discrete time rect function(4b) - wikimedia · 8 young won lim dt rect (4b) 4/29/13 rectn[n] *...

35
Young Won Lim 4/29/13 Discrete Time Rect Functions Discrete Time Rect Function(4B)

Upload: others

Post on 24-May-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Discrete Time Rect Function(4B) - Wikimedia · 8 Young Won Lim DT Rect (4B) 4/29/13 RectN[n] * δN0[n] DTFS (2) 0 1 −N +N L = 2N+1 DL(e jω̂) = sin(ω̂ L/2) Lsin(ω̂ /2) Dirichlet

Young Won Lim4/29/13

● Discrete Time Rect Functions

Discrete Time Rect Function(4B)

Page 2: Discrete Time Rect Function(4B) - Wikimedia · 8 Young Won Lim DT Rect (4B) 4/29/13 RectN[n] * δN0[n] DTFS (2) 0 1 −N +N L = 2N+1 DL(e jω̂) = sin(ω̂ L/2) Lsin(ω̂ /2) Dirichlet

Young Won Lim4/29/13

Copyright (c) 2009 - 2013 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to [email protected].

This document was produced by using OpenOffice and Octave.

Page 3: Discrete Time Rect Function(4B) - Wikimedia · 8 Young Won Lim DT Rect (4B) 4/29/13 RectN[n] * δN0[n] DTFS (2) 0 1 −N +N L = 2N+1 DL(e jω̂) = sin(ω̂ L/2) Lsin(ω̂ /2) Dirichlet

3 Young Won Lim4/29/13DT Rect (4B)

Fourier Transform Types

Discrete Time Fourier Transform

X e j = ∑n=−∞

x [n ] e− j n x [n] = 12π ∫−π

+πX (e j ω̂) e+ j ω̂n

Discrete Fourier Transform

X [k ] = ∑n= 0

N − 1

x [n] e− j2 /N k n x [n ] = 1N ∑

k = 0

N − 1

X [k ] e j 2/N k n

Discrete Time Fourier Series DTFS

X [k ] = 1N ∑

n= 0

N − 1

x [n] e− j (2π /N )k n x [n] = ∑k = 0

N − 1

X [k ] e+ j(2π/N )k n

DFT

DTFT

Page 4: Discrete Time Rect Function(4B) - Wikimedia · 8 Young Won Lim DT Rect (4B) 4/29/13 RectN[n] * δN0[n] DTFS (2) 0 1 −N +N L = 2N+1 DL(e jω̂) = sin(ω̂ L/2) Lsin(ω̂ /2) Dirichlet

4 Young Won Lim4/29/13DT Rect (4B)

DTFS and DTFT

DTFS (Discrete Time Fourier Series)

DTFT (Discrete Time Fourier Transform)X (e j ω̂) = sin(ω̂ L/2)

sin(ω̂/2) = L DL(ej ω̂)

X [k ] = 1N 0

sin (π Lk /N 0)sin(π k /N 0)

= LN 0

⋅drcl (k /N 0 , L)

N 0

(L−1) zerocrossings

L/N 0

0

1

+N−N

L = 2 N+1 N 0

2πL

= L⋅diric(ω̂ , L)

(L−1) zerocrossings

0

1

+N−N

L = 2 N+1

1

k

ω̂

2πL

Page 5: Discrete Time Rect Function(4B) - Wikimedia · 8 Young Won Lim DT Rect (4B) 4/29/13 RectN[n] * δN0[n] DTFS (2) 0 1 −N +N L = 2N+1 DL(e jω̂) = sin(ω̂ L/2) Lsin(ω̂ /2) Dirichlet

5 Young Won Lim4/29/13DT Rect (4B)

Page 6: Discrete Time Rect Function(4B) - Wikimedia · 8 Young Won Lim DT Rect (4B) 4/29/13 RectN[n] * δN0[n] DTFS (2) 0 1 −N +N L = 2N+1 DL(e jω̂) = sin(ω̂ L/2) Lsin(ω̂ /2) Dirichlet

6 Young Won Lim4/29/13DT Rect (4B)

DTFS

DTFS (Discrete Time Fourier Series)X [k ] = 1

N 0

sin (π Lk /N 0)sin(π k /N 0)

= LN 0

⋅drcl (k /N 0 , L)

