

2 +

2H

; ThO

H3

is

negl

igib

le;

Th2

0H,

T1i

2(O

H)2

6+,

Th3

(0H

)21°

and

hi

gher

com

plex

es a

re im

port

ant;

cons

tant

s are

giv

en.

At h

igh

thor

ium

conc

entr

atio

ns (0

5 M

) for

mat

ion o

f Tb2

(OH

) 11

55

and

Th2

OH

7 is

impo

rtan

t; co

nsta

nts a

re g

iven

O

ther

mea

sure

men

ts: K

5, L

IG

Ns.

199

—20

6

Nam

e, F

orm

ula

and

pK va

lue

T(°

C)

Rem

arks

M

etho

ds

Ref

eren

ce

199.

(A

quo)

Thu

lium

(Ifl

) ion

, Tm

3 25

pK

a for

hydr

olys

is o

f Tm

3; ti

trat

ion

of 00

04—

0009

M T

m(C

104)

3 w

ith 0

02 M

Ba(

OH

)2; I

= 03

(NaC

1O4)

E

3b

F33a

200.

(Aqu

o) T

in(I

I) io

n, S

n2

170

25

pK f

or h

ydro

lysi

s of

Sn2

; I =

014

to 0

5, e

xtra

pola

ted

E3a

h G

37

1193

18

2 25

0

agai

nst f

l; c =

0004

—01

2 M

Sn2

f pK

b fo

r Sn

OH

Sn

2+ H

- O

H

pK fo

r hyd

roly

sis

of S

n2;

I = 3(

NaC

IO4)

; SO

LY

G

3 V

i 17

0 25

Sn

-Hg

elec

trod

e po

tent

ials

16

4 35

16

0 45

39

2 25

pK

for h

ydro

lysi

s of

Sn2

; I =

3(N

aC1O

4); a

lso

— l

og K

= 4

45 fo

r 2Sn

2 +

2H

20

Sn2(

OH

)22+

+ 2

H,

E3b

g T

8

32

25

— lo

g K

= 6

77 f

or 3

Sn2

-H 4

H20

Sn

3(O

H)4

2 +

4H

. pK

for h

ydro

lysi

s of

Sn2

; I =

2(N

aNO

3)

Oth

er m

easu

rem

ents

: P41

, S56

E

3bg

D15

201.

(Aqu

o) T

itani

um(I

II) i

on, T

i3

1•41

15

pK

for T

i3 +

H2O

T

iOH

2 ±

H;

1= 0

25 to

15(

KB

r);

E3b

g P1

4 12

9 25

ex

trap

olat

ed to

I =

0 us

ing

mod

ifie

d D

ebye

-Huc

kel e

quat

ion.

13

6 35

A

t pH

val

ues

abov

e 35

pol

ynuc

lear

spec

ies

are r

apid

ly fo

rmed

202.

(Aqu

o) T

itani

uni(

IV) i

on, T

i4

18

24

21

25

Succ

essi

ve p

K va

lues

for h

ydro

lysi

s of

TiO

H3;

D

IST

RIB

L

28

13

18

I = 0

1 (N

aC1O

4);

C =

10

—5

X 10

M in

Ti(

IV)

pK fo

r T

iO2

TiO

(OH

) + H

IO

N

Ni

03

pK f

or T

iO2

TiO

(OH

) ± H

; in

HC

1O4

solu

tions

; in

di

lute

H2S

O4

basi

c su

ipha

tes a

re al

so f

orm

ed

Oth

er m

easu

rem

ents

: Nib

ION

B

39

203.

Tri

met

apho

spho

ric

acid

, H3P

3O9

174

205

25

25

pI(;

inve

rsio

n of

sucr

ose

pK3;

for

I =

0;

usin

g as

ass

umed

va

lue

for

the

mob

ility

of

HP3

092

ion

KIN

C

2 Ii

D

i2

['.3

204.

Tri

poly

phos

phor

ic a

cid,

H5P

3010

0-

51

1-20

4 22

2-

3 5-

7 '—

4 2-

2 2-

31

5-84

'—

4 2

2.13

5-

75

'-..4

17

1-

89

5.77

4 17

1-

95

5-77

-.

4 1-

7 1-

98

578

'—1

17

2-12

59

0 -.

4 1-

7 1-

95

580

'—.1

1-

7 2.

62

5-84

4 1-

7 2-

15

588

'—4

17

2-10

58

0 '—

'05

1-15

2-

04

569

1-06

2-

11

5-83

2-15

6-

00

8-73

2-

30

6-50

9-

24

2-2

2-6

5-6

7-9

2-79

6-

47

9-24

I 0-

2 I =

0-3

I ==

0-1

I =

0-2

I = 0-

3 '=

0-i

CA

LO

RIM

11

3 E

3bg

Ill

E3b

g 11

2 E

3bg

L6,

W7

E3b

g J8

E

3bg

B40

E3b

g Y

3 E

3bg

E16

E

3bg

M14

E

3bh

W24

25

ForI

=0

0 10

25

8-51

8-

70

8-65

8-

50

8-51

8-

52

8-55

8-

48

8-48

8-

48

8-39

8-

56

8-81

37

37

37

50

50

50

65

65

25

25

Con

cent

ratio

n co

nsta

nts;

pK

i an

d pK

2 ar

e ve

ry u

ncer

tain

; N

Me4

salts

; I =

0-1

(NM

e4B

r) ;f

assum

ed sa

me

as fo

r HB

r

1= 1

-0

I = 1

(NM

e4B

r);

as f

or Il

l "P

ract

ical

" co

nsta

nts;

NM

e4+

sal

t; I =

1-0

(NM

e4C

1)

I = 0-

1 (N

Me4

C1)

Fo

r I =

0, b

y ex

trap

olat

ion

agai

nst

(con

cent

ratio

n)*

25

"Pra

ctic

al"

cons

tant

s; I =

0-1

(NaN

Oa)

; C =

10

M

25

At I =

0, e

xtra

pola

ted

from

I—

0-01

(K

salt)

, us

ing

Deb

ye-

HU

ckel

equ

atio

n 5-

29

7-58

27

-4

"Pra

ctic

al"

cons

tant

s; I =

0-75

(N

aNO

3)

5-43

8-

06

25

Con

cent

ratio

n con

stan

ts; I

= 0-

1(K

CI)

; c =

0-00

1 M

5-

43

7-87

20

C

once

ntra

tion

cons

tant

s; I =

0-1(

KC

J);

c =

0-00

1 M

25

pK

5; I =

0-00

5 to

0-0

4, e

xtra

pola

ted

to I

= 0

9-54

9-

62

40

205.

Tri

thio

carb

onic

aci

d, H

2CS3

28

1 4-

5 2-

76

8 c =

0-00

5—0-

02

extr

apol

ated

aga

inst

I C

l G

9

2-72

14

2-

68

20

8-18

20

H

ydro

lysi

s of

0-00

5 an

d 00

1 M

Na2

CS3

and

K2C

S3 s

olut

ions

E

3ag

206.

Tun

gstic

acid

, H2W

04

'—'3

-5

'—4-

6 Se

e al

so D

odec

atun

gstic

acid

20

I

= 0

-1 (

NaC

IO4)

; ra

pid—

reac

tion

tech

niqu

e U

nder

or

dina

ry c

ondi

tions

, W

042

is i

n eq

uilib

rium

with

H

W6O

ii; l

og K

= 6

5-5

at 2

5° f

or (

HW

6O21

5j (

H20

)3/

(H+

)7 (

W04

2j6

(ref

. D42

) or

= 60

-7 a

t 25°

in

3 M

NaC

1O4

E3a

g S3

3

25

pK f

or h

ydro

lysi

s of

U0s

; fr

om h

ydro

lysi

s of

pur

e sa

lts;

corr

ecte

d for

form

atio

n of

(U02

)2(O

H)2

2+; I =

0035

(NaC

1O4)

16

pK

for

hydr

olys

is of

U02

2+;

from

hyd

roly

sis

of p

ure

salts

; 27

c =

0001

—0•

015

M

uran

yl n

itrat

e; a

t hi

gher

co

ncen

trat

ions

hy

drox

onitr

ato c

ompl

exes

are

form

ed

25

pK fo

r hyd

roly

sis

of U

022+

; I

0.5(

KN

O3)

; con

stan

ts ar

e al

so

944

give

n fo

r (U

02)2

(OH

)22+

and

(U

02)3

(OH

)s+

, w

hich

are

m

ajor

spe

cies

in 0

01 M

sol

utio

ns

Nos

. 20

7—20

9

C

Nam

e, F

orm

ula

and

pK va

lue

T(°

C)

Rem

arks

M

etho

ds

Ref

eren

ce

(ref

. S6

). L

east

-squ

ares

refi

ned

equi

libri

um c

onst

ants

(fo

r 3 M

LiC

1 at

500

) ar

e 7H

+ 6W

042—

3H

20 ±

HW

6021

5-, l

og K

= 5

398

14H

+ +

12W

042—

7H

20 +

W12

0411

0—,

log

K

1100

3 18

H +

12W

042—

91

120

+ W

1203

96—

, lo

g K

= 13

2•51

A

42

207.

(Aqu

o) U

rani

um(I

V) i

on, T

J 19

0 F0

0 10

43

pK

for h

ydro

lysi

s of

to

UO

H3;

I =

05(N

aC1O

4, H

CIO

4)

c=7

x i0

4MU

4 06

K

59

A•1

2 06

8 10

25

E

xtra

pola

tion

to I

= 0,

usi

ng m

odif

ied

Deb

ye-H

ucke

l equ

atio

n at

l= 0

0-l8

43

at

l=0

0•68

138

1•12

25

152

24•7

pKfo

r hyd

roly

sis

of U

4; I

002

to 2

0; ex

trap

olat

ed to

I = 0

by fi

tting

to e

xten

ded

Deb

ye-H

ucke

l equ

atio

n pK

for h

ydro

lysi

s of

U4;

I = 0.

19(H

C1O

4)

06

06

K58

B38

1•68

17

4 20

0

125

25

25

25

I = 2(

NaC

1O4)

I =

2(N

aC1O

4); D

20 so

lutio

n I =

3(N

aClO

4);

sim

ilar

valu

e fr

om r

edox

pot

entia

ls;

poly

- nu

clea

r com

plex

es a

re a

lso f

orm

ed

PKb

for

hydr

olys

is of

U4;

from

spi

n-la

ttice

rel

axat

ion

time

vs p

H i

n 00

3 M

sol

utio

ns

For

pK v

alue

s in

eth

anol

-wat

er m

ixtu

res,

see

R18

O

ther

mea

sure

men

ts: L

i 2

05

E3b

g,h

NM

R

S76

1153

V5

.

208.

(A

quo)

Ura

nyl io

n, U

O2

582

505

4.59

570

419

E3a

g H

44

E3a

g P3

7

E3b

g B

3

610

634

9•2

80

83

25

20

pK fo

r hyd

roly

sis

of U

Os2

; al

low

ance

was

mad

e fo

r for

mat

ion

of (U

02)2

(OH

)22+

pK

b fo

r U

02(O

H)2

+ 0

H

UO

2OH

- + H

20;

corr

ecte

d fo

r for

mat

ion o

f (U

O2)

2(O

H)2

2, (

UO

2)4(

OH

)62

and

U20

72

Succ

essi

ve p

Kb

valu

es fo

r for

mat

ion

of U

O2O

H,

U02

(OH

)2

and

UO

s(O

H)3

; I =

01 (N

aC1O

4)

E3b

g

E3b

DIS

TR

IB

G53

116

S70

598

25

pK f

or h

ydro

lysi

s of

U02

2+;

dete

rmin

ed b

y di

ssoc

iatio

n fi

eld

effe

ct r

elax

atio

n m

etho

d T

he m

ajor

spec

ies i

n hy

drol

ysed

U02

2+ so

lutio

ns, 1

M in

KC

1 or

N

aC1O

4,

are

(U02

)2(O

H)2

2+, (

U02

)3(O

H)4

2+ a

nd (

U02

)a

(OH

)S+

; con

stan

ts ar

e gi

ven

Res

ults

in

3 M

NaC

1, M

g(C

104)

s, C

a(C

104)

s, a

nd N

aC1O

4,

1 M

KN

O3,

and

F5

M N

a2SO

4 ar

e in

terp

rete

d in

ter

ms

of fiv

e or

mor

e po

lynu

clea

r com

plex

es fo

r whi

ch e

quili

briu

m co

nsta

nts

are

give

n O

ther

mea

sure

men

ts: A

l3,

Gil,

G49

, G

50, H

40,

H47

, K

47,

R43

, R45

KIN

C

28a

R42

D43

,P26

209.

Van

adic

aci

d, H

3V04

(HV

O3)

. Se

e al

so D

ecav

anad

ic a

cid

At p

H va

lues

les

s th

an 1

, pe

ntav

alen

t va

nadi

um e

xist

s as t

he

catio

n V

02

In l

ess

acid

sol

utio

ns i

t un

derg

oes

exte

nsiv

e ag

greg

atio

n to

pol

ynuc

lear

spe

cies

, inc

ludi

ng d

ecav

anad

ates

. 37

8 25

I =

05(

NaC

lO4)

; usi

ng tr

acer

con

cent

ratio

ns of 4

8V;

— lo

g D

IST

RIB

D

47

K =

320

for V

O2

+ H

20

HV

O3 +

H

34

823

20

Rap

id-r

eact

ion

stud

ies;

van

adat

e so

lutio

ns i

nitia

lly a

t pH

05

S3

2 9—

10;

fina

l van

adat

e co

ncen

trat

ion

2—4 x

10

appa

rent

pK

; I =

0.1 (

NaC

1O4)

83

1 20

di

tto; I

= 01

(NM

e4C

1)

7•8

25

I = 05

(NaC

1); l

og K

= 7

6 fo

r 3H

2V04

V

3O9

+ 3H

20;

— lo

g K

50

for

2H

2V04

H

V20

73 +

H +

H20

13

2 25

I =

3(N

aC1O

4); K

50

for 2

HV

O42

V

2O7

+ H

2O

7•72

13

0 25

I =

05(N

aCl);

log

K =

— 3

18 fo

r 2H

V04

2 H

V20

73

+

E3b

g 18

O

H-;

logK

= —

104

2 fo

r 3H

VO

42

V3O

g +

30H

7•

83

25

I = 05

; re

calc

ulat

ion

of e

arlie

r da

ta;

cons

tant

s are

giv

en fo

r B

80,1

8 se

vera

l con

dens

ed s

peci

es

844

Als

o lo

g K

= —

522

for V

3O93

3V

Or;

05

S1

4 —

log

K =

35

to 4

0 fo

r VO

2 H

+ H

VO

3;

— lo

g K

43

to 4

8 fo

r HV

O3

H +

VO

3 89

5 25

D

ilute

solu

tions

05

B

5

Nos

. 21

0—21

2

Nam

e, F

orm

ula

and

pK v

alue

T

(°C

) R

emar

ks

Met

hods

R

efer

ence

144

25

07

962

1272

32

4 I =

9; in

satu

rate

d N

a2SO

4 so

lutio

ns

CR

YO

SC S

iG

11-1

3 20

I

02; i

n ac

id s

olut

ions

V e

xist

s as

V02

+ a

nd V

O'+

, pol

y-

E3a

g S5

m

eriz

ing

in n

eutr

al s

olut

ions

to d

ecav

anad

ates

. In

alk

alin

e so

lutio

ns, m

onon

ucle

ar sp

ecie

s pr

edom

inat

e if c

< 10

—s M

; lo

gK =

25-0

5 fo

r 2V

04 +

2H

V

207

+ 11

20;

log

K =

— 2-

79 f

or 21

1V04

2—

VsO

4 +

H20

; lo

g K

= —

109

9 fo

r V40

i2 +

H20

H

V04

2- +

H

1299

25

C

once

ntra

tion

cons

tant

; I =

3(N

aCIO

4;

05

N19

K

48

for 2

HV

042-

V

204

+ H

20

13.1

5 33

1 =

9; sa

tura

ted

Na2

SO4

solu

tions

C

RY

OSC

S63

K

=20

x l0

- fo

r T

il im

port

ant b

etw

een

pH2

and

p114

. K

= F

2 x

1O fo

r H3V

20 +

3H

2V

02 +

H20

D

40

K =

2-8

x 1O

- fo

r H

3V20

7 +

H

2HV

03 +

H20

, at

Y

lO

I = 00

06 a

nd 2

K

164

x 1O

for H

VO

3 +

H

V02

+ 11

20

log

K =

— 3

0-48

for V

3093

3H

+ 3H

V04

2 S6

0 O

ther

mea

sure

men

ts: B

79a,

D40

, L15

, Z4

210.

