discrete -time signals and systems continuous-time signals & systems...

31
Yogananda Isukapalli Discrete - Time Signals and Systems Continuous - Time signals & systems Introduction

Upload: others

Post on 26-Jan-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Yogananda Isukapalli

    Discrete - Time Signals and Systems

    Continuous-Time signals & systemsIntroduction

  • Mathematical Representation of Signals

    • Independent variable can be• ‘Time’, ex. Speech signal• ‘spatial co-ordinates’, ex. Image• ‘time and space’, ex. Video• ‘numerical index’

    • Function can be,• Of many Dimensions• Continuous, Notation “( )”, as in x(t)• Discrete, Notation “[ ]”, as in x[n]

    Function of an independent variable, in Mathematical Sense

  • Examples of common Continuous signals

  • Continued…. Examples

  • Continued…. Examples

  • Classification of Continuous-Time Signals

    0 2

    0 0

    2

    2

    )

    lim (

    )

    1l

    )

    )

    1 ( )

    im ( )2

    ;

    L

    T

    L

    L

    L

    L

    L

    Average Power

    B

    x t

    A

    x t dt

    dt

    C

    x

    L

    t dtT

    Periodic S

    Average Pow

    Energy Signals

    ignals

    r

    E

    e

    P

    P

    ®

    ®

    -

    -

    ¥

    ¥

    é ùê úë û

    =

    =

    = ò

    ò

    ò

    )

    ( ) ( )

    D

    x t x t dt

    Area¥

    -¥é ù =ë ûA ò

  • Infinite length signals: Example 10

    0 ) ( ) cos( ) 3 / , 10

    ( ) 10cos(3 )0

    with rad s A an

    a xd

    A

    t

    t tt

    x t

    w fw p f

    p=

    -¥ <

  • Examples 2&3: Infinite length signals

    0) ,

    ( ) (

    )

    3

    b PeriodicsignalsSquare wave with fundamental frequen

    tcy o

    x t THf

    x tz

    -= ¥ <

  • Finite length signals

    [ ]( ) ( 3( ) sin(4 ) )( ) ( 2) ( 4), ( )... ,

    u ux t t t t

    p t u t u t u t unit step sig next sectiona nlp -= -

    = - - -Fig 16.7

  • Unit Step Signal

    1 00 0

    ( ) tt

    u t ³ìí

  • Finite continuous pulse

    ( )u t T-

    T

    ( ) ( )u t u t T- -

    T

    Fig 16.9

    Fig 16.10

    Fig 16.11

  • One Sided Signals: Application of Unit step signalUnit step signal operates on the ideal non-causalinfinite length signal into a causal one

    Fig 16.13

    Fig 16.12

    ( ) ( )x t u t

    ( ) ( )x t u t

  • Rectangular Pulse

    ( )... 2 ( ) ( ) ( )x t is derived from unit step functionsx t A u t a u t aé ùë û= + - -

    ( ) ( / 2 )x t rect t a=

    A

    a- a t

    Fig 16.15

  • Unit Ramp Signal

    ( )r t t=

    0 t1

    1

    ( )...

    (

    ) 1 , (

    )

    (

    (

    )

    )t

    u unit step signa

    u

    l

    d dAlso note th

    u

    atdt dt

    d

    r t t

    r t

    t

    t

    t t-¥

    = = =

    = ò

    Fig 16.16

  • Unit Impulse Signal

    (1)=

    The area of the impulse is wrUnit impulse signal is symb

    itten in paranthesses next toolized with an arro

    the arrow dw

    hea-

    2

    1

    1 2

    ) ( ) 0 01 0

    ) ( )0

    ) ( ) 0) ( ) ( );

    t

    t

    a t t

    t tb t dt

    otherwise

    c t undefined at td t t even function

    d

    d

    dd d

    = ¹

    <

  • 0ˆ( ) lim ( )

    ˆ( )ˆ:

    ( )

    iu t u t

    du tDefinition

    s an infinite

    t

    ly small value

    dtd

    =

    D=

    Unit Impulse & Unit Step Signals

    ˆ( )u t

    D t

    1

    0

    ( )u t

    Fig 16.18

  • Unit Impulse & Unit Step Signals, contd..