N 0

(L−1) zerocrossings

L/N 0

0

1

+N−N

L = 2 N+1 N 01

k

Discrete Time Fourier Series DTFS

X [k ] = 1N ∑

n= 0

N − 1

x [n] e− j (2π /N )k n x [n] = ∑k = 0

N − 1

X [k ] e+ j(2π/N )k n

Page 7: Discrete Time Rect Function(4B) - Wikimedia · 8 Young Won Lim DT Rect (4B) 4/29/13 RectN[n] * δN0[n] DTFS (2) 0 1 −N +N L = 2N+1 DL(e jω̂) = sin(ω̂ L/2) Lsin(ω̂ /2) Dirichlet

7 Young Won Lim4/29/13DT Rect (4B)

RectN[n] * δN0[n] DTFS (1)

Dirichlet Function

Discrete Time Fourier Series DTFS

X [k ] = 1N ∑

n= 0

N − 1

x [n] e− j (2π /N )k n x [n] = ∑k = 0

N − 1

X [k ] e+ j(2π/N )k n

X [k ] = 1N 0

∑n=0

N 0−1

x [n]e− j (2π/N 0)k n

= 1N 0

∑n=−N

+N

x [n ]e− j (2π/N 0)k n

N 0 X [k ] = e+ j (2π N /N 0)k +⋯+ e− j (2π N /N 0)k

= e+ j (m)N k⋅e− j (m)(2N+1)k /2

e− j (m) k /2 ⋅e+ j (m)(2 N+1)k /2 − e− j (m)(2 N+1)k /2

e+ j (m)k /2 − e− j (m) k /2

= e+ j (m)N k⋅1 − e− j (m)(2 N+1) k

1− e− j (m)km = (2π/N 0)

= sin((m)(2 N+1)k /2)sin((m)k /2)

X [k ] = 1N 0

sin ((2π/N 0)(2 N+1)k /2)sin ((2π/N 0)k /2)

drcl (t , L) = sin(π Lt )Lsin(π t)

= e+ j (2π/N 0) N k⋅ 1− e− j (2π/N 0)(2N+1)k

1 − e− j (2π/N 0)k

0

1

+N−N

L = 2 N+1 N 0

Page 8: Discrete Time Rect Function(4B) - Wikimedia · 8 Young Won Lim DT Rect (4B) 4/29/13 RectN[n] * δN0[n] DTFS (2) 0 1 −N +N L = 2N+1 DL(e jω̂) = sin(ω̂ L/2) Lsin(ω̂ /2) Dirichlet

8 Young Won Lim4/29/13DT Rect (4B)

RectN[n] * δN0[n] DTFS (2)

0

1

+N−N

L = 2 N+1

DL(ej ω̂) = sin(ω̂L /2)

Lsin(ω̂/2)

Dirichlet Function

Discrete Time Fourier Series DTFS

X [k ] = 1N ∑

n= 0

N − 1

x [n] e− j (2π /N )k n x [n] = ∑k = 0

N − 1

X [k ] e+ j(2π/N )k n

N 0

drcl (t , L) = sin(π Lt )Lsin(π t)

drcl (k /N 0 , (2 N+1)) =sin (π k (2 N+1)/N 0)(2 N+1)sin (π k /N 0)

X [k ] = (2 N+1)N 0

⋅drcl (k /N 0 , (2 N+1))

X [k ] = 1N 0

sin((2π/N 0)(2 N+1)k /2)sin ((2π/N 0)k /2)

= 1N 0

sin (π k (2N+1)/N 0)sin (π k /N 0)

X [k ] = LN 0

⋅drcl (k /N 0 , L)X [k ] = 1N 0

sin(π k L /N 0)sin(π k /N 0)

Page 9: Discrete Time Rect Function(4B) - Wikimedia · 8 Young Won Lim DT Rect (4B) 4/29/13 RectN[n] * δN0[n] DTFS (2) 0 1 −N +N L = 2N+1 DL(e jω̂) = sin(ω̂ L/2) Lsin(ω̂ /2) Dirichlet

9 Young Won Lim4/29/13DT Rect (4B)

RectN[n] * δN0[n] DTFS (3)

0

1

+N−N

L = 2 N+1

DL(ej ω̂) = sin(ω̂L /2)

Lsin(ω̂/2)

