diseño por flexión de zapata aislada y de hormigón simple

54
DISEÑO POR FLEXIÓN Profesor: Ing. Daniel E. Weber J.T.P.: Ing. Sebastián Romero Cimentaciones U.T.N. – Facultad Regional Santa Fe – 2008 E-Mail: [email protected]

Upload: ale

Post on 29-Jul-2016

308 views

Category:

Documents


5 download

DESCRIPTION

 

TRANSCRIPT

Page 1: Diseño por flexión de zapata aislada y de hormigón simple

DISEÑO POR FLEXIÓN

Profesor: Ing. Daniel E. Weber

J.T.P.: Ing. Sebastián Romero

Cimentaciones U.T.N. – Facultad Regional Santa Fe – 2008

E-Mail: [email protected]

Page 2: Diseño por flexión de zapata aislada y de hormigón simple

Diseño por Flexión

En el diseño de secciones rectangulares con refuerzo de tracción, las dos condiciones de equilibrio son:

C = T (1) y Mn= (C ó T) (d – a/2) (2)

b

d

c

d – a/2T

Ca=β1c

0,85 f’cεc

εs

As

Sección Deformación Esfuerzo equivalente

Page 3: Diseño por flexión de zapata aislada y de hormigón simple

Cuando el porcentaje de acero ρ = As / b.d se establece a partir de la ecuación (1) :

c

y

yc

f

fda

fdbabf

'

'

85,0

85,0

⋅⋅⋅

=

⋅⋅⋅=⋅⋅⋅

ρρ

A partir de la ecuación (2) :

( )adTf

fddfdbM

c

yyn ⋅−⋅=

⋅⋅⋅−⋅⋅⋅⋅= 5,0

85,05,0 '

ρρ

Diseño por Flexión

Page 4: Diseño por flexión de zapata aislada y de hormigón simple

Un coeficiente nominal de resistencia Rn se obtiene dividiendo por b.d2 :

⋅⋅

⋅−⋅⋅=⋅

=c

yy

nn f

ff

db

MR '2 85,0

5,01ρ

ρ

Cuando b y d se establecen, ρ se obtiene resolviendo la ecuación cuadrática para Rn :

⋅⋅−−⋅⋅=

c

n

y

c

f

R

f

f'

'

85,02

1185,0ρ

(3)

(4)

Diseño por Flexión

Page 5: Diseño por flexión de zapata aislada y de hormigón simple

Porcentaje de refuerzo balanceado ρb para secciones rectangulares con refuerzo a tracción solamente

0,02830,02520,02140,01600,75.ρb

0,03770,03350,02850,0214ρb4220

0,04910,04370,03710,02780,75.ρb

0,06550,05820,04950,0371ρb2810

β1=0,75β1=0,80β1=0,85β1=0,85

f’ c=422f’ c=352f’ c=281f’ c=211fy

Page 6: Diseño por flexión de zapata aislada y de hormigón simple

El procedimiento de diseño para secciones rectangulares sólo con refuerzo de tracción, mediante las ecuaciones (3) y (4), se realiza de la siguiente manera:

+⋅⋅⋅=

yy

c

b ff

f

6115611585,8 '

1βρ

Paso 1: seleccionar un valor aproximado del porcentaje de refuerzo de tracción ρ, igual o menor que 0,75 ρb, pero no mayor que el mínimo, donde el porcentaje de refuerzo balanceado, ρb, este dado por:

Diseño por Flexión

Page 7: Diseño por flexión de zapata aislada y de hormigón simple

y

2'1

2'2'

1

2'1

/56265,0

/562/28170

28105,085,0

/28185,0

cmkgf

cmkgfcmkgf

cmkgf

c

cc

c

≥→=

<<→

−⋅−=

≤→=

β

β

β

Diseño por Flexión

Page 8: Diseño por flexión de zapata aislada y de hormigón simple

Paso 2:

Con el porcentaje ρ establecido (14/fy ≤ ρ < 0,75 ρb), calcular el valor de b.d2 requerido.