(A

qu

292

o) V

anad

ium

(I11

) io

n, V

35

25

Su

cces

sive

pK va

lues

for h

ydro

lysi

s of V

3; ca

lcul

ated

from

dat

a of

G. J

ones

and

W. A

. Ray

, J. A

m. C

izei

n. S

oc.,

66,

1571

(19

44);

c =

0-00

04—

004

M V

2 (S

O4)

3

E3a

g M

23

285

3-85

Su

cces

sive

pK

val

ues

for h

ydro

lysi

s of V

; I =

1(N

aC1)

; al

so

— lo

g K

= 3

90 fo

r 2V

+ 21

120

V2(

OH

)24+

+ 2H

+

E

P3

27

F37

Oth

er m

easu

rem

ents

: B79

b

211.

(A

quo)

Van

adyl

ion,

V0

(= V

(OH

)22+

) 4-

77

20

pK fo

r V

O +

H20

V

0-O

H +

H; c

00

12 r%s

V

02+

; E

3bg

D40

no

cor

rect

ion f

or d

imer

izat

ion

5-36

25

pK

for

V02

+;

c =

0-00

01—

0-05

M V

OSO

4; c

alcu

late

d fr

om

E3a

g M

23

data

of G

. Jon

es a

nd W

. A. R

ay,

J. A

m. C

hem

. So

c., 6

6, 1

571

(194

4)

2 68

8 25

pK

for V

02+

; I

3(N

aC1O

4); log K =

51

for d

imer

izat

ion

of

E3b

g R

30

VO

OH

to (

VO

)2(O

H)2

2 —

05

Roo

m

pKfo

r VO

H3

V02

+ +

H; f

rom

chan

ges i

n nu

clea

r rel

axa-

R

17

tion

times

; in

dilu

te H

2S04

06

in d

ilute

HN

O3

—09

in

dilu

te H

C1O

4

212.

Wat

er,

H20

14

9435

0

I = 0

re-e

xam

inat

ion o

f da

ta b

y Harned a

nd c

o-w

orke

rs;

Elc

h H

38

1473

38

5 m

olal

sca

le

1453

46

10

1434

63

15

1416

69

20

1399

65

25

138330

30

136801

35

135348

40

1339

60

45

132617

50

1313

69

55

1301

71

60

14535

10

Mol

ar sc

ale

1416

9 20

14

000

25

13-837

30

1354

2 40

13

-272

50

16

279

10

Mole fraction scale

15911

20

1574

1 25

15•577

30

15-279

40

15006

50

14946

0 L

iBr

solu

tions

; I =

001

to 3-0;

Elch

H32

14-735

5

E c

orre

cted

usi

ng D

ebye

-Hüc

kel e

quat

ion

and

extr

apol

ated

14

-535

10

ag

ains

t ito

I =

0 14

346

15

1416

7 20

13

-997

25

No.

212

Nam

e, F

orm

ula

and

pK va

lue

T(°

C)

Rem

arks

M

etho

ds

Ref

eren

ce

1383

4 30

13

•680

35

13

.539

40

14

945

0 N

aC1

solu

tions

; as

for

H32

E

lch

H36

14

535

10

1416

7 20

13

997

25

1383

3 30

13

•536

40

13

261

50

1301

5 60

14

939

0 K

C1

solu

tions

; I =

001

to 3

5 as

for

H32

E

lch

H34

14

730

5 14

533

10

1434

5 15

14

•167

20

13

997

25

1383

2 30

13

•620

35

13

535

40

1339

6 45

13

262

50

1313

9 55

13

017

60

pK =

478

73/T

+ 71

321

log

T +

001

0365

T —

228

01 (T

in

°K)

The

rmod

ynam

ic q

uant

ities

are

calc

ulat

ed fr

om th

e re

sults

14

955

0 Fo

r I =

0;

from

ca

lori

met

ric

mea

sure

men

ts o

n el

ectr

olyt

e A

8 14

534

10

solu

tions

14

•161

20

13

999

25

1383

3 30

13

533

40

1326

2 50

13

•015

60

l2

800

70

12-5

98

80

12-4

22

90

12-2

59

100

12-1

26

110

12-0

02

120

11-9

07

130

1492

6 0

I = 0

-000

1 to

1-5

; pot

entia

ls c

orre

cted

to I

= 0

usin

g equ

atio

ns

E3a

h B

57

14-2

22

18

of th

e fo

rm, E

corr

= E

obs

+ tI

t —

/31

13-9

80

25

13-5

90

37

13-0

5 60

Pr

edic

ted f

rom

ther

mod

ynam

ic d

ata,

taki

ng pK

= 13

-997

at

C25

12

-21

100

25°

11-6

5 15

0 11

-30

200

11-1

8 25

0 11

-19

300

11-3

3 35

0 12

-32

100

From

mea

sure

men

ts of

the

degr

ee o

f hyd

roly

sis o

f am

mon

ium

C

l N

24

2 11

-65

156

acet

ate

" 11

-34

218

11-7

7 30

6 13

-907

25

I =

0-1,

taki

ng p

K =

13-

997

at 1

atm

osph

ere;

E

lcg

H16

25

0 at

mos

pher

es

13-8

24

500

atm

osph

eres

13

-747

75

0 at

mos

pher

es

13-6

67

1000

atm

osph

eres

13

-585

12

50 at

mos

pher

es

13-5

24

1500

atm

osph

eres

13

-449

17

50 at

mos

pher

es

13-3

94

2000

atm

osph

eres

Fo

r pr

edic

tions

of pK

from

350

—70

0° at

sup

erhe

ated

-ste

am

dens

ities

of 0

-3 t

o 0-

7 g.

cm3.

, see

F26

R

ef. H

49a

give

s an

equ

atio

n fo

r th

e va

riat

ion

of p

K w

ith

tem

pera

ture

from

to 3

06°

For

valu

es o

f pK

in H

20JD

20 m

ixtu

res,

see

S3

29

pK o

f OH

—;

theo

retic

al p

redi

ctio

n S2

9 23

-2

pK o

f OH

—,

assu

min

g th

e di

ffer

ence

be

twee

n pK

i and

pK2

of

B55

H

2O is

the

sam

e as

for H

2S

Nos

. 21

3—21

7

Nam

e, F

orm

ula a

nd p

K va

lue

T( °

C)

Rem

arks

M

etho

ds

Ref

eren

ce

208

pK o

f OH

—,

sam

e as

sum

ptio

n, b

ut m

ore

rece

nt va

lues

for H

2S,

H2S

e an

d H

2Te

For

the

basi

c pK

of 1

120

in c

once

ntra

ted

H2S

04, s

ee G

22

Oth

er m

easu

rem

ents

: All,

A14

, B23

(fo

r pre

-191

6 ref

eren

ces)

, B

96, C

6, D

20,

H30

, H33

, 11

35,

H51

a, 1

3, 1

9, L

2, L

23, N

b,

Nil,

N20

, 05

, R

19, W

35

E3

213.

Xen

on tr

ioxi

de, X

eOs

105

108

25

pKfo

r Xe0

3.aq

. H

XeO

+ H

; I =

05(N

aC1O

4)

I = 04

E

3bg

A30

214.

(A

quo)

Ytte

rbiu

m(I

II) i

on, Y

b 79

2

803

25

25

pK5

for h

ydro

lysi

s of

Yb3

; titr

atio

n of 0

004—

0009

M Y

b(C

104)

3 w

ith 0

02 M

Ba(

OH

)2; I =

03(N

aClO

4)

ditto

, usi

ng 0

O2M

NaO

H

E3b

F3

3a

215.

(A

quo)

91

0 Y

ttriu

m(H

I) io

n, Y

25

pK

for h

ydro

lysi

s of

Y; I

= 3(

LiC

1O4)

; E

3ag,

quin

B45

c =

001—

1 M

Y(C

104)

s; Y

2(O

H)2

4+

834

25

(log

K =

— 14

.28)

an

d Y

3(O

H)5

4+

(log

K =

— 3

3.8)

are

als

o fo

rmed

pK

a fo

r hyd

roly

sis

of Y

2+;

titra

tion

of 00

04—

0009

M

Y(C

104)

3 w

ith 0

02 M

Ba(

OH

)2; I

= 03

(NaC

1O4)

E

3b

F33a

216.

(Aqu

o)

930

9•15

Zin

c io

n, Z

n2

15

20

pK f

or h

ydro

lysi

s of

Zn2

to

ZnO

H;

I 00

015

to 0

04

(KN

O3)

; ext

rapo

late

d to

I = 0

E3b

g P2

1

896

25

8•79

30

8'

62

36

846

42

87

901

30

25

pK fo

r hyd

roly

sis

of Z

n2+

; I =

01

(KC

1)

pK fo

r hy

drol

ysis

of Z

n2; I =

2(K

C1)

; c =

01

M Z

nOl2

, al

so

— lo

g K

72

0 fo

r 2Z

n2 -f-

H20

Z

n2O

H3 +

H

E3b

g E

3ag

C12

S1

9

912

25

ditto

; I =

2(N

aCI)

; —

log

K =

748

fo

r 2Z

n2 +

H20

Z

n20H

3 +

H

631

488

312

339

25

Step

wis

e pK

b va

lues

for

Zn2

, 1

1(N

aC1O

4)

SOL

Y

G45

a 90

5 25

E

3bg

D45

78

7 10

0 pK

for h

ydro

lysi

s of

Zn2

; c =

002

M Z

n(N

03)s

K

IN

K69

57

pK

b fo

r ZnO

H; c

= 0

1 M

ZnS

O4

E3b

g S2

5 87

3 pK

for

Zn(

OH

)2

Zn(

OH

)3

+ H

; I

3(N

aC1O

4)

DIS

TR

IB

S38

989

pK fo

r Z

n(O

H)3

Z

n(O

H)4

2 +

H; I

= 3(

NaC

1O4)

; als

o lo

g K

= —

201

0 fo

r [Z

n(O

H)2

1 [H

+12

/[Z

n2+

J 87

25

lo

gKfo

r2Z

n2 +

OH

Zn2

OH

3+;I

= 3(

LiC

1O4)

;c =

025

B

42

— l4

5M Z

n2

1684

16

91

0 lo

g K

for Z

n +

30H

- Z

n(O

H)3

, an

d lo

g K

for

Zn2

PO

LA

RO

G

K51

15

86

1595

20

+

40H

Z

n(O

H)4

2 15

45

1555

30

15

15

25

log K

for Z

n2 +

40H

Z

n(O

H)4

2;zi

nc el

ectr

ode p

oten

tial

D36

m

easu

rem

ents

16

9 lo

g K

for Z

n2 +

40H

Z

n(O

H)4

2 PO

LA

RO

G

S68

1545

25

lo

g K fo

r Zn2

-f-

4OH

Zn(

OH

)42;

zinc

elec

trod

e pot

entia

l D

35

mea

sure

men

ts

153

25

log

K fo

r Zn2

+ 4

0H

Zn(

OH

)42;

I = 2(

KC

1)

POL

AR

OG

M

20

145

18

log K

for Z

n2 +

40H

Z

n(O

H)4

2; zi

nc el

ectr

ode p

oten

tial

S67

mea

sure

men

ts

1335

25

lo

g K

for Z

n2 --

40H

Z

n(O

H)4

2; I =

3(N

aCl);

Zn-

Hg

S20

elec

trod

e 26

77

25

log

K fo

r 2Z

n2 +

6OH

Z

n2 (O

H) 6

2_

1504

20

lo

g K

for

Zn2

+ 40

H

Zn(

OH

)42;

Zn-

Hg

elec

trod

e B

36

1608

20

lo

g K

for Z

n2 +

3OH

Zn(

OH

)3

1358

20

lo

g K

for Z

n2 -

3OH

Zn(

OH

)3; I =

01

DIS

TR

IB

B61

Po

lynu

clea

r hy

drol

ysed

spec

ies

in z

inc

solu

tions

at p

H a

bove

8

are

post

ulat

ed fr

om c

oagu

latio

n st

udie

s M

19

Oth

er m

easu

rem

ents

: A5,

B10

0, D

8, D

24, F

36, H

5, K

5, K

45,

K70

, P42

, Q2,

S18

, S5

6, W

26

217.

(Aqu

o) Z

irco

nium

(IV

) ion

, Z

r4

—03

2 00

6 03

5 06

4 25

Su

cces

sive

pK

valu

es fo

r the

hydr

olys

is of

Zr4

; I =

1(H

C1O

4);

DIS

TR

IB

P25

low

Zr4

+ co

ncen

trat

ions

; at h

ighe

r con

cent

ratio

ns po

lym

ers a

re

also

for

med

02

2 06

2 10

5 11

7 25

Su

cces

sive

pK

val

ues

for

the

hydr

olys

is o

f Z

r4; I =

2(H

C1,

D

IST

RIB

S5

7 H

NO

3)

1458

14

80

1434

14

13

25

Succ

essi

ve p

Kb

valu

es fo

r hy

drol

ysis

of

Zr4

; I =

1 (L

iC1O

4,

DIS

TR

IB

S57a

N

aClO

4); t

race

r con

cent

ratio

ns of

Zr(

IV)

IV REFERENCES

A

Al G. A. Abbott and W. C. Bray J. Am. Chem. Soc. 31 729 (1909)A2 E. Abel, E. Bratu and 0. Redlich Z.Physik. Chem. A173 353 (1935)A3 E. Abel and J. Proisi Monatsh. 72 1 (1938)A4 E. Abel, 0. Redlich and P. Hersch Z. Physik. Chem. A170 112 (1934)A5 F. Achenza Ann. Ch&n. (Rome) 48 565 (1958)A6 F. Achenza Ann. Chim. (Rome) 49 624 (1959)A7 F. Achenza Red. Seminar. Fac. Sd. Univ. Gagliari 29 52 (1959); GA 54 21954 (1960)A8 T. Ackermann Z. Elektrochem. 62 411(1958)A8a M. N. Ackermann and R. E. Powell Inorg. Chem., 5 1334 (1966)A9 L. P. Adamovich and G. S. Shupenko Ukrain. Khim. Zhur. 25 155 (1959); CA 53

18601 (1959)AlO A. L. Agafonova and I. L. Agafonov Zhur. Fiz. K1im. 27 1137 (1953)All A. Agren Acta Chem. Scand. 9 49 (1955)A12 I. Ahlberg Acta Chern. Scand. 16, 887 (1962)A13 S. Ahrland Acta Chem. Scand. 3 374 (1949)A14 S. Ahrland and I. Grenthe Acta Chem. Scand. 11 111 (1957)A15 E. Ahrland, K. Larsson and K. Rosengren Acta Chern. Scand. 10 705 (1956)A16 J. W. Akitt, A. K. Covington, J. G. Freeman and T. H. Lilley Chem. Comm. 1965 349A17 I. P. Alimarin, S. A. Kamid and I. V. Puzdrenkova Rnss. J. Inorg. Chem. (Engi. trans.)