    ˆˆ( )) (du tdt

    td =

    D t0

    1D

    ( ); ( )

    '

    )( ) (t

    Thus unit - impulse can't be defined as a single pointIt is an approximation of narrow pulses whose ar

    u t

    ea is '1

    t ddu t

    dtd t td

    -¥== ò

    Fig 16.19

  • Unit Impulse: Approximation with pulses

    '1'

    Notice that the area of any pulse isImpulse results at the derivative of any discontinuous point

    Fig 16.20

  • Unit Impulse: Derivative at discontinuity

    Notice the location and magnitude of impulse

    ( )( ) du ttdt

    d =

    Fig 16.21

  • 22

    Unit Impulse- Derivative of a discontinuous function

    2( 1)2( 1)

    2( 1) 2

    0

    2( 1)

    2

    ( )

    1

    1

    ( )

    ( ) ( 1) ( 1)

    ( 1) 2

    ( 1) 2 ( 1

    ( ) ( 1)

    )

    )

    ( 1

    tt

    t t

    t

    t

    x t e u

    dx t du t dee u t

    d

    e t

    t dt dte

    t

    t

    t

    e

    t e u

    ud

    d

    - -- -

    - - - -

    -

    -

    -

    -

    -= +

    = -

    -

    = -

    = - -

    - -

    -

    Fig 16.22 Fig 16.23

  • Unit Impulse - Scaling property

    0

    0

    0

    0 0( ) ( ) ( ) ( )

    ( ) ( ) ( )f t t t dt f

    f t t t t

    t

    f t t

    d

    d d¥

    -¥-

    -

    =

    - =

    ò

    The impulse isshown as pulse

  • ( )

    ( )( )1 1 21 2 2

    ( )( ) ( ) ( )

    1 1( ) ( );

    ( ) ( ) (

    (

    )

    )

    ) (f t t t t tsignal multiplied by tf t

    f t t t f t t

    wo shifted un

    bat b

    it impulse

    t a ta

    s

    b

    t

    b ta a

    d

    d d

    d

    d

    d

    d

    d

    = - + -

    + = + - =

    -

    -

    - +

    Unit Impulse - Scaling property

    Fig 16.25

  • Unit Impulse - Example , ( ) sin(20 ) ( 1 80)Evaluate the expression x t t tp d= -

    ( ) sin(20 ) ( 1 80) sin(20 ) ( 1 80) ( 1 80)

    1 800.707

    the continuous function multiplied by an impulse becomesan impulse with a size depending only on the value ofcontinuo

    x t t tt

    us function

    t

    ev

    p dp dd

    = -= -= -

    ( ) sin(20 0.707

    0

    ) ( 1 80) ( 1 80)

    .

    707

    aluated at the time location of impulse

    x t dt t t dt tp d d¥ ¥ ¥

    -¥ -¥ -¥= - = -

    =

    ò ò ò

  • Unit Impulse - Examples0

    0

    3 32 2

    3 33

    3

    ( )

    ( 3) 3 ( 3)

    3 ( 3)

    ( ) ( 2) (2 2 ) ( 2)

    6 ( 2)

    )

    )

    )

    3

    6

    j t j tt t e dt

    t t dt t dt

    t dt

    t t t dt t dt

    t

    a

    b

    c

    dt

    ew wd

    d d

    d

    d d

    d

    ¥-

    -¥¥ ¥

    -¥ -¥¥

    - -

    -

    -- =

    - = -

    = - =

    + - = + -

    = - =

    ò

    ò ò

    ò

    ò ò

    ò

  • Operations on continuous-time signals

  • 28

  • 29

    Operations on continuous-time signals, contd…

    ( )x t

    (2 )x t

    ( 2)x t

  • 1-

    ( )x t

    t0 1 2

    2-

    ( / 2)x t

    t0 2 4

    2-

    (2 / 2)x t+

    t0 24-

    Operations on continuous-time signals, contd…

    Fig 16.28

  • James H. McClellan, Ronald W. Schafer and Mark A. Yoder, “ 9.1, and 9.2 “SignalProcessing First”, Prentice Hall, 2003

    Reference