Dirichlet Function

Discrete Time Fourier Series DTFS

X [k ] = 1N ∑

n= 0

N − 1

x [n] e− j (2π /N )k n x [n] = ∑k = 0

N − 1

X [k ] e+ j(2π/N )k n

N 0

drcl (t , L) = sin(π Lt )Lsin(π t)

X [k ] = LN 0

⋅drcl (k /N 0 , L)

X [k ] = 1N 0

sin(π k L /N 0)sin(π k /N 0)

Period : N0 (odd L), 2N0 (even L)

(L-1) zero crossings

Page 10: Discrete Time Rect Function(4B) - Wikimedia · 8 Young Won Lim DT Rect (4B) 4/29/13 RectN[n] * δN0[n] DTFS (2) 0 1 −N +N L = 2N+1 DL(e jω̂) = sin(ω̂ L/2) Lsin(ω̂ /2) Dirichlet

10 Young Won Lim4/29/13DT Rect (4B)

RectN[n] * δN0[n] DTFS (4)

odd L=9 even L=10

t = 0 t =+1 t =+2t =−1t =−2 t = 0 t =+1 t =+2t =−1t =−2

Dirichlet Function

drcl (t , L) =sin(π L t)L sin(π t)

X [k ] = 916 ⋅drcl (k /16 , 9)

k=0 k=+16 k=+32k=−16k=−32 k=0 k=+16 k=+32k=−16k=−32

8 zero crossings

9 zero crossings

LL

⋯ −3, −2, −1, 0, +1, +2, +3,⋯

(L-1) zero crossings (L-1) zero crossings

Page 11: Discrete Time Rect Function(4B) - Wikimedia · 8 Young Won Lim DT Rect (4B) 4/29/13 RectN[n] * δN0[n] DTFS (2) 0 1 −N +N L = 2N+1 DL(e jω̂) = sin(ω̂ L/2) Lsin(ω̂ /2) Dirichlet

11 Young Won Lim4/29/13DT Rect (4B)

RectN[n] * δN0[n] DTFS (5)

X [k ] = 916 ⋅drcl (k /16 , 9)

Period : N0 (odd L), 2N0 (even L)

k=0 k=+16 k=+32k=−16k=−32

(L-1) zero crossings

Page 12: Discrete Time Rect Function(4B) - Wikimedia · 8 Young Won Lim DT Rect (4B) 4/29/13 RectN[n] * δN0[n] DTFS (2) 0 1 −N +N L = 2N+1 DL(e jω̂) = sin(ω̂ L/2) Lsin(ω̂ /2) Dirichlet

12 Young Won Lim4/29/13DT Rect (4B)

Rect2[n] * δ8[n] DTFS Example

0

1

+N−N

DL(ej ω̂) = sin(ω̂L /2)

Lsin(ω̂/2)

Dirichlet Function

Discrete Time Fourier Series DTFS

X [k ] = 1N ∑

n= 0

N − 1

x [n] e− j (2π /N )k n x [n] = ∑k = 0

N − 1

X [k ] e+ j(2π/N )k n

N 0=8 drcl (t , L) = sin(π Lt )Lsin(π t)

X [k ] = 1N 0

sin (π k (2 N+1)/N 0)sin (π k /N 0)

X [k ] = 58⋅drcl (k /8 , 5)

L = 2N+1

X [k ] = LN 0

⋅drcl (k /N 0 , L)

L = 5 (N = 2)N 0=8

X [k ] = 18sin(π k 5 /8)sin (π k /8)

Period : N0 = 8 (odd L = 5)(L – 1) = 4 zero crossings

Page 13: Discrete Time Rect Function(4B) - Wikimedia · 8 Young Won Lim DT Rect (4B) 4/29/13 RectN[n] * δN0[n] DTFS (2) 0 1 −N +N L = 2N+1 DL(e jω̂) = sin(ω̂ L/2) Lsin(ω̂ /2) Dirichlet

13 Young Won Lim4/29/13DT Rect (4B)

Rect3[n] * δ16[n] DTFS Example

0

1

+N−N

DL(ej ω̂) = sin(ω̂L /2)

Lsin(ω̂/2)

Dirichlet Function

Discrete Time Fourier Series DTFS

X [k ] = 1N ∑

n= 0

N − 1

x [n] e− j (2π /N )k n x [n] = ∑k = 0

N − 1

X [k ] e+ j(2π/N )k n

N 0=16 drcl (t , L) = sin(π Lt )Lsin(π t)