10 209 (1965)A18 T. L. Allen and R. M. Keefer J. Am. Chem. Soc. 77 2957 (1955)Al9 A. R. Amell J. Am. Chem. Soc. 78 6234 (1956)A20 G. Anderegg Helv. Chim. Acta 40 1022 (1957)A21 G. Anderegg, G. Schwarzenbach, M. Padmoyo and 0. F. Borg Helv. Chim. Acta 41

988 (1958)A22 K. P. Ang J. Chem. Soc. 1959 3822A23 P. j. Antikainen Suornen Kern, 28B 135 (1955)A24 P. J. Antikainen Acta Chem. Scand. 10 756 (1956)A25 P. J. Antikainen Suornen Kern. 30B 123 (1957)A26 P. J. Antikainen Suomen Kern. 30B 201 (1957)A27 P. J. Antikainen and D. Dyrssen Acta Chem. Scand. 14 86 (1960)A28 P. J. Antikainen and V. M. K. Rossi Suomen Kern. 32B 185 (1959)A29 P. J. Antikainen and K. Tevanen Suomen Kern. 34B 3 (1961)A30 E. H. Appelman and J. G. Malm J. Am. Chem. Soc. 86 2141 (1964)A31 T. V. Arden .1. Chem. Soc. 1951 350A32 G. P. Arkhipova, r. E. Flis and K. P. Mishehenko Russ. J. Appi. Chem. (Engi. trans)

37 2275 (1964)A33 K. Arndt Z. Physik. Chem. 45 571 (1903)A34 E. M. Arnett and R. D. Bushick J. Am. Chem. Soc. 86 1564 (1964)A35 E. M. Arnett and G. W. Mach J. Am. Chem. Soc. 86 2671 (1964)A36 E. M. Arnett and G. W. Mach J. Am. Chem. Soc. 88 1177 (1966)A37 K. G. Ashurst and W. C. Higginson J. Chem. Soc. 1956 343A38 R. W. Asmusson and L. T. Muus Trans. Danish Acad. Tech. Sci. 1946 No. 1, 3A39 L. F. Audrieth and S. F. West J. Am. Chem. Soc. 77 5000 (1955)A40 F. Z. Auerbach Z. Physik. Chem. 49 217 (1904)A41 M. Auméras J. Chim. Phys. 25 300 (1928)A42 J. Aveston Inorg. C/scm. 3 981 (1964)A42a J. Aveston J. Chern. Soc., A 1966 1599.A43 J. Aveston, E. W. Anacker and J. S. Johnson Inorg. C/scm. 3 735 (1964)A44 S. Aybar Comm. Fac. Sci. Univ. Ankara 5B 22 (1954); CA 49 9362 (1955)A45 S. Aybar Comm. Fac. Sci. Univ. Ankara lOB 44 (1962); CA 59 13397 (1963)

B

Bi A. K. Babko, V. V. Lukachina and B. I. Nabivanets Russ. J. Inorg. Chem. (Engi.trans., 8 957 (1963)

B2 C. F. Baes .1. Am. C/scm. Soc. 79 5611 (1957)219

REFERENCES

B3 C. F. Baes and N. J. Meyer Jnorg. Chern. 1 780 (1962)B4 C. F. Baes, N. J. Meyer and C. E. Roberts Znorg Chem. 4 518 (1965)B5 N. Bailey, A. Carrington, K. A. K. Lott and M. C. R. Symons J. Chem. Soc. 1960 290B6 T. A. Bak and E. L. Prestgaard Ada C/tern. Scand. 11 901 (1957)B7 F. B. Baker and T. W. Newton J. Phys. Chem. 61 381 (1957)B8 F. B. Baker, T. W. Newton and M. Kahn J. Phys. Chern. 64 109 (1960)B9 D. L. Ball and J. 0. Edwards .1. Am. C/tern. Soc. 78 1125 (1956)BlO W. G. Barb, J. H. Baxendale, P. George and K. R. Hargrave Trans. Faraday Soc. 47

591 (1951)Bli J. Barr, R. J. Gillespie and E. A. Robinson Canad. J. C/tern. 39 1266 (1961)B12 K. N. Bascombe and R. P. Bell J. C/tern. Soc. 1959 1096B13 S. J. Bass, R. J. Gillespie and E. A. Robinson J. C/tern. Soc. 1960 821B14 R. G. Bates J. Res Nati. Bar. Std. 47 127 (1951)B15 R. G. Bates and S. F. Acree J. Res. Nail. Bar. Std. 30 129 (1943)B16 R. G. Bates and S. F. Acree J. Res. Natl. Bar. Std. 34 373 (1945)Bl7 R. G. Bates, V. E. Bower, R. G. Canham andJ. E. Prue Trans. Faraday Soc. 55 2062

(1959)Bl8 It. G. Bates and R. Gary J. Res. Nail. Bar. Sid. GSA 495 (1961)B19 R. G. Bates and G. D. Pinching J. Res. Nail. Bar. Std. 42 419 (1949)B20 R. G. Bates and G. D. Pinching .1. Am. C/tern. Soc. 72 1393 (1950)B21 C. J. Battaglia and J. 0. Edwards Inorg. C/tern. 4 552 (1965)B22 E. Bauer Z. Physik. C/tern. 56 215 (1906)B23 H. T. Beans and E. T. Oakes J. Am. C/tern. Soc. 42 2116 (1920)B24 K. Beck and P. StegmUller Arb. Kaiser Gesnndh. 34 446 (1910)B25 R. P. Bell The Proton in Chemistry, Chap. 7, Cornell Univ. Press, New York (1959)B26 R. P. Bell, K. N. Baseombe and J. C. MeCoubrey J. C/tern. Soc. 1956 1286B27 R. P. Bell, A. L. Dowding andJ. A. Noble f. C/tern. Soc. 1955 3106B28 R. P. Bell and E. Gelles J. C/tern. Soc. 1951 2734B29 R. P. Bell and J. H. B. George Trans. Faraday Soc. 49 619 (1953)B30 R. P. Bell and M. H. Panckhurst J. C/tern. Soc. 1956 2836B31 R. P. Bell andJ. E. Prue J. C/tern. Soc. 1949 362B32 R. P. Bell and G. M. Waind J. C/tern. Soc. 1950 1979B32a M. Beran Call. Czech. C/cern. Comm. 32 1368 (1967)B33 C. Bereeki-Biedermann Arkiv Kerni 9 175 (1956)B34 D. Berg and A. Patterson J. Arn. C/tern. Soc. 75 5197 (1953)B35 D. Berg and A. Patterson J. Am. C/cern. Soc. 75 5731 (1953)B36 P. Bernheim and M. Quentin Cornpt. Rend. 230 388 (1950)B37 F. Bertin, G. Thomas andJ. C. Merlin Cornpt. Rend. 260 1670 (1965)B38 R. H. Betts Canad. J. Chern. 33 1775 (1955)B39 J. Beukenkamp and K. D. Herrington J. Am. C/tern. Soc. 82 3025 (1960)B40 J. Beukenkamp, W. Rieman and S. Lindenbaum Anal. C/tern. 26 505 (1954)B41 G. Biedermann Rec. Tray. C/tim. 75 716 (1956); Arkiv Kerni 9 277 (1956)B42 G. Biedermann Proc. 7th mt. Conf Coordin. C/tern. Stockholm 1962 159B43 G. Biedermann and L. Ciavatta Acta C/tern. Scand. 15 1347 (1961)B44 G. Biedermann and L. Ciavatta Acta C/tern. Scand. 16 2221 (1962)B45 G. Biedermann and L. Ciavatta Arkiv Kemi 22 253 (19 64)B46 G. Biedermann and S. Hietanen Acta C/tern. Scand. 14 711(1960)B47 G. Biedermann, M. Kilpatriek, L. Pokras and L. G. Sillén Acta C/tern. Scand. 10 1327

(1956)B48 G. Biedermann, N. C. Li and J. Vu Acta C/tern. Scand. 15 555 (1961)B49 G. Biedermann and L. Newman Arkiv Kemi 22 303 (1964)B50 G. Biedermann and L. 0. Sillén Acta C/tern. Scand. 14 717 (1960)B50a H. Bilinski and N. Ingri Acta C/tern. Scand. 21 2503 (1967)B51 T. C. Bissot, R. W. Parry and D. H. Campbell .1. Am. C/tern. Soc. 79 796 (1957)B52 N. Bjerrum Kgl. Danske Videnskab Selskab Slcrjfier, Nat.-mat. Afd. 4 1 (1906)B53 N. Bjerrum Z. Physik. C/tern. 59 336 (1907)B54 N. Bjerrum Z. Physik. C/tern. 73 724 (1910)B55 N. Bjerrum Z. Physik. C/tern. 106 219 (1923)B56 J. Bjerrum Diss., Copenhagen, 1941B57 N. Bjerrum and A. Unmack Kgl. Danske Videaskab. Selskab, Mat.-fys Medd. 9 No. 1

(1929)B58 E. Blanc J. Chirn. Phys. 18 28 (1920)B59 A. A. Blanehard Z. Physik. C/tern. 41 681 (1902)B60 B. Blaser and K. H. Worms Z. Anorg. Al/gem. C/tern. 301 18 (1959)B61 H. Bode Z. Anorg. Allgern. C/tern. 317 3 (1962)B62 R. H. Bogue J. Arn. C/tern. Soc. 42 2575 (1920)B63 J. A. Bolzan Rev. Fac. Cienc. Qairn., Univ. NacI. La Plata 3367 (1960) ; CA 583091(1963)

220

REFERENCES

B64 J. A. Boizan and A. J. Arvia Electrochim. Acta 7 589 (1962)B65 J. A. Boizan and A. J. Arvia Electrochim. Acta 8 375 (1963)B66 T. G. Bonner and J. C. Lockhart J. Chem. Soc. 1957 2840B67 E. Bottari and L. Ciavatta J. Inorg. Ned. Chem. 27 133 (1965)B67a J. H. Boughton and R. N. Keller J. Inorg. Nuci. Chem. 28 2851 (1966)B68 K. Bowden Canad. J. Chem. 43 2624 (1965)B69 R. H. Boyd J. Am. Clzem. Soc. 83 4288 (1961)B70 R. H. Boyd J. Am. Chem. Soc. 85 1555 (1963)B71 G. E. K. Branch, D. L. Yabroff and B. Bettman J. Am. Chem. Soc. 56 937 (1934)B72 J. C. D. Brand J. Chem. Soc. 1950 997B73 J. C. D. Brand, W. C. Horning and M. B. Thornley J. Chem. Soc. 1952 1374B74 J. C. D. Brand, A. W. P. Jarvie and W. C. Horning J. Chem. Soc. 1959 3844B75 E. A. Braude J. Chem. Soc. 1948 1971B76 W. C. Bray and A. V. Hershey J. Am. Chem. Soc. 56 1889 (1934)B77 W. C. Bray and H. A. Liebhafsky J. Am. Chem. Soc. 57 51(1935)B78 G. Bredig Z. Physik. Chem. 13 289 (1894)B79 R. Brinkman, R. Margaria and F. J. W. Roughton Proc. Roy. Soc. (London) 232A 65

(1933)B79a F. Brito Anaics Real Soc. Espan. Fir. Quim. (Madrid), Ser. B, 62 128 (1966); CA 65

3075 (1966)B79b F. Brito Anales Rear Soc. Espan. Fis Quim. (Madrid), Ser. B, 62 193 (1966); CA 65 3082

(1966)B79c F. Brito Anales Real Soc. Es/mn. Fis. Quim. (Madrid), Ser. B, 62 197 (1966); CA 653075

(1966)B80 F. Brito, N. Ingri and L. G. Sillén Acta Chem. Scand. 18 1557 (1964)B8l H. T. S. Britton J. Chem. Soc. 125 1572 (1924)B82 H. T. S. Britton J. Chem. Soc. 129 614 (1927)B83 H. T. S. Britton and H. G. Britton J. Chem. Soc. 1952 3892B84 H. T. S. Britton and E. N. Dodd J. Chein. Soc. 1931 2332B85 H. T. S. Britton and E. N. Dodd Trans. Faraday Soc. 29 537 (1933)B86 H. T. S. Britton and P. Jackson J. Chem. Soc. 1934 1048B87 H. T. S. Britton and R. A. Robinson J. Chnn. Soc. 1931 458B88 H. T. S. Britton and R. A. Robinson Trans. Faraday Soc. 28 531 (1932)B89 A. I. Brodskii and L. V. Sulima Dokiady Akad. Nauk S.S.S.R. 85 1277 (1952)B90 H. H. Broene and T. De Vries J. Am. Chem. Soc. 69 1644 (1947)B91 S. Broersma J. Chern. Phys. 26 1405 (1957)B92 J. N. Brönsted and C. V. King J. Am. Chem. Soc. 49 193 (1927)B93 J. N. Brönsted and K. Pedersen Z. Physik. Chern. 108 185 (1924)B94 J. N. Brönsted and K. Volqvartz Z. Physik. Chem. 134 97 (1928)B95 C. Brosset Neiturwiss. 29 455 (1941)B96 C. Brosset Acta C/scm. Scand. 6 910 (1952)B97 C. Brosset, G. Biedermann and L. G. Sillén Acta Chem. Scand. 8 1917 (1954)B98 C. Brosset and B. Gustaver Suensk. Kern. Tidskr. 54 155 (1942)B99 C. Brosset and U. Wahlberg Svensk. Kern. Tidskr. 55 335 (1943)ff100 H. F. Brown and J. A. Cranston J. Chem. Soc. 1940 578BIOl S. Bruckenstein and D. C. Nelson J. Chem. Eng. Data 6 605 (1961)B102 T. C. Bruice and S. J. Benkovic J. Am. C/scm. Soc. 86 418 (1964)B103 T. C. Bruice and J. J. Bruno J. Am. Chem. Soc. 83 3494 (1961)B104 S. Bruner Z. Electrochem. 19 861 (1913)B105 J. Buchanan and S. D. Hamann Trans. Faraday Soc. 49 1425 (1953)B106 J. R. Buchholz and R. E. Poe1l J. Am. Chem. Soc. 85 509 (1963)B107 G. T. Buist and J. D. Lewis Chem. Comm. 1965 66B108 D. Bunn, F. S. Dainton and S. Duckworth Trans. Faraday Soc. 57 1131 (1961)B109 K. A. Burkov, L. S. Liliá and L. G. Sillén Acta Chem. Scand. 19 14 (1965)BilO E. A. Burns and F. D. Chang J. P/ivs. Chem. 63 1314 (1959)Bill F. J. J. Buytendyk, R. Brinkman and H. W. Mook Biochem. J. 21 576 (1927)

CCl W. B. Campbell and 0. Maas Canad. J. Res. 242 (1930)C2 J. P. Candlin and R. G. Wilkins J. Chem. Soc 1960 4236C3 J. P. Candlin and R. G. Wilkins J. Am. Chem. Soc. 87 1490 (1965)C4 R. Caramazza Gazz. Chim. Ital. 87 1507 (1957)C5 R. Caramazza Gazz. Chins. Ital. 88 308 (1958)C6 B. Careli and A. Olin Acta Chem. Scand. 14 1999 (1960)C7 B. Carell and A. Olin Ada C/scm. Scand. 15 727 (1961)

221

REFERENCES

CS B. Card! and A. Olin Acta Chew. Scand. 15 1875 (1961)C9 G. Carpéni Bull. Soc. Chim. France 1948 629ClO E. Carrière and H. Guiter Bull. Soc. C/tim. France 1947 267ClOa R. L. Carroll and R. E. Mesmer Inorg. Chew. 6 1137 (1967)Cli R. Cernatescu and A. Mayer Z. Physik. C/tern. A160 305 (1932)C12 S. Chaberek, R. C. Courtney and A. E. Martell J. Am. Ghe7n. Soc. 74 5057 (1952)C13 J. D. Chanley and E. Feageson J. Am. Chern. Soc. 85 1181 (1963)C14 R. M. Chapin J. Am. Chem. Soc. 56 2211 (1934)C15 B. Charreton Comp. Rend. 244 1208 (1957)C16 F. Chauveau Compt. Rend. 247 1120 (1958)C17 F. Chauveau Bull. Soc. C/tim. France 1960 810C18 F. Chauveau, P. Souchay and R. Schael Bull. Soc. Chirn. France 1959 1190C19 V. Chavane Ann. Chim. (Paris) [12] 4 383 (1949)C20 M. Cher and N. Davidson /. Am. Chem. Soc. 77 793 (1955)C21 Y. T. Chia U.S. Atomic Energy Comm. UCRL-8311 (1958): CA 53 2914 (1959)C22 J. Chojnacka Roczniki C/tern. 39 161 (1965)C23 V. G. Chukhlantsev Zhur. Fiz. Khim. 33 3 (1959)C24 L. Ciavatta Ar/rio Kemi 21 129 (1963)C25 J. W. Cobble J. Am. C/tern. Soc. 86 5394 (1964)C26 J. W. Cobble, in Treatise on Analytical Chemistry, editors I. M. Kolthoff and P. J. Elviiig,

Interscicnce Pubi., New York. Part II, Vol. 6, p. 414 (1964)C27 E. J. Cohn J. Am. Chem. Soc. 49 173 (1927)C28 M. Cola Gazz. C/tim. hal. 90 1037 (1960)C28a D. L. Cole, E. M. Eyring, D. T. Rampton, A. Silzars and R. P. Jensen J. Phys. Chew.

71 2771 (1967)C29 C. A. Colman-Porter and C. B. Monk .1. Chew. Soc. 1952 1312C30 R. E. Connick, L. G. Hepler, Z. Z. Hugus, J. W. Kury, W. M. Latirner and M. S.

Tsao .1. Am. C/tern. Soc. 78 1827 (1956)C31 R. E. Connick and M. S. Tsao J. Aim. Chem. Soc. 76 5311 (1954)C32 L. V. Coulter, J. R, Sinclair, A. G. Cole and G. C. Roper J. Am. C/tern. Soc. 81 2986

(1959)C32a A. K. Covington, N.B.S. Technical Note 400, ed. R. G. Bates, U.S. Nat. Bur. Stands.,

1966, p. 51.C33 A. K. Covington and J. V. Dobson J. Inorg. Nucl. Chew. 27 1435 (1965)C34 A. K. Covington, J. V. Dobson and W. F. K. Wynne-Jones Trans. Faraday Soc. 61

2057 (1965)C34a A. K. Covington, R. A. Robinson and R. G. Bates J. Phys. Chern. 70 3820 (1966)C35 A. K. Covington, M.J. Tait and W. F. K. Wynne-Jones Proc. Roy. Soc. A286 235 (1965)C36 J. A. Cranston and H. F. Brown J. Roy. Tech. Coll. (Glasgow) 4 54 (1937)C37 C. E. Crouthamel, A. M. Hayes and D. S. Martin J. Am. Ghem. Soc. 73 82 (1951)C38 C. E. Crouthamel, H. V. Meek, D. S. Martin and C. V. Banks J. Am. C/tern.