( )n

ureq

R

Mdb

⋅=⋅

ϕ.

2

Donde:

==

⋅⋅

⋅−⋅⋅=

u

c

yyn

M

f

ffR

90,0

85,05,01 '

ϕ

ρρ

Momento factorizado aplicado

Para flexión

Diseño por Flexión

Page 9: Diseño por flexión de zapata aislada y de hormigón simple

Paso 3:

Dimensionar el elemento de tal manera que el valor dado b.d2 sea aproximadamente igual al valor b.d2 requerido.

Paso 4:

Calcular y revisar el valor de ρ mediante uno de los métodos detallados a continuación:

a) Por medio de la fórmula (Método exacto):

⋅⋅−−⋅⋅=

c

n

y

c

f

R

f

f'

'

85,02

1185,0ρ ( )2db

MR u

n ⋅⋅=

ϕDonde:

Diseño por Flexión

Page 10: Diseño por flexión de zapata aislada y de hormigón simple

b) Por medio de las curvas de resistencia. Los valores de ρestán dados en términos de Rnpara armaduras grado 42

Diseño por Flexión

Page 11: Diseño por flexión de zapata aislada y de hormigón simple

c) Por medio de las tablas de resistencia a momento. Los valores de ω = ρ.fy / f’c están dados en términos de resistencia a momento Mu / ϕ.f’c.b.d2

Diseño por Flexión

Page 12: Diseño por flexión de zapata aislada y de hormigón simple

d) Por medio de una relación aproximada:

( ) ( )( )originalR

revisadoR

n

noriginal ⋅≈ ρρ

Paso 5: Calcular el As requerida.

( )dadorevisadas dbA ⋅⋅= ρ

Cuando b y d están establecidas, el As requerida se calcula directamente de:

( )dados dbA ⋅⋅= ρ

Donde ρ se calcula usando uno de los métodos del paso 4.

Diseño por Flexión

Page 13: Diseño por flexión de zapata aislada y de hormigón simple

Cálculo de Zapatas:

Cargas y reacciones:

El primer paso para el diseño consiste en determinar el área requerida para la base de la zapata. Teniendo en cuenta las presiones admisibles del suelo o de las cargas de los pilotes de cimentación y las cargas reales de servicio no factorizadas en cualquier combinación.

Cuando ya se han establecido las dimensiones en planta de la zapata, se continua con la altura y armadura de la misma.

Para ello, las presiones de contacto y todas las cargas se incrementan por los factores de carga apropiados.

Page 14: Diseño por flexión de zapata aislada y de hormigón simple

Cálculo de Zapatas:

Cargas y reacciones:

Las cargas factorizadas o los momentos internos, y los esfuerzos de corte se utilizan para dimensionar la zapata, de modo que tenga la resistencia requerida al esfuerzo de corte y al momento flector.

Page 15: Diseño por flexión de zapata aislada y de hormigón simple

Cálculo de Zapatas:

Esfuerzo de Corte en Zapatas:

La resistencia al corte de una zapata en los puntos cercanos al elemento soportado (columna o muro) debe ser determinado por la más estricta de las dos condiciones, una, la acción de la viga y otra, la acción en dos direcciones de la zapata.

En la acción de la viga se considera que la zapata actúa como una viga ancha con una sección crítica a través de su ancho total.

En la acción en dos direcciones de la zapata, se verifica la resistencia al corte por penetración.

Page 16: Diseño por flexión de zapata aislada y de hormigón simple

Cálculo de Zapatas:

Esfuerzo de Corte en Zapatas:

La sección crítica para el esfuerzo de corte por penetración, es un perímetro b0 alrededor del elemento soportado.

La resistencia al corte para la acción en dos direcciones es una función del tamaño del apoyo βc, que es la relación del lado corto al largo de la columna o del área de apoyo.

Page 17: Diseño por flexión de zapata aislada y de hormigón simple

Cálculo de Zapatas:

Esfuerzo de Corte en Zapatas:

Si el esfuerzo de corte factorizado, Vu, en la sección crítica excede de la resistencia al corte ϕ.Vc, debe colocarse armadura por corte.