X [k ] = 1N 0

sin (π k (2 N+1)/N 0)sin (π k /N 0)

X [k ] = 716

⋅drcl (k /16 , 7)

L = 2N+1

X [k ] = LN 0

⋅drcl (k /N 0 , L)

L = 7 (N = 3)N 0=16

X [k ] = 116sin (π k 7 /16)sin (π k /16)

Period : N0 = 16 (odd L = 7)(L – 1) = 6 zero crossings

Rect3 [n ]∗ δ16 [n]

Page 14: Discrete Time Rect Function(4B) - Wikimedia · 8 Young Won Lim DT Rect (4B) 4/29/13 RectN[n] * δN0[n] DTFS (2) 0 1 −N +N L = 2N+1 DL(e jω̂) = sin(ω̂ L/2) Lsin(ω̂ /2) Dirichlet

14 Young Won Lim4/29/13DT Rect (4B)

7/16 drcl(k/16, 7)

= 716drcl ( k16 ,7)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-20 -15 -10 -5 0 5 10 15 20

k16

= 17m

6 zero crossings

167⋅1 16

7⋅3

167⋅2

167⋅4

167⋅5

167⋅6

k = 167m

L = 7

N 0 = 16

k

LN 0

= 716

Zeros

= 716sin(π7 k /16)7sin(π k /16)

116sin(π7 k /16)sin(π k /16)

N 0

L =167

Page 15: Discrete Time Rect Function(4B) - Wikimedia · 8 Young Won Lim DT Rect (4B) 4/29/13 RectN[n] * δN0[n] DTFS (2) 0 1 −N +N L = 2N+1 DL(e jω̂) = sin(ω̂ L/2) Lsin(ω̂ /2) Dirichlet

15 Young Won Lim4/29/13DT Rect (4B)

Phase of 7/16 drcl(k/16, 7)

π

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

-20 -15 -10 -5 0 5 10 15 20

π = −π

= 716drcl ( k16 ,7)

= 716sin(π7 k /16)7sin(π k /16)

116sin(π7 k /16)sin(π k /16)

Page 16: Discrete Time Rect Function(4B) - Wikimedia · 8 Young Won Lim DT Rect (4B) 4/29/13 RectN[n] * δN0[n] DTFS (2) 0 1 −N +N L = 2N+1 DL(e jω̂) = sin(ω̂ L/2) Lsin(ω̂ /2) Dirichlet

16 Young Won Lim4/29/13DT Rect (4B)

Magnitude Response

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-20 -15 -10 -5 0 5 10 15 20

= 716drcl ( k16 ,7)

= 716sin(π7 k /16)7sin(π k /16)

116sin(π7 k /16)sin(π k /16)

k

N 0 = 16

Page 17: Discrete Time Rect Function(4B) - Wikimedia · 8 Young Won Lim DT Rect (4B) 4/29/13 RectN[n] * δN0[n] DTFS (2) 0 1 −N +N L = 2N+1 DL(e jω̂) = sin(ω̂ L/2) Lsin(ω̂ /2) Dirichlet

17 Young Won Lim4/29/13DT Rect (4B)

Phase Response (1)

0

0.5

1

1.5

2

2.5

3

3.5

-20 -15 -10 -5 0 5 10 15 20

= 716drcl ( k16 ,7)

= 716sin(π7 k /16)7sin(π k /16)

116sin(π7 k /16)sin(π k /16)

k

N 0 = 16

Page 18: Discrete Time Rect Function(4B) - Wikimedia · 8 Young Won Lim DT Rect (4B) 4/29/13 RectN[n] * δN0[n] DTFS (2) 0 1 −N +N L = 2N+1 DL(e jω̂) = sin(ω̂ L/2) Lsin(ω̂ /2) Dirichlet

18 Young Won Lim4/29/13DT Rect (4B)

Phase Response (2)

-4

-3

-2

-1

0

1

2

3

4

-20 -15 -10 -5 0 5 10 15 20

k

= 716drcl ( k16 ,7)

= 716sin(π7 k /16)7sin(π k /16)

116sin(π7 k /16)sin(π k /16)

N 0 = 16

Page 19: Discrete Time Rect Function(4B) - Wikimedia · 8 Young Won Lim DT Rect (4B) 4/29/13 RectN[n] * δN0[n] DTFS (2) 0 1 −N +N L = 2N+1 DL(e jω̂) = sin(ω̂ L/2) Lsin(ω̂ /2) Dirichlet