Soc. 71 3031 (1949)C39 M. M. Crutchfleld andJ. 0. Edwards J. Am. C/tern. Soc. 82 3533 (1960)C40 J. Curry and C. L. Hazelton J. Am. C/tern. Soc. 60 2773 (1938)C41 J. Curry and Z. Z. Hugus J. Am. Chem. Soc. 66 653 (1944)C42 F. Cüta, B. Beránek and J. PIseck Collection Czech. Chem. Commun. 23 1496 (1958)C43 F. Cüta, Z. Ksandr and M. Hejtmánek Collection Czech. C/tern. Commun. 21 1388 (1956)C44 F. Cüta and B. Polej C/tern. Listy 49 473 (1955)C45 F. Cüta and F. Stráfelda Collection Czech. C/tern. Commun. 20 9 (1955)C46 G. Czapski and B. H. J. Bielski J. Phys. Chew. 67 2180 (1963)C46a G. Czapski and L. M. Dorfman J. Phys. Chem. 68 1169 (1964)

D

Dl G. Dahigren and F. A. Long .1. Am. Chem. Soc. 82 1303 (1960)D2 K. Damm and A. Weiss Z. Naturforsch. lOb 534 (1955)D2a P. R. Danesi Acta Chein. Scand. 21 143 (1967)D3 L. S. Darken and H. F. Meier J. Am. Chern. Soc. 64 621 (1942)D4 G. Davidson J. Text Inst. 24 T185 (1933)D5 G. F. Davidson J. C/tern. Soc. 1954 1649D6 C. W. Davies J. C/tern. Soc. 1938 277D7 C. W. Davies J. C/tern. Soc. 1939 349D8 C. W. Davies J. C/tern. Soc. 1951 1256D9 C. W. Davies and B. E. Hoyle J. C/tern. Soc. 1951 233D10 C. W. Davies and L. J. Hudleston J. Chem. Soc. 125 260 (1924)Dli C. W. Davies, H. W. Jones and C. B. Monk Trans. Faraday Soc. 48 921 (1952)

222

REFERENCES

D12 C. W. Davies and C. B. Monk .1. C/tern. Soc. 1949 413D13 W. G. Davies andJ. E. Prue Trans. Faradoy Soc. 51 1045 (1955)D14 D. S. Davis C/tern. Met. Eng. 39 615 (1932)DiS J. A. Davis Thesis, Indiana Univ., 1955DIG W. Davis and H. J. de Bruin J. Jnorg. Nod. C/tern. 26 1069 (1964)D17 G. G. Davis and W. M. Smith Canad. .1. C/tern. 40 1836 (1962)D18 J. G. Dawber .1. C/tern. Soc. 1965 4111D19 J. G. Dawber and P. A. H. Wyatt J. C/tern. Soc. 1960 3589D20 H. M. Dawson .1. C/tern. Soc. 1927 1290D21 J. S. Day and P. A. H. Wyatt J. C/tern. Soc. B 1966 343D22 H. G. Denham Z. Anorg. Aligern. C/tern. 57 378 (1903)D23 H. G. Denham J. C/tern. Soc. 93 41(1908)D24 H. G. Denham and N. A. Marris Trans. Faraday Soc. 24 510 (1928)D25 T. 0. Denney and C. B. Monk Trans. Faraday Soc. 47 992 (1951)D26 N. C. Deno J. Arn. C/tern. Soc. 74 2039 (1952)D27 N. C. Deao, H. E. Berkheimer, W. L. Evans and H. J. Peterson .1. Arn. C/tern. Soc. 81

2344 (1959)D28 N. C. Deao, H. E. Berkheimer, W. L. Evans and H. J. Peterson J. Arn. C/tern. Soc. 81

2344 (1959), recalculating data due to K. Singer and P. A. Vampler J. C/tern. Soc.1956 3971 and 'F. A. 'Furney and G. A. Wright J. C/tern. Soc. 1958 2415

D29 N. C. Deno, J. J. Jaruzelski and A. Schriesheim J. Arn. C/tern. Soc. 77 3044 (1955)D30 N. C. Deno and R. W. Taft J. Arn. C/tern. Soc. 76 244 (1954)D31 H. DeVoe and G. B. Kistinkowsky J. Arn. C/tern, Soc. 83 274 (1961)D32 L. N. Devonshire and H. H. Rowley Inorg. Gisern. 1 680 (1962)D33 N. Dhar and A. K. Datta Z. E/ektrochern. 19 407 (1913)D34 H. Diebler and N. Sutin J. P/ty. C/tern. 68 174 (1964)D35 H. G. Dietrich and J. Johnson J. Arn. C/tern. Soc. 49 1419 (1927)D36 T. P. Dirske J. Electroc/tern. Soc. 101 328 (1954)D37 it G. Downing and D. E. Pearson J. Arn. (hem. Soc. 83 1718 (1961)D37a G. J. Doyle and N. Davidson J. Arn. C/tern. Soc., 71 3491 (1949)D38 N. S. Drozdov and V. P. Krylov Z/tur. Fir. K/tim. 35 2557 (1961)D39 C. Drucker Trans. Faraday Soc. 33 660 (1937)D40 L. P. Ducret Ann. C/tirn. (Paris) [12] 6 705 (1951)D4l L. P. Ducret Ann. C/tirn. (Paris) [12] 6 764 (1951)D42 .J. F. Duncan and D. L. Kepert J. C/tern. Soc. 1962 205D43 H. S. Dunsmore, S. Hietanen and L. G. Sillén Acta C/tern. Scand. 17 2644 (1963)D44 H. S. Dunsmore and G. H. Nancollas J. P/tys. C/tern. 68 1579 (1964)D44a J. R. Dung, 0. D. Bonner and W. H. Breazeale J. P/tys. C/tern. 69 3886 (1965)D45 J. L. Dye, M. P. Faber and D. J. Karl J. Arn. C/tern. Soc. 82 314 (1960)D46 D. Dyrssen and P. Lumme Acta C/tern. Scand. 16 1785 (1962)D47 D. Dyrssen and T. Sekine J. Inorg. Nuc/. C/tern. 26 981 (1964)D48 D. Dyrssen and V. Tyrrell Acta C/tern. Scand. 15 393, 1622 (1961)

E

El J. E. Earley, D. Fortnum, A. Wojcicki and J. 0. Edwards J. Arn. C/tern. Soc. 811295(1959)

E2 L. Ebert Naturwiss. 13 393 (1925)E3 L. Ebert Monatsh. 80 788 (1949)E4 J. T. Edward and i. C. Wang Canad. J. C/tern. 40 399 (1962)ES J. T. Edward and I. C. Wang Canad. J. C/tern. 43 2867 (1965)EG j. 0. Edwards .1. Arn. C/tern. Soc. 75 6151 (1953)E7 E. Eichler and S. Rabideau J. Am. C/tern. Soc. 77 5501 (1955)ES 3. S. Elliot, R. F. Sharp and L. Lewis J. P/tys. C/tern. 62 686 (1958)E9 A. J. Ellis Am. J. Sci. 257 287 (1959)ElO A. J. Ellis J. C/tern. Soc. 1959 3689El I A. J. Ellis /. C/tern. Soc. 1963 4300E12 A. J. Ellis and D. W. Anderson .1. C/tern. Soc. 1961 1765E13 A. J. Ellis and D. W. Anderson .1. C/tern. Soc. 1961 4678E14 A. J. Ellis and R. M. Golding J. C/tern. Soc. 1959 127E15 H. R. Ellison, J. 0. Edwards and E. A. Healy .1. Arn. C/tern. Soc. 84 1820 (1962)El6 H. Ellison and A. E. Martell J. l'norg. Nuci. C/tern. 26 1555 (1964)E17 K. L. Elmore,J. D. Hatfield, R. L. Dunn and A. D.Jones I. P/tys. C/tern. 693520 (1965)E18 K. Emerson and W. M. Graven J. Inorg. .N'ucl. C/tern. 11 309 (1959)El9 F. Ender, W. Tcltschik and K. Schafer Z. Elelctroc/tern. 61 775 (1957)E20 A. G. Epprecht He/v. C/tirn. Acta 21 205 (1938)

223

REFERENCES

E21 T. Erdey-Gruz, L. Majthenye and E. Kugler Ada Chim. Acad. Sci. Hung. 37 393 (1963)E22 M. G. Evans and N. Un Trans. Faraday Soc. 45 224 (1949)E23 I). H. Everett and D. A. Landsusan Trans. Faraday Soc. 50 1221 (1954)E24 A. j. Everett and G. J. Minkoff Trans. Faraday Soc. 49 410 (1953)E25 D. H. Everett and W. F. K. Wynne-Jones Proc. Roy. Soc. (London)A169 190 (1938)E26 D. H. Everett and W. F. K. Wynne-Jones Trans. Faraday Soc. 48 531 (1932)

FFl J. P. Fackler and I. D. Chawla Inorg. Chem. 3 1130 (1964)F2 L. Farkas and M. Lewin J. Am. Chem. Soc. 72 5766 (1950)F3 H. N. Farrer and F. J. C. Rossotti J. Inorg. Nncl. Chem. 26 1959 (1964)F4 J. Faucherre Bull. Soc. Chim. France 1954 128PS J. Faucherre Bull. Soc. Chim. France 1954 253F6 C. Faurholt J. Chim. Phys. 21 400 (1924)F7 A. Fava and G. Pajaro J. Am. Chem. Soc. 78 5203 (1956)P8 P. Favier and R. Sehaal Compt. Rend. 249 1231 (1959)F9 E. H. Fawcett and S. F. Acree I. Res. Natl. Bur. Stand. 6 757 (1931)PlO D. Feakins, W. A. Last and R. A. Shaw Chem. md. 1962 510Fl 1 11 Feakins, W. A. Last and R. A. Shaw J. Chem. Soc. 1964 4464P12 L. R. Fedor and T. C. Bruiee .1. Am. Chem. Soc. 86 4117 (1964)P13 R. de G. Ferreira Anais. Acad. Brasil. Cienscias 29 353 (1957)Fl4 A; N. Fletcher J. Inorg. Nod. Chem. 26 955 (1964)F15 E. P. Flint and L. S. Wells J. Res. Nail. Bur. Stand. 12 752 (1934)P16 I. E. Flis Russ. .1. Applied Chem. (Engl. trans.) 31 1183 (1958)F17 1. E. Flis, K. P. Mishehenko and N. V. Pakhornova Zhur. Neorg. Khim. 3 1772 (1958)F18 I. E. Flis, K. P. Mishehenko and G. I. Pusenok Izv. Vysshikh Llchebn. Zavedenii Khim. i

Khim. Tekhnol. 7 764 (1964)Fl9 1. E. Flis, K. P. Mishehenko and T. A. Tumanova Zhur. Neorg. Khim. 4 277 (1959)P20 P. Flood, T. J. Lewis and D. H. Richards J. Chem. Soc. 1963 2446P21 R. H. Flowers, R. J. Gillespie, J. V. Oubridge and C. Solomoas J. Cliem. Soc. 1958 667P22 J. S. Forrester and G. H. Ayres .1. Phys. Chem. 63 1979 (1959)F23 W. Forsling, S. Hietanen and L. G. Silldn Ada Chem. Scand. 6 901 (1952)F24 D. H. Fortnum, C. J. Battaglia, S. R. Cohen and J. 0. Edwards J. Am. tihem. Soc. 82

778 (1960)P25 F. Fouasson Ann. Chim. (Paris) [12] 3 594 (1948)F26 E. U. Franck Z. Physik. Chem. (Frankfurt) 8 192 (1956)F27 P. Franzosini, C. Sinistri and G. Airoldi Ricerca Sci. 30 1707 (1960)F28 R. T. M. Fraser J. Chem. Soc. 1965 1747P29 K. Fredenhagen and M. Welinsan Z. Physik. Chem. 162 458 (1932)P30 V. Frei, J. Podlahová and J. Podlaha Collection Czech. Chem. Commnn. 29 2587 (1964)P31 V. Frei and A. Ustianoviéova Russ. .1. Phys. Chem. (Engl. trans.) 37 612 (1963)P32 R. Prick and K. Meyring Z. Anorg. AlIgem. Chem. 176 325 (1928)P33 C. R. Frink and M. Peech Inorg. Chem. 2 473 (1963)P33a U. K. Frolova, V. N. Kumok and V. V. Serebrennikov Izo. Vysshikh Uchebn. Zavedenii,

Khirn. i Khim. Technol., 9 176 (1966); CA 65 9816 (1966)P34 M. Prydman, G. Nilsson, T. Rengemo and L. G. Sillén Acta Chem. Scand. 12 878 (1958)P35 C. R. Fuget Thesis, Peimsylvania State Univ., 1956F36 J. W. Fulton and D. J. Swinehart J. Am. Chem. Soc. 76 864 (1954)P37 5. C. Furman and J. T. Denison, unpubi., quoted by S. C. Furman and C. S. Gamer,

J. Am. Chem. Soc. 72 1785 (1950)P38 R. M. Fuoss and C. A. Kraus J. Am. Chem. Soc. 55 476 (1933)P39 A. FOrth Z. Elektrochem. 28 57 (1922)P40 G. Fuseya J. Am. Chem. Soc. 42 368 (1920)P41 W. S. Fyfe 7. Chem. Soc. 1955 1347

G

Gi H. Galal-Gorchev and W. Stuinm 7. Inorg. Nucl. Chem. 25 567 (1963)G2 J. M. Gallart Anales Real. Soc. Es/mn. Fis. Quim. 31 422 (1933)G3 A. B. Garrett and R. E. Heiks .1. Am. Chem. Soc. 63 562 (1941)G4 A. B. Garrett and A. E. Hirsehier 7. Am. Chem. Soc. 60 299 (1938)G5 A. B. Garrett, 0. Holmes and A. Laube 7. Am. Chem. Soc. 62 2024 (1940)CS A. B. Garrett and W. W. Howell 7. Am. Chem. Soc. 61 1730 (1939)G7 A. B. Garrett, S. Vellenga and C. M. Fontana 7. Am. Chem. Soc. 61 367 (1939)G8 R. Gary, R. G. Bates and R. A. Robinson 7. Phys. Chem. 68 3806 (1964)

224

REFERENCES

G9 G. Gattow and B. Krebs Z. Anorg. Ailgem. Chem. 323 13 (1963)GlO 0. Gawron, S. Mahboob and J. Fernando .1.Am. Chem. Soc. 86 2283 (1964)Gil K. H. Gayer and H. Leider .1.Am. Chem. Soc. 77 1448 (1955)G12 K. H Gayer and L Wootner .1. Am Chem. Soc. 74 1436 (1952)G13 K. H. Gayer and L. Wootner .1. Am. Chem. Soc. 18 3944 (1956)G14 K. H. Gayer and L. Wootner J. Phys. Chem. 61 364 (1957)G15 K. H. Gayer and 0. T. Zajicek f.Inorg. Nucl. Chem. 26 951 (1964)G16 R. W. Gelbach and G. B. King J. Am. Chem. Soc. 64 1054 (1942)G17 A. I. Gei'bshtein, R. P. Airapetova, G. G. Shcheglova and M. I. Temkin Zhur.

Neorg. Khim. 9 1502 (1964); A. I. Gei'bshtein, G. G. Sheheglova and M. I. TemkinDokiady Akad. Nauk S.S.S.R. 107 108 (1965)

G18 A. I. Gei'bshtein, G. G. Shehegiova and M. I. Temkia Zhur. Neorg. Khim. 1282 (1956)G19 A. I. Gei'bshtein, G. G. Shehegiova and M. I. Temkin Zhur. Neorg. Khim. 1506 (1956)G20 W. L. German, unpubi., quoted by H. T. S. Britton and R. A. Robinson .1.Chem.