Si se coloca armadura de corte, la resistencia puede incrementarse hasta un valor máximo de: dbf c ⋅⋅⋅ 0

'6,1

Sin embargo, la armadura de corte debe diseñarse para que soporte un esfuerzo de corte superior a: dbf c ⋅⋅⋅ 0

'53,0

Este límite es la mitad del permitido, con una relación de βcde 2 o menos.

Page 18: Diseño por flexión de zapata aislada y de hormigón simple

Cálculo de Zapatas:

Esfuerzo de Corte en Zapatas:

Para el diseño de la zapata (sin armadura de corte), las ecuaciones de resistencia al corte se pueden resumir:

Acción de la viga:Acción de la viga:

( )dbfV

VV

wcu

nu

⋅⋅⋅⋅=

⋅≤'53,0ϕ

ϕ

Donde bw es el ancho de la zapata y Vu, el esfuerzo de corte factorizado, calculados para la sección crítica.

Page 19: Diseño por flexión de zapata aislada y de hormigón simple

Cálculo de Zapatas:

Esfuerzo de Corte en Zapatas:

Acción en dos direcciones:Acción en dos direcciones:

dbfV

VV

c

cu

nu

⋅⋅⋅

+⋅⋅=

⋅≤

0'4

227,0β

ϕ

ϕ

Donde el perímetro, b0, y el esfuerzo de corte factorizado, Vu, están calculados para la sección crítica.

Pero no mayor que: dbf c ⋅⋅⋅⋅ 0'1,1 ϕ

Page 20: Diseño por flexión de zapata aislada y de hormigón simple

Diseño de una zapata:

1,49

5 b0 para la acción en ambas direcciones

30 cm + d

d

d/2bw para la acción de la viga

1,01

1,49

5

4,00

1,85

1,85

75 cm + d

1,625 1,6250,75

4,00

1,27 1,271,46

Page 21: Diseño por flexión de zapata aislada y de hormigón simple

Cálculo de Zapatas:

Transmisión de fuerza en la base de la columna o muro reforzado:

Todas las fuerzas aplicadas en la base de una columna o muro (elemento soportado) debe transmitirse a la base (elemento soportante), por medio del apoyo sobre el Hº o mediante la armadura.

La armadura debe resistir completamente los esfuerzos de tracción. La compresión del Hº, tanto para el elemento soportado, como para el soportante no debe exceder la resistencia a compresión del Hº.

Page 22: Diseño por flexión de zapata aislada y de hormigón simple

Cálculo de Zapatas:

Transmisión de fuerza en la base de la columna o muro reforzado:

Para una columna soportada:

Donde f’c es la resistencia del Hº de la columna.

( )1'85,0 AfP cnb ⋅⋅⋅=⋅ ϕϕ

Para el caso común de una zapata de apoyo con un área total considerablemente mayor que la columna soportada.

:21

2 >A

A ( )[ ]1'58,02 AfP cnb ⋅⋅⋅⋅=⋅ ϕϕ

Donde f’c es la resistencia del Hº de la zapata.

Page 23: Diseño por flexión de zapata aislada y de hormigón simple

Cálculo de Zapatas:

Cuando se supera la resistencia a compresión, se debe proporcionar un refuerzo para transferir el exceso. Se debe suministrar un área mínima de refuerzo a lo largo de la entrecara de la columna o muro y la zapata, aun cuando no se supere la resistencia a compresión del Hº.

Los requerimientos mínimos de refuerzo se basan en el tipo de elemento soportado:

gs AA ⋅= 005,0Columnas coladas en obra:

Muros colados en obra: =sA Refuerzo mínimo vertical del muro.

Columnas prefabricadas de Hº:y

gs f

AA ⋅=14

Ag: área del elemento soportado

Page 24: Diseño por flexión de zapata aislada y de hormigón simple

Cálculo de Zapatas:

Muros prefabricados de Hº:

Para la construcción a base de Hº colado en obra, el refuerzo puede consistir en varillas de hierro prolongadas o anclajes de hierro entre la columna y la zapata.