Soc. 1931 470G21 E. C. Gilbert .1. Phys. Chem. 33 1235 (1929)G22 R. J. Gillespie J. Ghem. Soc. 1950 2493G23 R. J, Gillespie J. Chem. Soc. 1950 2516G24 R. J. Gillespie J. Chem. Soc. 1950 2537G25 R. j. Gillespie, E. A. Robinson and C. Solornons J. Chem. Soc. 1960 4320G26 F. G. R. Gimblett and C. B. Monk Trons. Faroday Soc. 50 965 (1954)G27 F. Giordani Cozz. Chim. Itol. 54 844 (1924)G28 J. K. Gjaldbaek Z. Anorg. Allgem. Chcm. 144 269 (1924)G29 P. K. Glasoe and F. A. Long J. Phys. Chem. 64 188 (1960)G30 0. Glemser, W. Holznagel and S. I. Au Z. Naturforsch. 20b 192 (1965)G31 V. Cold and B. M. Lowe Proc. Chem. Soc. 1963 140G31a V. Gold and B. M. Lowe J. Chem. Soc. A 1967 936G32 V. Gold and C. H. Rochester .1. Chem. Soc. 1964 1692, 1697, 1722, 1727G33 P. Coldfinger and H. D. Graf von Schwcinitz Z. Physik. Chem. B19 219 (1932)G34 R. M. Golding J. Chem. Soc. 1960 3711G35 F. I. Golovin Trudy Molodykh Nouch. Robotnikoo Akad. Nouk Kirgiz S.S.R. 1958 119;

CA 55 4130 (1961)G36 .J. F. Goodman and P. Robson J. Chem. Soc. 1963 2871G37 M. Gorman J. Am. Chcm. Soc. 61 3342 (1939)G38 G. W. Coward Thesis, Princeton Univ., 1954G39 R. W. Green and P. W. Alexander Austral. J. flhem. 18 651 (1965)C40 S. A. Greenberg J. Am. Chem. Soc. 80 6508 (1958)(141 S. A. Crecnbcrg and E. W. Price J. Phys. Ghem. 61 1539 (1957)G42 A. D. Gricve, G. W. Curd and 0. Maass Gonad. J. Res. 8 577 (1933)C43 R. 0. Griffith and A. McKeown Trans. Foroday Soc. 30 530 (1934)G44 R. 0. Griffith and A. McKcown Trons.Faraday Soc. 36 766 (1940)G44a R. 0. Griffith, A. McKcown and R. P. Taylor Trons. Faroday Soc., 36 752 (1940)G45 A. K. Grzybowski 3'. Phys. Chem. 62 555 (1938)(45a A. 0. Gubeli and J. Ste-Marie Conadian .1. Chem. 45 827 (1967)G46 E. A. Guggenheim and T. D. Schindler 3'. Phys. Chem. 38 533 (1934)G47 R. Guillaumont Bull. Soc. Ghim. France 1965 135G48 R. Guillaumont Compt. Rend. 260 1416 (1965)G49 H. Guiter Ann. Chim. (Paris) [12] 2 72 (1947)G50 H. Guitcr Bull. Soc. Chim. France 1947 64G51 H. Guiter Bull. Soc. Chim. France 1947 269G52 0. E. Gulezian and J. H. Muller J. Am. Ghem. Soc. 54 3141, 3151 (1932)G53 R. L. Gustafson, C. Richard and A. E. Martcll 3'. Am. Chem. Soc. 82 1526 (1960)

H111 J. Haas, N. Konopik, F. Mark and A. Neckel Monatsh. 95 1173 (1964)H2 R. Haasc, K. H. Ducker and H. A. Kuppers Ber. Bunsenges. Physik. Chem. 69 97 (1965)H3 G. Hagg Z. Anorg. Allgem. Chem. 155 21(1926)H4 H. Hagisawa Bull. Inst. Phys. Chem. Res. (Tokyo) 18 260 (1939)H5 H. Hagisawa Bull. Inst. Phys. Chem. Res. (Tokyo) 18 368 (1939)HG H. Hagisawa Bull. lust. Phys. eShem. Res. (Tokyo) 18 648 (1939)H7 H. Hagisawa Bull. Inst. Phys. Chem. Res. (Tokyo) 19 1220 (1940)H8 H. HagisawaBull. Inst. Phys. Chem. Res. (Tokyo) 20 251 (1941)H9 I-I. Hagisawa Bull. Inst. Phys. Chem. Res. (Tokyo) 20 384 (1941)H10 F. L. Hahn and R. Kloekmann Z. Physik. Ghem. A146 373 (1930)Hll F. L. Hahn and R. Kloekmann Z. Physik. Chem. AlSi 80 (1930)H12 C. P. Haight, D. C. Richardson and N. H. Coburn Inorg. Chem. 3 1777 (1964)

225

H13H14HiSH16H171118H19

1120H20a

H21H22H23H25H2611271128112911301131H32H33113411351136H371138H39114011411142114311441145114611471148H491149a11501151HSla115211531154115511561157H58H5911601161116211631164H64a116511661167116811691170117111721173H74

REFERENCES

J. Hala, 0. Navrátil and V. Nechuta J. Inorg. Nuci. C/tern. 28 553 (1966)H. V. Halban andJ. Brull He/v. C/tim. AcM 27 1719 (1944)M. Halmann, A. Lapidot and D. Samuel J. C/tern. Soc. 1963 1299S. D. Hamann J. F/tys. C/tern. 67 2233 (1963)S. D. Hamann and W. Strauss Trans. Faraday Soc. 51 1684 (1955)W. J. Hamer .1. Am. C/tern. Soc. 56 860 (1934)S. A. Hamid, I. P. Alimarin and I. V. Puzdrenkova Vestn. Mosk. Univ., Ser. II, K/tim.20 71(1965); CA 63 6376 (1965)L. P. Hammett and A. J. Deyrup .1. Am. C/tern. Soc. 542721(1932)0. I. H. Hanania, D. H. Irvine, W. A. Eaton and P. George J. Fizys. C/tern. 71 2022(1967)A. Hantzsch Ber. 32 3066 (1899)0. Harbottle J. Am. C/tern. Soc. 73 4024 (1951)0. Harbottle and R. W. Dodson .J. Am. C/tern. Soc. 73 2442 (1951)M. K. Hargreaves and P. J. Richardson J. C/tern. Soc. 1958 3111T. R. Harkins and H. Freiser .1. Am. C/tern. Soc. 77 1374 (1955)R. W. Harman 7. P/tys. C/tern. 31 616 (1927)R. W. Harman and F. P. Worley Trans. Faraday Soc. 20 502 (1924)H. S. Harned and F. T. Bonner 7. Am. C/tern. Soc. 67 1026 (1945)H. S. Harned and H. R. Copson 7. Am. C/tern. Soc. 55 2206 (1933)H. S. Harned and R. Davis .1. Am. C/tern. Soc. 65 2030 (1943)H. S. Harned andJ. 0. Donelson 7. Am. C/tern. Soc. 59 1280 (1937)H. S. Harned and C. 0. Geary 7. Am. C/tern. Soc. 59 2032 (1937)H. S. Harned and W. j. Hamer 7. Am. C/tern. Soc. 55 2194 (1933)H. S. Harned and W. J. Hamer .1. Am. C/tem. Soc. 55 4496 (1933)H. S. Harned and 0. E. Mannweiler J. Am. C/tern. Soc. 57 1873 (1935)H. S. Harned and B. B. Owen .1. Am. C/tern. Soc. 52 5079 (1930)H. S. Harned and R. A. Robinson Trans. Faraday Soc. 36 973 (1940)H. S. Harned and S. R. Scholes 7. Am. C/tern. Soc. 63 1706 (1941)W. E. Harris and I. M. Koithoff 7. Am. C/tern. Soc. 69 446 (1947)W. H. Hartford md. Eng. C/tern. 34 920 (1942)A. B. Hastings and J. Sendroy 7. Biol. C/tern. 65 445 (1925)E. M. Hattox and T. DeVries 7. Am. C/tern. Soc. 58 2126 (1936)J. A. Hearne and A. 0. White J C/tern. Soc. 1957 2168B. 0. A. Hedstrom Arkiv Kerni 5 457 (1953)B. 0. A. Hedstrom Arkio Kerni 6 1 (1953)L. J. Heidt 7. F/tys. C/tern. 46 624 (1942)E. Heilbronner and S. Weber Helv. C/tim. Ada 32 1513 (1949)K. Heinziager and R. E. Weston 7. C/tern. F/tys. 42 272 (1965)H. C. Heigeson 7. P/tys. C/tern. 71 3121 (1967)Y. Hentola Kemian Keskuluton Julkaisuja 13 No. 2 (1946)L. 0. Hepler and Z. Z. Hugus J. Am. C/tern. Soc. 74 6115 (1952)A. Heydweiller Ann. F/tysik. 28 503 (1909)J. Heyrovsky Trans. Faraday Soc. 19 692 (1923)S. Hiêtanen Acta C/tern. Scand. 10 1531 (1956)S. Hiètanen and L. 0. SillS Ada s/tern. Scand. 6 747 (1952)S. Hiêtanen and L. 0. SillS Ada C/tern. Scand. 13 533 (1959)S. Hiètanen and L. 0. SillS Acta C/tern. Scand. 18 1015 (1964)S. Hiètanen and L. 0. Sillén Acta C/tern. Scand. 18 1018 (1964)J. C. Hindman T/te Transuraniurn Elements, Nail. Nuclear Energy Ser. IV-14B (1949)R. L. Hinman 7. Org. C/tern. 23 1587 (1958)R. L. Hinman and J. Lang 7. Arn. C/tern. Soc. 86 3796 (1964)M. de Hlasko 7. C/tim. P/tys. 20 167 (1923)E. Hogfeldt Acta C/tern. Scand. 17 785 (1963)E. Hogfeldt and J. Bigeleisen J. Am. C/tern. Soc. 82 15 (1960)B. Holmberg Z. F/tysik. C/tern. 70 157 (1910)L. P. Holmes, D. L. Cole and E. M. Eyring 7. F/tys. C/tern. 72 301 (1968)0. Hoist Svensk. Kern. Tidskr. 52 258 (1940)0. HoIst Svensk. Fapperstidn. 48 23 (1945)0. C. Hood, A. C. Jones and C. A. Reilly J. F/tys. C/tern. 63 101 (1959)0. C. Hood, 0. Redlich and C. A. Reilly J. C/tern. F/tys. 22 2067 (1954)0. C. Hood and C. A. Reilly 7. C/tern. F/tys. 32 127 (1960)R. A. Home, R. A. Courant and G. R. Frysinger 7. C/tern. Soc. 1964 1515P. B. Hostetler Am. 7. Sci. 261 238 (1963)J. R. Howard, V. S. K. Nair and G. H. Nancollas Trans. Faraday Soc. 54 1034 (1958)J. Hoye Kgl. Norske Videnskab. Se/s/cabs For/tandl. 14 1 (1942)K. H. Hsu and S. H. Ho K'o Hsue/t T'ung Fao 1957 433; CA 55 21953 (1961)

226

REFERENCES

H75 J. Hudis and M. Wolfsberg, unpubl., quoted by J. Hudis and R. W. Dodson, .1. Am.C/tern. Soc. 78911(1956)

H76 R. Hugel Bull. Soc. C/tim. France 1964 1462H77 R. Hugel Bull. Soc. C/tim. France 1965 968H78 W. S. Hughes J. C/tern. Soc. 1928 491H79 M. N. Hughes and G. Stedman J. C/tern. Soc. 1963 1239H80 H. H. Hyman, M. Kilpatrick and 3. J. Katz 1. Am. C/tern. Soc. 79 3668 (1957)

Ii A. mdclii and G. Mantovani Trans. Faraday Soc. 61 909 (1965)12 J. W. Ingram and J. Morrison J. C/tern. Soc. 1933 120013 N. Ingri Acta Chem. Scand, 13 758 (1959)14 N. Ingri Acta C/tem. Scand. 16 439 (1962)IS N. Ingri Acta C/tem. Scand. 17 573 (1963)16 N. Ingri Ac/a C/tern. Scand. 17 581 (1963)17 N. Ingri Acta Chem. Scand. 17 597 (1963)IS N. Ingri and F. Brito Ac/a C/tern. Scand. 13 1971 (1959)19 N. Ingri, G. Lagerstrom, M. Frydman and L. G. Sillén Ac/a C/tern. Scand. 11 1034 (1957)110 N. Ingri and G. Schorsch Ac/a C/tern. Scand. 17 590 (1963)Ill R. R. Irani J. Phys. C/tern. 65 1463 (1961)112 R. R; Irani and C. F. Callis J. P/tys. C/tern. 65 934 (1961)113 R. R. Irani and T. A. Taulli J. Inorg. ['fuel. C/tern. 28 1011 (1966)114 M. Isaks and H. H. Jaffe J. Am. C/tern. Soc. 86 2209 (1964)115 H. Isikawa and I. Aoki Bull. Inst. P/ty. C/tern. Researc/t (Tokyo) 19 136 (1940)116 Y. j. Israeli Bull. Soc. Chim. France 1965 193117 I. M. Issa and S. A. Awad J. Phys. C/tem. 58 948 (1954)118 T. Ito and N. Yui Sci. Rp/s. Tohoku Univ. 37 19 (1953); CA 48 6791 (1954)119 T. Ito and N. Yui Sci. lIp/s. To/to/tn Univ. 37 185 (1953); CA 48 5613 (1954)120 A. N. Ivanov and S. N. Aleshin Doklady Mo/coo Sel'skok/toz Akad. Nauch. Konfer. 22 386

(1956)121 M. F. Ivanova and M. B. Neiman Doklady A/cod. Nan/c S.S.S.R. 60 1005 (1948)122 B. N. Ivanov-Emin, L. A. Nisel'son and L. E. Larionova Russ. J. Iuorg. Chem. (Engl.

transl.) 7 266 (1962)123 R. M. Izatt, J. J. Christensen, R. T. Pack and R. Bench Jnorg. Chem. 1 828 (1962)124 R. M. Izatt, D. Eatough andJ. J. Christensen .1. '3/1cm. Soc. A 1967 1301

Jji H. H. Jaffé and It. W. Gardner .7. Am. (2zem. Soc. 80 319 (1958)jia D. V. S. Jam and C. M.Jain .7. C/tem. Soc. A 1967 1541,J2 G. Jander and F. Kicnbaum Z. Anorg. Allgem. C/tern. 316 63 (1962)J3 K. Jellinek Z. Physik. C/tem. 76 257 (1911)J3a K. Jellinek and J. Czerwinski Z. Physik. C/tern. 102 438 (1922)J4 M. B. Jensen Acta C/tern. Scand. 12 1657 (1958)J5 B. A. Jillot and R. J. P. Williams .7. C/tern. Soc. 1958 462J6 P. Job Compt. Rend. 186 1546 (1928)J7 J. K. Johannesson J. C/tem. Soc. 1959 299838 A. Johansson and E. Wanninen Talanta 10 769 (1963)39 C. E. Johnson.7. Am. C/tern. Soc. 74959 (1952)Jl0 H. L. Johnston, F. Cuta and A. B. Garrett.7. Am. C/tem. Soc. 552311(1933)Jil H. L.Johnston and H. L. Leland .7. Am. C/tern. Soc. 60 1439 (1938)J12 H. F. Johnstone and P. W. Leppla .1. Am. C/tern. Soc. 56 2233 (1934)J13 W. L. Jolly .7. Am. C/tern. Soc. 74 6199 (1952)J14 J. Jordan and G. J. Ewing Inorg. C/tern. 1 587 (1962)J14a C. K. Jørgensen Ac/a C/tern. Scand. 10 502 (1956)315 E. Jargenscn andJ. Bjerrum ActaC/tem. Scand. 12 1047 (1958)JIG M. J. Jørgenson and D. R. Hartler.7. Am. Chem. Soc. 85 878 (1963)J17 J. Jortner and G. Stein Bull. Research Conncil Israel 64 239 (1957)JIB H. F. Joseph and H. B. Oakley J. C/tern. Soc. 127 2813 (1925)J19 NI. L. Josien and G. Sourisseau Bnll. Soc. C/tim. France 17 255 (1950)J20 M. Jowett and H. Millet .7. Am. C/tern. Soc. 511004 (1929)J2l M. Jowett and H. I. Price Trans. Faraday Soc. 28 668 (1932)322 R. A. Joyncr Z. Anorg. A/lgem. C/tern. 77 103 (1912)

227

REFERENCES

KK1 H. Kakihana and L. G. Sillen Acta Chern. Scand. 10 985 (1956)K2 W. Kangro Z. Physik. Chew. (Frankfurt) 32 273 (1962)K3 C. W. Kanolt J. Am. Chem. Soc. 29 1402 (1907)K3a D. Kantzer Compt. Rend. 220 661 (1945)K4 V. A. Kargin Z. Anorg. Ailgern. Chem. 183 77 (1929)K5 J. Kasper Thesis, Johns Hopkins Univ., Baltimore, 1941K6 V. Kauko Ann. Acad. Sci. Fennieae 39A No. 3 (1934); 41A No. 9 (1935)K7 V. Kauko and A. Airola Z.Physik. Chem. A179 307 (1937)K8 V. Kauko and J. Carlberg Z. Physik. C/tel. A173 141 (1935)KB V. Kauko and H. Elo Z. Physik. Chern. A184 211 (1939)K10 V. Kauko and V. Mantere Z. Physik. Chem. A176 187 (1936)KlOa C. T. Kawassiades, G. E. Manoussakis and J. A. Tossidis J. Inorg. Nuci. Chem. 29 401

(1967)Ku C. M. Kelley and H. V. Tartar f. Am. Chem. Soc. 785752 (1956)K12 J. Kenttamaa Ann. Acad. Sci. Fennicae 67A No. 2 (1955)K13 J. Kenttamaa Suomen Kern. 30B 9 (1957)K14 J. KenttSmaa Suomen Kern. 32B 55 (1959)K15 M. Kerker J. Am. Chem. Soc. 79 3664 (1957)K16 M. Kiese and A. B. Hastings J. Am. Chem. Soc. 611291(1939)K17 M. Kiese and A. B. Hastings J. Biol. Chem. 132 267 (1940)K18 G. Kilde Z. Anorg. Aligem. Chew. 218 113 (1934)

K19 M. Kilpatrick and L. Pokras J. Electrochem. Soc. 100 85 (1953)

K20 M. Kilpatrick and L. Pokras J. Eleetrochem. Soc. 101 39 (1954)K21 S. Kilpi, A. Nurmi and V. Rinne Suomen Kem. 24B 31(1951)K22 J. King and N. Davidson J. Am. Chem. Soc. 80 1542 (1958)K23 E. J. King and G. W. King .1. Am. Chem. Soc. 74 1212 (1952)K24 R. W. Kingerley and V. K. LaMer J. Am. Chew. Soc. 63 3256 (1941)K25 B. J. Kirkbridge and P. A. H. Wyatt Trans Faraday Soc. 54 483 (1958)K26 E. Klarman Z. Anorg. Ailgem. Chem. 132 289 (1924)K27 A. Kiemené and E. Hayek Monatsh. 54 407 (1929)K28 A. Klemenh and M. Herrog Monatsh. 47 405 (1926)K29 R. Kiement, G. Biberacher and V. Hille Z.Anorg. Aligem. Chew. 289 80 (1957)K30 I. M. Klotz, Thesis, Univ of Chicago, 1940K31 J. Knox Z. Elektrochem. 12 477 (1906)K32 J. R. Kolczynski, B. M. Roth and B. S. Shanlcy J. Am. Chew. Soc. 79 531 (1957)K33 I. M. KolthoffChem. Weekblad 14 1016 (1917)

K34 I. M. Koithoff Chew. Weekblad 16 1154 (1919)

K35 I. M. Koithoff Pharm. Wee/rb/ad 57 474 (1920)K36 I. M. KolthoffPharm. Wee/rb/ad 57 514 (1920)K37 I. M. Koithoff Z. Anorg. Ailgem. Chem. 110 143 (1920)K38 I. M. Koithoff Rec. Tray. 67dm. 42 969 (1923)K39 I. M. KolthoffRec. Tray. Chirn. 42 973 (1923)K40 I. M. KolthoffRec. Tray. Chim. 43 216 (1924)K41 I. M. Kolthoff Rec. Tray. Chim. 46 350 (1927)K42 I. M. Koithoff and M. Bosch Rec. Tram Chirn. 46 180 (1927)K43 I. M. Koithoff and M. Bosch Rec. Tray. C/tim. 47 819 (1928)K44 I. M. Koithoff and M. Bosch Rec. Tray. Chirn. 47 826 (1928)1(45 I. M. Koithoff and T. Kameda I. Am. Chem. Soc. 53 832 (1931)K46 I. M. Kolthoff and W. J. Tomsicek .1. Phys. Chew. 39 955 (1935)K47 N. P. Komer and Z. A. Tretyak Zhur. Analit. Khirn. 10 236 (1955)K48 N. Konopik and 0. Leberl Monatsh. 80 655 (1949)K49 N. Konopik and 0. Leberl Monatsh. 80 781 (1949)KS0 I. M. Korenman Zhur. Obshchei K/tim. 21 1961 (1951)K51 I. A. Korshunov and E. F. Khrul'kova Zhur. Obshchei K/tim. 19 2045 (1949)K52 A. Kossiakoff and D. Harker J. Am. Chew. Soc. 60 2047 (1938)K53 E. Koubck, M. L. Haggett, C. J. Battaglia, K. M. Ibne-Rasa, H. V. Pyun and J. 0.

Edwards J. Am. Chein. Soc. 852263 (1963)K54 K. A. Kraus and J. R. Dam U.S. Atomic Energy Commission Reports CN-2831 (1946);

CL-P-432 (1945); CL-P-449 (1945)K55 K. A. Kraus and J. R. Dam The Transuranium Elemsuts, Nati. Nuclear Energy Ser.

IV-14B (1949)K56 K. A. Kraus and R. W. Holmberg .1. Phys. Chem. 58 325 (1954)K57 K. A. Kraus and F. Nelson U.S. Atomic Energy Commission Report CNL-19 (1948)K58 K. A. Kraus and F Nelson J. Am. Chem. Soc. 72 3901 (1950)

228

REFERENCES

K59 K A Krau5 and F Nelson .1. Am. Chem. Soc. 77 3721 (1955)K60 C. A. Kraus and H. C. Parker J. Am. Chew. Soc. 44 2429 (1922)K61 A. Krawetz, Thesis, University of Chicago, 1955K62 M. E. Krevinskaya, V. D. Nikol'skii, B. G. Pozharskii and E. B. Zastenker Radio-

khiwya 1 548 (1959); CA 54 15046 (1960)K63 G. Kruger and B. Thilo Z. Physik. flew. A209 190 (1958)K64 G. Kruger and E. Thilo Z. Anorg. Ailgew. Chew. 308 342 (1961)K65 Z. Ksandr and M. Hejtmánek Sbornik L Gelostdtni PracovniKonf. Anal. Chewiku 195242;

CA 50 3150 (1956)K66 H. Kubli Heiv. Chim. Acta 29 1962 (194€)K67 H. Kuhota Thesis, University of Wisconsin, 1956K68 I. N. Kugeimass Biochew, .1. 23 587 (1930)K69 C. Knligren Z. Physik. Chew. 85 466 (1913)K70 F. Kunschert Z. Anorg. Aligem. Chew. 41 337 (1904)K71 F. W. Kuster and E. Heberlein Z. Anorg. Ailgew. Chew. 43 53 (1905)K72 .J. R. Kyrki Suomen Kern. B38 203 (1965)

L

LI S. Lacroix Ann. Chew. (Paris) 4 5 (1949)L2 G. Lagerstrom Acta Chew. Scand. 13 722 (1959)L3 P. B. Lake and J. M. Goodings Conad. .1. Chew. 36 1089 (1958)L4 A. B. Lamb and G. R. Fonda f. Aw. Chew. Soc. 43 1154 (1921)L5 A. B. Lamb and A. G. Jacques J. Am. Chew. Soc. 60 1215 (1938)L6 5. M. Lambert andJ. I. Watters J. Aw. Chew. Soc. 794262 (1957)L7 0. E. Lanford and S. J. Kiehi J. Phys. Chew. 45 300 (1941)L8 0. E. Lanford and S. J. Kiehi .1. Am. Chew. Soc. 64 291 (1942)L9 W. M. Latimer Oxidation Potentials, 2nd edn., Prentice-Hall Inc., New York, 1952 86L10 W. M. Latimer and H. W. Zimmermann J. Am. Chew. Soc. 61 1550 (1939)Lii S. H. Laurie,J. M. Williams and C.J. Nyman J. Phys. Chew. 68 113 (1965)Li2 R. W. Lawrence J. Am. Chew. Soc. 56 776 (1934)L12a V. I. Lazarcv and Yu. V. Moiseev Zh. Fiz. Khiw. 39 445 (1965)L13 D. G. Lee and R. Stewart anad. J. Chew. 42 486 (1964)L14 D. C. Lee and R. Stewart J. Aw. Chew. Soc. 86 3051 (1964)L15 J. Lcfcbvrc J. Chiw. Phys. 54 567 (1957)L16 J. Lefcbvre J. Chiw. Phys. 55 227 (1958)L17 J. Lefebvrc and H. Maria Compt. Rend. 256 3121 (1963)L17a M. Leist Z. Physik. (]hew. (Leipzig) 205 16 (1955)L18 D. Leonesi and G. Piantoni Ann. C/tim. (Rowe) 55 668 (1965)L19 D. L. Leussing and I. M. Kolthoff J. Aw. Chew. Soc. 75 2476 (1953)L20 G. R. Levi and R. Curli Ricerca Sci. 23 1798 (1953)L21 M. G. Levy Gazz. Chiw. Ital. 31111 (1901)L22 D. Lewis Acta Chew. Scond. 17 1891 (1963)L23 G. N. Lewis, T. B. Brighton and R. L. Sebastian J. Aw. Chew. Soc. 39 2245 (1917)L24 G. N. Lewis and P. W. Schutz J. Aw. Chew. Soc. 56 1913 (1934)L25 N. C. C. Li and Y. T. Lo f. Aw. Chew. Soc. 63 397 (1941)L26 J. C. M. Li and D. M. Ritter J. Am. Chew. Soc. 75 5823 (1963)L27 J. C. M. Li and D. M. Ritter J. Aw. Chew. Soc. 75 5828 (1963)L28 A. Liberti, V. Chiantella and F. Corigliano J.Inorg. Nucl. Chew. 25 415 (1963)L29 H. A. Liebhafsky and B. Makower J. Phys. Chew. 37 1037 (1933)L30 M. H. Lietahe and R. W. Stoughton J. Phys. Chew. 67 652 (1963)L3l M. Fl. Lietzke, R. W. Stoughton and T. F. Young J.Phys. Chew. 65 2247 (1961)L32 W. 1'. Lindsay J. Phys. Chew. 66 1341 (1962)L33 F. Lindstrand Svensk. Kern. Tidskr. 56 251 (1944)L34 F. Lindstrand Svensk. Kew. Tidskr. 56 282 (1944)L35 J. J. Lingane and L. W. Niedrach J. Am. Chew. Soc. 70 4115 (1948)L35a H. C. Linge and A. L. Jones Australian J. Chem. 21 1445, (2189) (1968)L36 M. W. Lister Canad. J. Chew. 30 879 (1952)L37 M. W. Lister and V. Yoshino Canad. J. Chew. 38 2342 (1960)L38 S. Ljunggren and 0. Lamm Acta Chew. Scand. 12 1834 (1958)L39 N. Lofman Z. Anorg. Allgem. Chew. 107 241 (1919)L40 R. Lorena and A. Böhl Z.Physik. Chew. 66 733 (1909)L41 M. Lourijsen-Teyssèdre Bull. Soc. Chiw. France 1955 1111L42 M. Lonrijsen-Teysshdre Bull. Soc. Chiw. France 1955 1118L43 M. Lourijsen-Teyssèdre Bull. Soc. Chiw. France 1955 1196L44 H. L. Loy and D. M. Himmelblau .1. Phys. Chew. 65 264 (1961)

229

REFERENCES

L45 J. W. H. Lugg J. Am. Chem. Soc. 53 1 (1931)L46 J. W. H. Lugg Trans. Faraday Soc. 27 297 (1931)L47 P. Lumme, P. Lahermo and J. Tummavuori Acta Chem. Scand. 19 2175 (1965)L48 P. Lumme andJ. Tummavuori Acta Chem. Scand. 19 617 (1965)L49 H. Lundén J. Chim. Phys. 5 574 (1907)L50 R. Luther Z. Electrochem. 13 294 (1907)

M

Ml J. C. McCoubrcy Trans. Faraday Soc. 51 743 (1955)Mia D. H. McDaniel and L. H. Steinert .1. Am. Chem. Soc., 88 4826 (1966)M2 A. 0. McDougall and F. A. Long J. Phys. Chem. 66 429 (1962)M3 L. A. McDowell and H. L. Johnston .1. Am. Chem. Soc. 59 2009 (1936)M4 J. D. McGilvery and J. P. Crowther Canad. I. C/cern. 32 174 (1954)MS D. A. Maclnnes and D. Beicher J. Am. Chem. Soc. 55 2630 (1933)MG D. A. Maclnnes and D. Beicher .1. Am. Chem. Soc. 57 1683 (1935)M7 H. A. C. McKay Trans. Faraday Soc. 52 1568 (1956)M8 P. M. Mader J. Am. Chem. Soc. 80 2634 (1958)M9 A. Maffci Cazz. Chim. Ital. 64 149 (1934)M9a I. N. Kaksimova and V. F. Yushkcvich E1ectrokhirnya 2 577 (1966)M10 H. C. Mandcll and G. Barth-Wehrenalp J. Inorg. Nncl. Chem. 12 90 (1959)Ml 1 G. G. Manov, N. J. DeLollis and S. F Acrce J. Research Nati. Bar. Standards 33 287

(1944)M12 Y. Marcus Acta Ghem. Scand. 11 690 (1957)M13 G. Maronny J. 0dm. Phys. 56 214 (1959); Elcctrochi,n, Ada 1 58 (1959)M13a W. L. Marshall and E. V. Jones .1. Phys. C/cern. 70 4028 (1966)M14 A. B. Martcll and G. Schwarzenbach Heir. Chim. Acta 39 653 (1956)M15 F. S. Martin J. Ghem. Soc. 1954 2564M16 K. B. Martin and L. P. Henkie J. Phys. them. 68 3438 (1964)M17 C. M. Mason andJ. B. Culvern f. Am. Chem. Sac. 71 2387 (1949)M18 J. G. Mason and A. D. Kowalak Inorg. C/cern. 3 1248 (1964)M19 E. Matijevid,J. P. Couch and M. Kerker J. Phys. Chem. 66 ill (1962)M20 H. Matsuda and Y. Ayabe Z. Electrochem. 63 1164 (1959)M21 G. Mattock f. Am. Chew. Soc. 76 4835 (1954)M22 J. Mcicr and G. Schwarzcnbach Heir. Ghim. Ada 40 907 (1957)M23 L. Meites I. Am. Ocem. Soc. 75 6059 (1953)M24 T-T. Mcnzcl Z. Physik. Chem. 100 276 (1922)M25 H. Mcnzcl Z. Physik. Glum. 105 402 (1923)M26 0. Mcyerhof and K. Lohmann Biochem. Z. 196 22 (1928)M27 L. Michaelis and T. Garmendia Biochern. Z. 67 431 (1914)M28 L. Michaelis and M. Mizutani Z. Physik. C/cern. 116 135 (1925)M29 W. Miedrich, Thesis, Frankfurt-am-Main, 1954M30 K. M. Milburn J. Am. Glum. Soc. 79 537 (1957)M31 K. M. Milburn and W. C. Vosburgh .1. Am. (Them. Soc. 77 1352 (1955)M32 FT. C. Mishra and M. C. K. Symons J. Chew. Soc. 1962 1194M33 A. D. Mitchell J. Chem. Soc. 117 957 (1920)M34 A. G. Mitchell and W. F. K. Wynne-Joncs Trans. Faraday Soc. 51 1690 (1955)M35 R. P. Mitra, H. C. Maihotra and D. V. S. Jam Trans. Faraday Soc. 62 167 (1966)M36 T. Moeller J. Am. C/cern. Soc. 63 1206 (1941)M37 T. Mocllcr .1. Am. C/cern. Soc. 64 953 (1942)M38 T. Moeller J. Phys. C/cern. 50 242 (1946)M39 T. Moeller and G. L. King J. Phys. C/cern. 54 999 (1950)M40 Y. V. Moisccv and M. I. Vinnik Dokiady Akad. Nau/c S.S.S.R. 150 845 (1963)M41 J. M. Monger and 0. Redlich J. Phys. Ocem. 60 797 (1956)M42 C. B. Monk .L Chew. Soc. 1949 423M43 T. S. Moore J. Chem. Soc. 91 1379 (1907)M44 T. S. Moore and T. F. Winmill .1. Chew. Soc. 101 1635 (1912)M45 0. M. Morgan and 0. Maass Conad. I. Res. 5 162 (1931)M46 T. D. B. Morgan, G. Stedman and P. A. B. Whincup I. 01cm. Soc. 1965 4813M46a J. C. Morris J. Phys. C/cern. 70 3798 (1966)M47 C. Morton J. Chem. Soc. 1928 1401M48 C. Morton Quart. .1. Pharm. Pharmacol. 3 438 (1930)M49 A. I. Moskvin and V. P. Zaitseva Radiok/cimjya 4 73 (1962); CA 57 7973 (1962)M50 B. L. Muetterties, J. H. Balthis, Y. T. Chia, W. H. Knoth and H. C. Miller borg.