Para la construcción a base de prefabricados, el refuerzo puede consistir en pernos de anclaje o conectores mecánicos.

y

gs f

AA ⋅= 5,3

Page 25: Diseño por flexión de zapata aislada y de hormigón simple

Diseño de una zapata:

Cálculo del área de una zapata:

Determinar el área, Af , de la base de una zapata cuadrada aislada.

Datos:

Carga muerta de servicio = 160 Tn.

Carga viva de servicio = 125 Tn.

Sobrecarga de servicio = 488 kg/m2

Peso promedio considerado para el suelo y Hº encima de la base de la zapata = 2.080 Kg/m3

Capacidad de carga del terreno = 22 Tn/m2 = 2,2 kg/cm2

Page 26: Diseño por flexión de zapata aislada y de hormigón simple

Diseño de una zapata:

Cálculo del área de una zapata:

Datos:

Columna = 75 cm x 30 cm

Page 27: Diseño por flexión de zapata aislada y de hormigón simple

Diseño de una zapata:

Cálculo y análisis:

1) Peso total de la sobrecarga:

2.080 kg/m3 x 1,50 m + 488 kg/m2 = 3.610 kg/m2 = 3,61 Tn/m2

2) Capacidad de carga neta del terreno:

22 Tn/m2 – 3,61 Tn/m2 = 18,39 Tn/m2

3) Área de la base de la zapata:

22 50,15

/39,18125160

mmTn

TnTnAf =+=

Adoptamos una zapata cuadrada de 4 m x 4 m (Af = 16 m2)

Page 28: Diseño por flexión de zapata aislada y de hormigón simple

Diseño de una zapata:

Cálculo y análisis:

El área de la base de la zapata se determina aplicando las cargas de servicio (no factorizadas) con la capacidad de carga del terreno.4) Cargas factorizadas y reacción del terreno:

U=1,4 x 160 Tn + 1,7 x 125 Tn = 436,50 Tn

22 /28,27

1650,436

mTnm

Tn

A

Uq

fs ===

Para dimensionar la zapata por resistencia (altura y armaduras necesarias) deben utilizarse cargas factorizadas

Page 29: Diseño por flexión de zapata aislada y de hormigón simple

Diseño de una zapata:

Diseño de la altura de la zapata:

2

2

2'

/28,27

50,436/28,2700,400,4

/211

mTnq

TnmTnmmP

cmkgf

s

u

c

=

=⋅⋅==

Page 30: Diseño por flexión de zapata aislada y de hormigón simple

Diseño de una zapata:

1,49

5 b0 para la acción en ambas direcciones

30 cm + d

d

d/2bw para la acción de la viga

1,01

1,49

5

4,00

1,85

1,85

75 cm + d

1,625 1,6250,75

4,00

1,27 1,271,46

Page 31: Diseño por flexión de zapata aislada y de hormigón simple

Diseño de una zapata:

Determinar la altura con base en la resistencia al corte, sin armadura de corte.

Considerar un espesor total de 84 cm; d promedio ≈ 71 cm

( )( ) ( )

( )correctoTnTn

TncmcmcmkgV

cmb

TnmmmTnV

dbfV

VV

u

w

u

wcu

nu

→<=⋅⋅⋅⋅≤

==⋅−⋅=

⋅⋅⋅⋅<

⋅≤

80,18540,124

80,1851000/71400/21153,085,0

400

40,124471,085,1/28,27

53,0

2

2

ϕ

1) Acción de la viga de la zapata:

Page 32: Diseño por flexión de zapata aislada y de hormigón simple

Diseño de una zapata:

( ) dbfV

VV

c

cu

nu

⋅⋅⋅

+⋅⋅<

⋅≤

0'4

227,0β

ϕ

ϕ1) Acción en dos direcciones de la zapata:

Pero no mayor que:Tn36,476dbf1,1 0c

' =⋅⋅⋅ϕ⋅

( )( ) ( )

( )

correctoTnTn

cmcmcmkgV

cmcmcmcmcmb

TnmmmcmTnV

u

c

u

→<

⋅⋅⋅

+⋅⋅≤

==

=+⋅++⋅==⋅−=

90,42020,396

1000/71494/2115,2

4227,085,0

5,23075

4947130271752

20,39601,146,116/28,27

2

0

22

β

Page 33: Diseño por flexión de zapata aislada y de hormigón simple

Diseño de una zapata:

Por lo tanto la altura efectivo de 71 cm es suficiente para resistir el esfuerzo de corte.

Page 34: Diseño por flexión de zapata aislada y de hormigón simple

Diseño de una zapata:

Diseño de la armadura de la zapata:

2

2

2

2'

/28,27

50,436/28,2700,400,4

/4220

/211

mTnq

TnmTnmmP

cmkgf

cmkgf

s

u

y

c

=

=⋅⋅=

==

Sección crítica para momento

Page 35: Diseño por flexión de zapata aislada y de hormigón simple

Diseño de una zapata:

Diseño de la armadura de la zapata:

( ) mTnmmTnM u ⋅=⋅⋅= 73,1862/85,14/28,27 22

1) La sección crítica se localiza en el plano de la columna

2) Calcular el As requerida:

0025,0/21185,0/29,102

11/4220

/21185,0

85,02

1185,0

/29,10714009,01073,186

.

2

2

2

2

'

'

25

2

=

⋅⋅−−⋅⋅=

⋅⋅−−⋅⋅=

=⋅⋅

⋅⋅=⋅⋅

=

cmkg

cmkg

cmkg

cmkg

f

R

f

f

cmkgcmcm

mTn

db

MreqR

c

u

y

c

uu

ρ

ρ

ϕ

Page 36: Diseño por flexión de zapata aislada y de hormigón simple

Diseño de una zapata:

Diseño de la armadura de la zapata:

Hay que verificar el espesor mínimo requerido para losas estructurales:

correcto→<= 0025,00018,0.minρ

271714000025,0

.

cmcmcmA

dbreqA

s

s

=⋅⋅=

⋅⋅= ρ

Utilizamos 14 Ø 25 mm = 68,72 cm2 en cada sentido.

Page 37: Diseño por flexión de zapata aislada y de hormigón simple

Diseño de una zapata:

Diseño de la armadura de la zapata:

0,155cm5,68l

8,0cm/kg211

cm/kg422091,406,0l

8,0f

fA06,0l

d

2

2

d

c'

ybd

<=

⋅⋅=

⋅⋅=

3) Revisar el desarrollo de la armadura

La sección crítica para el desarrollo es la misma que se considera para el momento (plano de la columna)

Para Ø 25 mm:

En la proyección corta

Page 38: Diseño por flexión de zapata aislada y de hormigón simple

Diseño de una zapata:

Diseño para la transmisión de la fuerza en la base de la columna:

( )( )

TnmTnmmP

cmkgf

cmkgzapataf

cmkgcolumnaf

u

y

c

c

50,436/28,2700,400,4

/4220

/211

/352

2

2

2'

2'

=⋅⋅=

==

=

Page 39: Diseño por flexión de zapata aislada y de hormigón simple

Diseño de una zapata:

( ) ( )correctoTnTn

cmcmcmkgAfP

cmkgf

cnb

c

→>⋅⋅⋅⋅=⋅⋅⋅=⋅

=

50,43600,471

7530/35285,070,085,0

/3522

1'

2'

ϕϕ

1) Resistencia al aplastamiento del Hº de la columna:

Diseño para la transmisión de la fuerza en la base de la columna:

2) Resistencia al aplastamiento del Hº de la zapata:

Para el apoyo en la zapata de Hº, la resistencia al aplastamiento se incrementa debido al gran tamaño del área de la zapata, lo que permite mayor distribución de la carga de la columna.