Chew. 3 444 (1964)M51 S. S. Muhammad and T. N. .Rao J. C/cern. Soc. 1957 1077

230

REFERENCES

M52 S. S. Muhammad and T. N. Rao .1. Indian Chem. Soc. 34 250 (1957)M53 S. S. Muhammad, D. H. Rao and M. A. Haleem J. Indian C/tern. Soc. 34 101 (1957)M54 S. S. Muhammad and E. V. Sundaram .1. Sci. md. Research (India) 20B. 16 (1961)M55 J. N. Mukerjee and B. Chatterjee Nature 155 85 (1945)M56 L. N. Mulay and P. W. Seiwood .1. Am. C/tern. Soc. 77 2693 (1955)M57 H. D. Murray J. C/tern. Soc. 127 882 (1925)M58 J. Muus Z. Physik. C/tern. 1594 268 (1932)M59 L. T. Muus, I. Refn and R. W. Asmussen Trans. Danish Acoct Tcch. Sci. No. 2 3 (1951)M60 R. A. Myers Thesis, University of Nebraska, 1958

NNi B. I. Nabivanets Russ. J. Inorg. Chern. (Engl. transl.) 7 212 (1962)Nia B. I. Nabivanets and L. N. Kudritskaya Ukr. K/tim. Zh. 30 891 (1964); CA 62 2290g

(1965)Nib B. I. Nabivanets and V. V. Lukaehina Ukr. K/tim. Zh. 30 1123 (1964); CA 62 7361h

(1965)N2 B. Nachbaur Monots/t. 91 749 (1960)N3 S. Naidieh andJ. E. Rieci J. Am. C/tern. Soc. 61 3268 (1939)N4 V. S. K. Nair J. Inorg. Nucl. C/tern. 26 1911 (1964)N5 V. S. K. Nair and G. H. Naneollas J. C/tern. Soc. 1958 4144N6 R. Nasanen Suomen Kern. 19B 90 (1946)N7 R. Nasknen Acta C/tern. Scand. 1 204 (1947)N8 R. Nasknen Acta C/tern. Scand. 8 1587 (1954)N9 K. Nasanen Suomen Kem. 33B 47 (1960)NiO K. Nasknen and P. Merilainen Suornen Kern. 33B 149 (1960)Nil R. Nasanen and P. Merilainen Suornen Kern. 33B 197 (1960)Ni2 R. Nasanen, P. Merilainen and K. Leppanen Acto C/tern. Scaud. 15 913 (1961)N13 A. W. Naumann and C. j. Haliada Inorg. C/tern. 3 70 (1964)Ni4 B. V. Nekrasov and C. V. Zotov Zhur, Priklad. K/tim. 14 264 (1941)Ni5 C. Neumann Acta Chem. Scand. 18 278 (1964)NIB j. D. Neuss and W. Rieman J. Am. C/tern. Soc. 56 2238 (1934)N17 E. Newbery Trans. Electroc/tern. Soc. 69 611(1936)NiS L. Newman and D. N. Hume J. Am. G/tem. Soc. 81 5901 (1959)N19 L. Newman, W. J. Lafleur, F. J. Biousaides and A. M. Ross J. Ate. C/tern. Soc. 80

4491 (1958)N20 R. F. Newton and M. C. Boliuger J. Am. C/tern. Soc. 52 921 (1930)N21 L. F. Nims J. Am. G/tem. Soc. 55 1946 (1933)N22 L. F. Nims J. Am. C/tern. Soc. 56 1110 (1934)N23 A. V. Novoselova Zhur. Obshchei K/tim. 1 668 (1931)N23a A. A. Noyes Carnegie Inst. Publ. No. 63 (1907)N24 A. A. Noyes, V. Kato and R. B. Sosman J. Am. C/tern. Soc. 32 159 (1910)N25 A. A. Noyes, V. Kato and K. B. Sosman Z; Physik. C/tern. 73 1 (1910)N26 P. Nyien Z. Anorg. Allgern. C/tern. 230 385 (1937)N27 C. J. Nyman, D, K. Roe and R. A. Plane J. Am. 11/ton. Soc. 83 323 (1961)

001 P. K. O'Connor U.S. Atomic Energy Commission Report CN-2083 (1944)Oia H. G. Offner and D. A. Skoog Anal. Chem. 38 1520 (1966)02 H. Ohtaki Acta C/tern. Scand. 18 521 (1964)03 V. Oka, K. Kawagaki and R. Kadoya J. C/tern. Soc. Japan 64 718 (1943)04 A. Olander Z. Physik. C/tern. 129 1 (1927)05 A. Olander Z. Physik. C/tern. 144 49 (1929)06 A. Olin ActaC/tern. Scand. 11 1445 (1957)07 A. Olin Acta C/tern. Scaud. 13 1791 (1959)08 A. Olin ActaC/tern. Scand. 14 814 (1960)09 B. Olivieri-Mandala Cozz. C/tim. Ital. 46 1 298 (1916)010 A. K. Olson and T. K. Simonson J. C/tern. P/tys. 17 348, 1322 (1949)

011 J. W. Olver and D. N. Hume Anal. C/tirn. Acta 20 539 (1959)012 L. Onsager Physik. Z. 28 277 (1927)013 5. M. Osinska-Tanevska, M. K. Bynyaeva, K. P. Mishehenko and I. B. Flis Russ. J.

AppI. C/tern. (Engl. trausl.) 36 1162 (1963)014 K. K. Osterheld J. Phys. C/tern. 62 1133 (1958)015 B. B. Owen J. Am. C/tern. Soc. 56 1695 (1934)016 B. B. Owen 1. Am. C/tern. Soc. 56 2785 (1934)

231

REFERENCES

017 B. B. Owen J. Am. C/tern. Soc. 57 1526 (1935)018 B. B. Owen and E.J. King J. Am. C/tern. Soc. 65 1612 (1943)

PP1 M. Paabo, R. C. Bates and R. A. Robinson J. P/tys. C/tern. 70 247 (1966)P2 F. M. Page J. C/tern. Soc. 1953 1719P3 L. Pajdowski Roczniki C/tern. 37 1351, 1363 (1963)P4 L. Pajdowski and A. Olin Acta C/tern. Scand. 16 983 (1962)PS A. V. Pamuulov and A. L. Agafonova Z/tur. Fiz. K/tim. 24 1147 (1950)P6 K. Pan and T. M. Hseu Bull. C/tern. Soc. Japan 28 162 (1955)P7 A. J. Panson J. Phys. C/tern. 67 2177 (1963)PS R. A. Paris and J. C. Merlin J.U.P.A.C. Inorg. C/tern. Colloquiurn, Munster 1954 237P9 T. Paul C/tern. Zeit. 23 535 (1899)PlO M. A. Paul J. Arn. C/tern. Soc. 76 3236 (1954)P11 M. A. Paul and F. A. Long C/tern. Rev. 57 1(1957)P12 D. Pearson, C. S. Copeland and S. \AT. Benson J. Am. C/tern. Soc. 85 1047 (1963)P13 R. G. Pearson and F. V. Williams J. Arn. C/tern. Soc. 76 258 (1954)P14 R. L. Peesok and A. N. Fletcher Inorg. C/tern. 1 155 (1962)P15 K. J. Pedersen Kgl. Dons/ce Videnskob. Se/s/cab, Moth .-fys. Medd. 20 7 (1943)PiG K. J. Pedersen Kgl. Dons/ce Videns/cab. Se/s/cab. Moth .-fys. Medd. 22 10 (1945)P17 C. Perrin J. Am. C/tern. Soc. 86 256 (1964)P18 D. D. Pcrrin J. C/tern. Soc. 1959 1710P19 D. D. Perrin J. C/tern. Soc. 1960 3189P20 D. D. Perrin J. C/tern. Soc. 1962 2197P21 D. D. Perrin J. C/tern. Soc. 1962 4500P22 D. D. Perrin J. C/tern. Soc. 1964 3644P23 D. Peschanski and J. M. Fruchart Corn/ct. Rend. 257 1853 (1963)P24 V. M. Peshkova and P. Ang Russ. J. Inorg. C/tern. (EngI. transl.) 7 1091 (1962)P25 V. M. Peshkova, N. V. Mel'chakova and S. C. Zhemchuzhin Z/tnr. Neorg. K/tirn. 6

1233 (1961)P26 A. Peterson Ado C/tern. Scand. 15 101 (1961)P26a A. D. Pethybridge andJ. E. Prue Trans. Faraday Soc. 63 2019 (1967)P27 J. N. Phillips Anstral. J. C/tern. 14 183 (1961)P28 H. Pick NernstFestsc/tri[t 1912 374P29 A. L. Pitman, M. Pourbaix and N. dc Zoubov J. E/ectroc/tern. Soc. 104 594 (1957)P30 V. A. Pleskov and A. M. Monoszon Z/tur. Fiz. K/tirn. 6 513 (1935)P30a W. Plumb and G. M. Harris Inorg. (i/tern. 3 542 (1964)PSI J. J. Podestà Rev. Fac. Cienc. Quirn. LoPlata 30 61(1957); CA 53 14652 (1959)P32 H. A. Pohi J. C/tern. Eng. Data 6 515 (1961)P33 C. N. Polydoropoulos Chirn. C/troni/ca 24 147 (1959)P34 C. N. Polydoropoulos and M. Pipinis Z. Physik. C/tern. (Fron/cfurt) 40 322 (1964)P35 C. Popa, C. Luca and B. Josif Z. P/tysik. C/tern. 222 49 (1963)P36 C. Postmus and E. L. King J. P/tys. C/tern. 59 1208 (1955)P37 B. G. Pozharskii, T. N. Stcrlingova and A. E. Petrova Russ. J. Inorg. C/tern. (Eng/.

transl.) 8 831 (1963)P38 E. B. R. Prideaux J. C/tern. Soc. 99 1224 (1911)P39 B. B. R. Prideaux and A. T. Ward J. C/tern. Soc. 125 69 (1924)P40 E. B. R. Prideaux and A. T. Ward J. C/tern. Soc. 125 425 (1924)P41 M. Prytz Z. Anorg. Al/gern. C/tern. 174 355 (1928)P42 M. Prytz Z. Anorg. Ailgern. C/tern. 200 133 (1931)]43 \j\I Pugh J. C/tern. Soc. 1929 1994

QQi D. Quanc and J. B. Barley J. Am. C/tern. Soc. 87 3823 (1965)Q2 M. Quintin J. C/tirn. P/tys. 24 712 (1927)Q3 M. Quintin Cornpt. Rend. 204 968 (1937)QI M. Quintin Cornpt. Rend. 210 625 (1940)Q5 A. S. Quist, W. L. Marshall and H. R. Jolley J. P/tys. C/tern. 69 2726 (1965)

RRi J. Rabani and M. S. Matheson J. Am. C/tern. Soc. 86 3175 (1964)

Ria J. Rabani, W. A. Mulac and M. S. Matheson J. P/tys. C/tern. 69 53 (1965)R2 S. W. Rabidcau J. Arn. C/tern. Soc. 79 3675 (1957)

232

REFERENCES

R3 S. W. Rabideau, unpubi., quoted by T. K. Keenan J. Phys. Chew. 61 1117 (1957)R4 S. W. Rabideau and R. J. Kline J. Phys. C/cern. 62 617 (1958)R5 S. W. Rabideau and R. J. Kline J. Phys. Chew. 64 680 (1960)R6 S. W. Rabideau andJ. F. Lemons J. Am. Chew. Soc. 732895 (1951)R7 A. J. Rabinowitsch and E. Laskin Z. Physik. Chew. A134 387 (1928)R8 A. T. Ram, D. Ramaswamy and Y. Nayudamma Recent Advan. Mineral Tannages,

Papers Symp., Madras 1964 207; CA 64 18510 (1966)R9 R. W. Ramette and R. F. Stewart J. Phys. Chew. 65 243 (1961)RIO T. Rathlev and T. Rosenberg Arch. Biochem. Biophys. 65 319 (1956)Ru P.C. Ray, M. L. Dey andj. C. GhoshJ. (Them. Soc. 111 413 (1917)R12 0. Redlich Z. Physik. Chew. A182 42 (1938)Rl3 0. Redlich and J. Bigeleisen .1. Am. Chew. Soc. 65 1883 (1943)R14 C. A. Reynolds and W. J. Argersinger J. Phys. Chew. 56 417 (1952)R15 W. L. Reynolds and S. Fukushima Inorg. Chew. 2 176 (1963)RiG D. H. Richards and K. W. Sykes J. Chew. Soc. 1960 3626R17 A. I. Rivkind Dokiady Akad. Nank S.S.S.R. 142 137 (1962)R18 D. Roach and E. S. Amis Z. Physik. Chew. (Frankfurt) 35 274 (1962)R19 E. J. Roberts J. Am. Chew. Soc. 52 3877 (1930)R20 E. B. Robertson and H. B. Dunford J. Am. Chem. Soc. 86 5080 (1964)R20a T. J. Robertson and E. Hartwig Canad. J. Chew. 29 818 (1951)R21 R. A. Robinson Trans. Fraday Soc. 32 743 (1936)R22 R. A. Robinson and V. E. Bower J. Phys. Chew. 65 1279 (1961)R23 'I'. E. Rogers and G. M. Waind Trans. Faraday Soc. 57 1360 (1961)R24 E. F. C. H. Rohwer and J. j. Cruywagen J. S. African Chew. Inst. 16 26 (1963)R25 E. F. C. H. Rohwer andJ. J. Cruywagen .J. S. African Chew. Inst. 17 145 (1964)R26 A. Rosenheim and G. Jander Kolloid Z. 22 23 (1918)R27 A. Rosenheim and L. Kraue Z. Anorg. Al/gem. Chew. 118 177 (1921)R28 W. H. Ross Proc. Trans. Nova Scotian Inst. Sci. 11 95 (1905)R29 S. D. Ross and A. J. Catotti .1. Am. Chew. Soc. 71 3563 (1949)R30 F. J. C. Rossotti and H. S. Rossotti Acta Chew. Scand. 9 1177 (1955)R31 F. J. C. Rossotti and H. S. Rossotti Acta Chew. Scand. 10 779 (1956)R32 F. J. C. Rossotti and H. S. Rossotti Acta (hew. Scand. 10 957 (1956)R33 W. A. Roth Anna/en 542 35 (1939)R34 W. A. Roth and E. Borger Z. Elektrochem. 43 354 (1937)R35 W. A. Roth and 0. Schwarz Ber. 59 338 (1926)R36 V. Rotbmund and K. Drueker Z. Physik. Chew. 46 827 (1903)R37 F. J. W. Roughton .1. Aw. Chew. Soc. 63 2930 (1941)R38 C. K. Rule and V. K. LaMer J. Aw. Chew. Soc. 60 1974 (1938)R39 C. I. Rulfs, R. F. Hirsch and R. A. Pacer Natnre 199 96 (1963)R40 P. RumpfCowpt. Rend. 197 686 (1933)R4l P. Rnmpf and V. Chavane Campt. Rend. 224 919 (1947)R42 R. M. Rush and J. S. Johnson J. Phys. Chew. 67 821 (1963)R43 R. M. Rush, J. S. Johnson and K. A. Kraus Inorg. Chew. 1 378 (1962)R44 R. S. Ryabova, I. M. Medvetskaya and M. I. Vinnik Zhur. Fir. Khiw. 40339 (1966)R45 J. Rydberg Arkiv Kewi 8 113 (1955)R46 S. Rydhoim Svensk. Papperstida. 58 273 (1955)R47 1. G. Ryss and V. B. Tul'chinskii Zhur. Neorg. Khiw. 6 1856 (1961)R48 B. N. Ryzhenko Dok/ady Akad. Nauk. S.S.S.R. 149 639 (1963)R49 B. N. Ryzhenko Ceokkinnya 1963 137R50 B. N. Ryzhenko Geokhimiya 1965 273

S51 R. N. J. Saal Rec. Tray. Chiw. 47 264 (1928)S2 K. V. Salnis, K. P. Mishehenko and I. E. Flis Zhur. Neorg. Khim. 2 1985 (1957)S3 P. Salomaa, L. L. Schaleger and F. A. Long .1. Am. Chew. Soc. 86 1 (1964)S4 J. Sand Z. Physik. Chew. 48 614 (1904)55 V. I. Saanikov, V. L. Zolotavin and I. Y. Bezrukov Rncs. J. Inorg. Chein. (Eng/. trans/.)

8 474 (1963)S6 V. Sasaki Acta Chew. Scand. 15 175 (1961)S7 V. Sasaki Acta Chew. Scand. 16 719 (1962)S8 V. Sasaki, I. Lindqvist and L. G. Sillén J. Inorg. Nnc/. Chew. 9 93 (1959)S9 V. Sasaki and L. G. Sillén Acta Chew. Scand. 18 1014 (1964)SlO D. P. N. Satchel! J. Chew. Soc. 1958 3904511 R. D. Sauerbrunn and E. B. Sandell .1. Aw. Chew. Soc. 75 4170 (1953)S12 R. Schaal and P. Faviei Ba/I. Soc. Chiw. France 1959 2011S13 P. G. Scheurer, R. M. Brownell and J. E. LuValle .1. Phys. Chew. 62 809 (1958)

233

REFERENCES

S14 K. Schiller and E. Thilo Z. Anorg. Allgem. Chem. 310 261 (1961)S15 H. Schmid, R. Marchgraber and F. Dunkl Z. Elektrochem. 43 337 (1937)S16 L. Schoepp Diss., Teehn. Univ. Berlin, 1960S17 R. K. Schofield and A. W. Taylor /. Chem. Soc. 1954 4445S18 G. Sehorseh Thesis, Univ. Strasburg, 1961S19 G. Schorseh Bull. Soc. Chim. France 1964 1449S20 C. Schorseh Bull. Soc. C/urn. France 1964 1456S21 B. Sehrager Collection Czech. Chem. Commun. 1 275 (1929)S22 E. Schreiner Z. Physik. Chein. 111 419 (1924)S23 M. Schumann Ber. 33 527 (1900)S24 G. M. Schwab C/tern. Ber. 90 221 (1957)S25 C. M. Schwab and K. Polydoropoulos Z. Anorg. Al/gem. Chem. 274 234 (1953)S26 R. Schwarz and E. Huf Z. Anorg. Al/gem. Chem. 203 188 (1931)S27 R. Schwarz and W. D. Muller Z. Anorg. Al/gem. C/tern. 296 273 (1958)S28 G. Schwarzenbaeh HeIr. 0dm. Acta 19 178 (1936)S29 G. Sehwarzenbaeh Z. Physik. C/tern. 176 133 (1936)S30 C. Sehwarzenbach Pure Appl. 0dm. 5 377 (1962)S31 C. Schwarzenbach, A. Eppreeht and H. Erlenmeyer Helv. Chim. Acta 19 1292 (1936)S32 C. Sehwarzenbaeh and C. Geier HeIr. Chim. Acta 46 906 (1963)S33 C. Sehwarzenbaeh, G. Ceies and J. Littler He/v. 0dm. AcM 45 2601 (1962)S34 G. Sehwarzenbaeh and R. Sulzberger HeIr. C/tim. Acta 27 348 (1944)S35 C. Schwarzenbaeh and J. Zure Monats/t. 81 202 (1950)S36 F. Seel and R. Schwaebel Z. Anorg. Al/gem. C/tern. 274 169 (1953)S37 F. Seel and R. Winkler Z. Physik. Chem. (Frankfurt) 25 217 (1960)S38 T. Sekine Acta Chem. Scand. 19 1526 (1965)S38a 'F. Sekine, H. Iwaki, M. Sakairi, F. Shimada and M. Inarida Bnll. Chem. Soc. Japan

41 1 (1968)S39 J. Sendroy and A. B. Hastings J. Biol. Chem. 71 785 (1927)S40 T. Shedlovsky and D. A. Maelnnes J. Am. Chem. Soc. 57 1705 (1935)S41 M. S. Sherrill J. Am. C/tem. Soc. 29 1641 (1907)S42 M. S. Sherrill, C. B. King and R. C. Spooner J. Am. Chem. Soc. 65 170 (1943)S43 M. S. Sherrill and A. A. Noyes J. Am. Chem. Soc. 48 1861 (1926)S43a V. B. Shevcenko, I. V. Shilin and Yu. K. Zhdavov Zh. Neorgan. K/tim. 5 2832 (1960)S44 E. A. Shilov Zhnr. Fiz. K/tim. 24 702 (1950)S45 E. A. Shilov and J. N. Cladtchikova J. Am. C/tern. Soc. 60 490 (1938)S46 E. A. Shilov and N. P. Kanyaev Zhur. Fiz. K/tim. 5 654 (1934)S47 T. H. Siddall and W. C. Vosburgh J. Am. C/tern. Soc. 73 4270 (1951)S48 M. D. Silverman and H. A. Levy Amer. C/tern. Soc., 118th meeting, Chicago, Sept. 1950

SQS49 K. Sima J. Biochem. (Japan) 29 121 (1939)S50 C. R. Singleterry, Thesis, Univ. Chicago, 1940S51 A. Skrabal Ber. 75B 1570 (1942)S52 A. Skrabal and A. Berger Monatsh. 70 163 (1937)S53 A. Skrabal and R. Skrabal Monats/t. 71 251 (1938)S54 A. Skrahal and A. Zahorka Z. Elektroc/tem. 33 42 (1927)S55 G. B. L. Smith, F. P. Gross, C. H. Brandes and A. W. Browne J. Am. Chem. Soc. 56

1116 (1934)S56 S. J. Smr Rec. Tray. C/tim. 44 580 (1925)S57 A. S. Solovkin Z/tur. Neorg. Khim. 2 611 (1957)S57a A. S. Solovkin and A. I. Ivantsov Z/t. Neorgan. K/tim. 111897 (1966)S58 F. C. Soper J. Chem. Sac. 125 2227 (1924)S59 Z. Soubarew-Chatelain Corn/A. Rend. 208 584 (1939)S60 P. Souchay and G. Carpéni Bull. Soc. C/tim. France 13 160 (1946)S61 P. Souchay and A. Hessaby Bull. Soc. C/tim. France 1953 614S62 P. Souchay and R. Schaal Bull. Soc. C/tim. France 17 819 (1950)S63 P. Souchay and R. Schaal Bull. Soc. C/tim. France 17 824 (1950)S64 C. Sourisseau Ann. C/tim. (Paris) [12] 8 349 (1953)S65 M. Spiro Trans. Faraday Soc. 55 1746 (1959)S66 E. Spitalsky Z. Anorg. Al/gem. C/tern. 54 265 (1907)S67 A. I. Stabrovskii 7/cur. Fiz. K/tim. 26 949 (1952)S68 M. von Staekelberg and H. von Freyhold 7. Elektroc/t em. 46 120 (1940)S69 W. C. Stadie and E. R. Hawes J. Biol. C/tern. 77 241 (1928)S70 J. Start Collection Czech. C/tern. Commun. 25 890 (1960)S71 J. Ste-Marie, A. E. Torma and A. 0. Gubeli Canad. I. C/tern. 42 662 (1964)S72 A. V. Stepanov and V. P. Shvedov Russ. J. Jnorg. C/tern. (EngI. transl.) 10 541 (1965)S73 R. Stewart and J. P. O'Donnell Canad. J. C/tern. 42 1681 (1964)S74 D. I. Stock and C. W. Davies Trans. Faraday Soc 44 856 (1948)

234

REFERENCES

S75 P. E. Sturrock ,J. D. Ray, J. McDowell and H. R. Hunt Inorg. Ghern. 2 649 (1963)S76 J. C. Sullivan andJ. C. Hindman J. Phys. Chern. 63 1332 (1959)S77 N. Sundén Svensk. Kern. Tidskr. 66 20 (1954)S78 N. Sundén Svensk. Kern. Tidskr. 66 50 (1954)S79 L. H. Sutcliffe andJ. R. Weber Trans. Faraday Soc. 52 1225 (1956)S80 L. H. Sutcliffe andJ. R. Weber J. Inorg. Nuci. Chern. 12 281 (1960)S8l J. Sutton Nature 169 71 (1952)S82 T. Suzuki and H. Hagisawa Bull. Inst. Phys. Chern. Research (Tokyo) 21 601 (1942)S82a K. Swaminathari and G.M. Harris J. Am. Chem. Soc. 88 4411 (1966)S83 I. Szilard Acta Ghern. Scand. 17 2674 (1963)

TTI K. Tachiki J. Ghem. Soc. Japan 65 346 (1944)T2 K. Takahasi and N. Yui Bull. Inst. Phys. C/tern. Research (Tokyo) 20 521 (1941)T3 H. V. Tartar and H. H. Garretson J. Am. Chern. Soc. 63 808 (1941)T4 K. Täufel, C. Wagner and H. Dunwald Z. Elelctrochem. 34 115 (1928)T5 E. G. Taylor, R. P. Desch and A. J. Catotti J. Ant. Ghem. Soc. 73 74 (1951)T6 B. J. Thamer J. Am. Chem. Soc. 79 4298 (1957)T6a A. Thiel and H. Gessner Z. Anorg. Ailgem. Chetn. 86 1 (1914)17 L. C. Thompson, Thesis, Wayne Univ. Detroit, 1955'18 R. S. Tobias Acta Chern. Scand. 12 198 (1958)'r9 R. S. Tobias J. Am. Chem. Soc. 82 1070 (1960)T1O R. S. Tohias and A. B. Garrett J. Am. Chem. Soc. 80 3532 (1958)Til V. N. Tolmachev and L. N. Serpukhova Zhur. Fiz. Khim. 30 134 (1956)Tila J. Y. Tong Inorg. Chern. 3 1804 (1964)Tub J. Y. Tong and R. L. Johnson Inorg. C/tern. 5 1902 (1966)T12 J. Y. Tong and E. L. King J. Am. Ghern. Soc. 75 6180 (1953)113 L. K. J. Tong and A. R. Olson J. Am. C/tern. Soc. 633406 (1941)T14 H. Topelmann J. Prakt. Chem. 121 320 (1929)T15 A. R. Tourky and A. A. Mousa J. Chein. Soc. 1949 1305T16 W. D. Treadwell and G. Schwarzenbach Helv. Ghim. Acta 11 405 (1928)T17 W. D. Treadwell and W. Wieland He/v. Chim. Acta 13 842 (1930)T18 S. Tribalat and J. M. Caldero Bull. Soc. Chim. France 1966 774T19 R. Tsuchiya and A. Umayahara Bull. Chem. Soc. Japan 36 554 (1963)T20 '1. A. Tumanova, K. P. Mishchenko and I. E. Flis Zhur. Neorg. Khim. 2 1990 (1957)'121 R. C. Turner and K. E. Mi1e anad. J. Ghern. 35 1002 (1937)

UUI N. Un C/tern. Rev. 50 375 (1952)

V

Vi C. E. Vanderzee J. Am. C/tern. Soc. 74 4806 (1952)V2 C. E. Vanderzee and A. S. Quist .1. Phys. Chem. 65 118 (1961)V3 J. A. Van Lier, P. L. de Bruyn andJ. T. G. Overbeek J. Phys. C/tern. 64 1675 (1960)V4 E. G. Vassian and W. H. Eberhardt J. Phys. Chem. 62 84 (1958)V5 V. M. Vdovenko, C. A. Romanov and V. A. Shcherbakov Radiokhimya 5 137 (1963);

CA 59 14639 (1963)V6 K. A. Vesterberg Z. Anorg. Ailgem. C/tern. 94 371 (1916)V7 .J. VilIm Collection Czech. Chem. Commun. 26 1268 (1961)V8 M. I. Vinnik, R. N. Kruglov and N. M. Chirkov Zhir. Fiz. K/tim. 30 827 (1956)V9 A. A. \Tlcek Collection Czech. C/tern. Commun. 20 400 (1955)

wWi J. Walker and W. Cormack J. Chem. Soc. 77 5 (1900)Wla R. M. Wallace J. Phys. C/tern. 70 3922 (1966)W2 G. C. \'vare, J. B. Spulnik and E. C. Gilbert .1. Am. C/tern. Soc. 58 1605 (1936)W3 J. A. Wasastjerna Soc. Sci. Fennica Corn. Phys. Mat. 1 (1923)W4 B. W. Washburn J. Am. Chem. Soc. 30 31(1908)W5 E. W. Washburn and E. K. Strachan J. Am. C/tern. Soc. 35 681 (1913)W5a S. Wasif J. Chern. Soc. A 1967 142W6 J. I. Watters and A. Aaron J. Am. C/tern. Soc. 75 611 (1953)

235

REFERENCES

W7 J. I. Watters, E. D. Loughran and S. M. Lambert J. Am. Chem. Soc. 78 4855 (1956)W8 J. I. Watters, P. E. Sturrock and R. E. Simonaitis Jnorg. Chem. 2 765 (1963)W9 0. Weider Ber. 68B 1423 (1935)\V9a J. L. Weeks and J. Rabani J. Phys. Chem. 70 2100 (1966)\V10 I. Weil and J. C. Morris J. Am. Chem. Sec. 71 3123 (1949)Wi! J. Weiss Trans. Faraday Soc. 31 966 (1935)W12 R. C. Wells J. Washington Acad. Sci. 32 321 (1942)W13 C. F. Wells and G. Davies Nature 205 692 (1965)W14 C. F. Wells and M. A. Salam Nature 205 690 (1965)W15 C. A. West J. Ghem. Soc. 77 705 (1900)Wl6 R. E. Weston and J. Bigeleisen J. Am. Chem. Soc. 76 3074 (1954)Wl7 E. J. Wheelwright, F. H. Spedding and G. Schwarzenbach J. Am. Chem. Soc. 75 4196

(1953)WiS M. Widmer and C. Schwarzenbach Helv. Chim. Acta 47 266 (1964)W19 J. S. Willcox and E. B. R. Prideaux J. £Them. Soc. 127 1543 (1925)W20 A. S. Wilson and H. Taube J. Am. 61dm. Soc. 74 3509 (1952)W21 K. Winkeiblech Z. Physik. Chem. 36 546 (1901)W22 T. H. Wirth and N. Davidson J. Am. Chem. Soc. 86 4325 (1964)W23 F. K. Wissbrnn, D. M. French and A. Patterson J. Phys. Chem. 58 693 (1954)W24 J. A. Woihoff and J. T. G. Overbeek Red. Tray. Chim. 78 759 (1959)W25 J. K. Wood J. Chem. Soc. 93 411 (1908)W26 J. K. Wood J. Chem. Soc. 97 878 (1910)W27 R. H. Wood J. Am. Chem. Soc. 80 1559 (1958)W28 C. B. Wooster J. Am. Chem. Sac. 60 1609 (1938)W29 J. M. Wright, W. T. Lindsay and T. R. Druga U.S. Atomic Energy Comm. WAPD-TM-

204 (1961)W30 R. H. Wright and 0. Maass Canad. J. Res. 6 588 (1932)W3l P. A. H. Wyatt Discussions Faraday Soc. 24 162 (1957)W32 P. A. H. Wyatt Tras. Faraday Soc. 56 490 (1960)W33 W. F. K. Wynne-Jones J. 61dm. Soc. 1930 1064W34 W. F. K. Wynne-Jones Proc. Roy. Soc. A140 440 (1933)W35 W. F. K. Wynne-Jones Trans. Faraday Soc. 32 1397 (1936)

Y

Yl C. Yagil and M. Anbar J. Am. Chem. Soc. 85 2376 (1963)Y2 C. Yagil and M. Anbar J. Inorg. Nucl. Chem. 26 453 (1964)Y3 T. Yamane and N. Davidson J. Am. Chem. Soc. 82 2123 (1960)Y4 K. Yates Canad. J. Chem. 42 1239 (1964)Y5 K. Yates and J. C. Riordan Canad. J. Chem. 43 2328 (1965)Y6 K. Yates and J. B. Stevens Canad. J. Chem. 43 529 (1965)Y7 K. Yates, J. B. Stevens and A. R. Katritzky Canad. J. Chem. 42 1957 (1964)Y8 K. Yates and H. Wai f. Am. Chem. Soc. 86 5408 (1964)Y9 K. B. Yatsimirskii and I. I. Alekseeva Izvest. Vysshikh Ucheb. Zavedenit, K/tim. i Khim.

Tekhnol. No. 1 53 (1958)Yb K. B. Yatsimirskii and V. E. Kalinina Russ. J. Inorg. Chem. (EngI. transl.) 9 611(1964)Yll F. H. Yorston Pulp and Paper Mag. Canada 31 374 (1931)Y12 D. M. Yost and R. J. White .1. Am. Chem. Soc. 50 81(1928)Yl3 T. F. Young, L. F. Maranville and H. M. Smith, unpubl., quoted by T. F. Young and

D. E. Irish in Ann. Rev. Phys. Chem. 13 435 (1962)Y14 N. Yui Bull. Inst. Phys. Chem. Research (Tokyo) 19 1229 (1940)YlS N. Yui Bull. Inst. Phys. Chem. Research (Tokyo) 20 256 (1941)Y16 N. Yui Bull. Inst. Phys. Chem. Research (Tokyo) 20 390 (1941)Y17 N. Yui Sci. Reports Tohoku Univ. 1st series 35 53 (1951)Y18 N. Yui and H. Hagisawa Bull. Inst. Phys. Chem. Research (Tokyo) 21 597 (1942)

zZi S. S. Zavodnov and P. A. Kryukov Izvest. Akad. Nauk S.S.S.R. Otdel. Khirn. Nauk 1960

1704Z2 J. v. Zawidzky Ber. 36 1427 (1903)Z3 E. L. Zebroski, H. W. Alter and F. K. Henmann f. Am. Chem. Soc. 73 5646 (1951)Z4 V. L. Zolotavin Zhnr. Obshchei Khim. 18 813 (1948)

236