Page 40: Diseño por flexión de zapata aislada y de hormigón simple

Diseño de una zapata:

El incremento permitido varia entre 1 y 2, de acuerdo con la expresión:

Diseño para la transmisión de la fuerza en la base de la columna:

21

2 ≤A

A

Donde A1 es el área de la columna (área cargada) y A2 es el área máxima de la porción del área de la zapata que es geométricamente similar y concéntrica al área de la columna.

Page 41: Diseño por flexión de zapata aislada y de hormigón simple

Diseño de una zapata:

289,73075400350

1

2 >=⋅⋅=

cmcm

cmcm

A

A

Diseño para la transmisión de la fuerza en la base de la columna:

Para la columna de 75 x 30 cm soportada por una zapata de 4 x 4 m:

Page 42: Diseño por flexión de zapata aislada y de hormigón simple

Diseño de una zapata:

( )[ ]( )[ ]

correctoTnTn

cmcmcmkg

AfP cnb

→>=⋅⋅⋅⋅=

⋅⋅⋅⋅=⋅

50,436565

7530/21185,070,02

85,022

1'ϕϕ

Diseño para la transmisión de la fuerza en la base de la columna:

Cuando el área cargada A1 es la mitad o menos que el área apoyada A2, como en el caso de las zapatas, la resistencia al aplastamiento se incrementará con un factor de 2.

Page 43: Diseño por flexión de zapata aislada y de hormigón simple

Diseño de una zapata:

3) Anclajes requeridos entre la columna y la zapata:

Diseño para la transmisión de la fuerza en la base de la columna:

Aun cuando la resistencia al aplastamiento en el Hº de la columna y de la zapata sea adecuada para transmitir carga factorizada, se requiere un área mínima de refuerzo a través de la superficie de contacto.

( ) ( ) 225,113075005,0 cmcmcmmínAs =⋅⋅=

Colocar 4 Ø 20 mm = 12,56 cm2 como anclajes.

Page 44: Diseño por flexión de zapata aislada y de hormigón simple

Diseño de una zapata:

4) Longitud de los anclajes:

Diseño para la transmisión de la fuerza en la base de la columna:

Para varillas Ø 20 mm:

⋅⋅=

c

ybd

f

fdl

'

08,0

Pero no menor que: yb fd ⋅⋅00427,0

Longitud de desarrollo dentro de la columna:

cm74,33cm/kg352

cm/kg422000,2075,0l

2

2

d =⋅⋅=

Page 45: Diseño por flexión de zapata aislada y de hormigón simple

Diseño de una zapata:

4) Longitud de los anclajes de hierro:

Diseño para la transmisión de la fuerza en la base de la columna:

( )rigecm04,36cm/kg422000,200427,0 2 →=⋅⋅

Longitud de desarrollo dentro de la zapata:

( )

cm04,36cm/kg422000,200427,0l

rigecm58,43cm/kg211

cm/kg422000,2075,0l

2d

2

2

d

=⋅⋅=

→=⋅⋅=

Page 46: Diseño por flexión de zapata aislada y de hormigón simple

Diseño de una zapata:

4) Longitud de los anclajes de hierro:

Diseño para la transmisión de la fuerza en la base de la columna:

( ) ( )correctocm58,43cm5,69

)bastones(00,2hierros50,22ntorecubrimiecm5,7cm84

→>=−⋅−−=

Longitud disponible para desarrollo por encima de la armadura de la zapata:

Page 47: Diseño por flexión de zapata aislada y de hormigón simple

Diseño de una zapata de Hº simple:

Dimensionar una zapata cuadrada de Hº simple

Datos:

Carga muerta de servicio = 18,10 Tn.

Carga viva de servicio = 27,20 Tn.

Sobrecarga de servicio = 0 kg/cm2

Elemento soportado (pedestal) = 30,5 cm x 30,5 cm

Capacidad de carga del terreno = 19,53 Tn/m2

f’c = 211 kg/cm2zapata y pedestal)

Page 48: Diseño por flexión de zapata aislada y de hormigón simple

1) Área de la base de la zapata:

Cálculo y Análisis:

Diseño de una zapata de Hº simple:

22 32,2

/53,1920,2710,18

mmTn

TnTnAf =+=

Adoptamos una zapata cuadrada de 1,50 m x 1,50 m

(Af = 2,25 m2)

El área de la base de la zapata se determina aplicando las cargas de servicio (no factorizadas) con la capacidad de carga del terreno. Para diseñar la zapata por resistencia deben emplearse cargas factorizadas.

Page 49: Diseño por flexión de zapata aislada y de hormigón simple

Cálculo y Análisis:

Diseño de una zapata de Hº simple:

Cargas factorizadas y reacción del terreno:

U=1,4 x 18,10 Tn + 1,7 x 27,20 Tn = 71,60 Tn

22 /82,31

25,260,71

mTnm

Tn

A

Uq

fs ===

Page 50: Diseño por flexión de zapata aislada y de hormigón simple

Cálculo y Análisis:

Diseño de una zapata de Hº simple:

2) Determinar la altura de la zapata. Para Hº simple, la resistencia a flexión regirá el espesor. La sección crítica de momento está en el plano de la columna que interseca la base.

( ) mTnmmmTncbb

qM su ⋅=⋅⋅=

−⋅⋅= 00,961,076,0/82,3122

222

2

6hb

M

W

Mf uu

t ⋅⋅=≥

Esfuerzo de flexión permisible

22

'

/56,12/21165,033,1

33,1

cmkgcmkgf

ff

t

ct

=⋅⋅=

⋅⋅= ϕ

Page 51: Diseño por flexión de zapata aislada y de hormigón simple

Cálculo y Análisis:

Diseño de una zapata de Hº simple:

Despejando h = 53,2 cm

( )2

52

1521000,96

/56,12hcm

mtncmkg

⋅⋅⋅⋅≥

Se considera que los 5 cm de espesor de Hº en contacto con el suelo no se pueden tomar en cuanta para los cálculos de resistencia.

Utilizar un espesor total de la zapata de 60 cm.

h

qs

c=30,5cm

b=152cm

Sección crítica para momento

55 cm

Page 52: Diseño por flexión de zapata aislada y de hormigón simple

Cálculo y Análisis:

Diseño de una zapata de Hº simple:

3) Revisar la resistencia al corte para la altura de la zapata de 60 cm. Utilizar la altura efectiva por corte hef.=60-5=55cm

Acción en dos direcciones de la zapata:

( ) 23

0

/98,3553422

1098,49323

cmkgcmcm

Tn

hb

VV u

u =⋅⋅

⋅⋅=⋅⋅

⋅=

La sección crítica para la acción de la viga (distancia igual a la altura efectiva, tomado a partir del plano que interseca al pedestal) está localizada a 0,60-0,55=0,05 m del borde de la zapata, por lo tanto no es crítica.

Page 53: Diseño por flexión de zapata aislada y de hormigón simple

Cálculo y Análisis:

Diseño de una zapata de Hº simple:

Donde:

Por lo tanto la altura efectiva de 55 cm es adecuada para el esfuerzo de corte.

( )( )

correctocmkgcmkg

v

cmkgcmkg

ff

cmcmcmb

TnmTnV

cv

u

cc

c

cv

u

→<

=⋅⋅=

⋅⋅<⋅

+⋅⋅=

=+⋅==−⋅=

22

22

''

0

222

/39,10/98,3

/39,10/2111,165,0

1,14

227,0

342555,304

98,4986,052,1/82,31

ϕ

ϕβ

ϕϕ

Page 54: Diseño por flexión de zapata aislada y de hormigón simple

Cálculo y Análisis:

Diseño de una zapata de Hº simple:

4) Esfuerzo de penetración en el pedestal:

correctocmkgcmkgcmcm

kg

cmkgcmkgff cb

→<=⋅

=⋅⋅=⋅⋅=

22

22'

/6,116/55,793030

71600

/6,116/21165,085,085,0 ϕ