19 Young Won Lim4/29/13DT Rect (4B)

Page 20: Discrete Time Rect Function(4B) - Wikimedia · 8 Young Won Lim DT Rect (4B) 4/29/13 RectN[n] * δN0[n] DTFS (2) 0 1 −N +N L = 2N+1 DL(e jω̂) = sin(ω̂ L/2) Lsin(ω̂ /2) Dirichlet

20 Young Won Lim4/29/13DT Rect (4B)

RectN[n-N] * δN0[n] DTFS (1)

Dirichlet Function

Discrete Time Fourier Series DTFS

X [k ] = 1N ∑

n= 0

N − 1

x [n] e− j (2π /N )k n x [n] = ∑k = 0

N − 1

X [k ] e+ j(2π/N )k n

drcl (t , L) = sin(π Lt )Lsin(π t)

0

1

+N−N

L = 2 N+1 N 0

Page 21: Discrete Time Rect Function(4B) - Wikimedia · 8 Young Won Lim DT Rect (4B) 4/29/13 RectN[n] * δN0[n] DTFS (2) 0 1 −N +N L = 2N+1 DL(e jω̂) = sin(ω̂ L/2) Lsin(ω̂ /2) Dirichlet

21 Young Won Lim4/29/13DT Rect (4B)

Page 22: Discrete Time Rect Function(4B) - Wikimedia · 8 Young Won Lim DT Rect (4B) 4/29/13 RectN[n] * δN0[n] DTFS (2) 0 1 −N +N L = 2N+1 DL(e jω̂) = sin(ω̂ L/2) Lsin(ω̂ /2) Dirichlet

22 Young Won Lim4/29/13DT Rect (4B)

DFT

DFT (Discrete Fourier Transform)X [k ] =

sin (π L k /N 0)sin (π k /N 0)

= L⋅drcl (k /N 0 , L)

N 0

(L−1) zerocrossings

L

0

1

+N−N

L = 2 N+1 N 01

k

Discrete Fourier Transform

X [k ] = ∑n= 0

N − 1

x [n] e− j2 /N k n x [n ] = 1N ∑

k = 0

N − 1

X [k ] e j 2/N k n

DFT

Page 23: Discrete Time Rect Function(4B) - Wikimedia · 8 Young Won Lim DT Rect (4B) 4/29/13 RectN[n] * δN0[n] DTFS (2) 0 1 −N +N L = 2N+1 DL(e jω̂) = sin(ω̂ L/2) Lsin(ω̂ /2) Dirichlet

23 Young Won Lim4/29/13DT Rect (4B)

RectN[n] * δN0[n] DFT

DL(ej ω̂) = sin(ω̂L /2)

Lsin(ω̂/2)

Dirichlet Function

drcl (t , L) = sin(π Lt )Lsin(π t)

drcl (k /N 0 , (2 N+1)) =sin (π k /N 0(2N+1))(2 N+1)sin (π k /N 0)

X [k ] = (2 N+1)⋅drcl (k /N 0 , (2N+1))

X [k ] =sin((2π/N 0)(2N+1)k /2)

sin ((2π/N 0)k /2)

=sin (π k /N 0(2 N+1))

sin (π k /N 0)

= L⋅drcl (k /N 0 , L)=sin (π k /N 0 L)sin (π k /N 0)

Discrete Fourier Transform

X [k ] = ∑n= 0

N − 1

x [n] e− j2 /N k n x [n ] = 1N ∑

k = 0

N − 1

X [k ] e j 2/N k n

0

1

+N−N

L = 2 N+1 N 0

Page 24: Discrete Time Rect Function(4B) - Wikimedia · 8 Young Won Lim DT Rect (4B) 4/29/13 RectN[n] * δN0[n] DTFS (2) 0 1 −N +N L = 2N+1 DL(e jω̂) = sin(ω̂ L/2) Lsin(ω̂ /2) Dirichlet

24 Young Won Lim4/29/13DT Rect (4B)

RectN[n] * δN0[n] DTFS & DFT

Discrete Time Fourier Series DTFS

X [k ] = 1N ∑

n= 0

N − 1

x [n] e− j (2π /N )k n x [n] = ∑k = 0

N − 1

X [k ] e+ j(2π/N )k n

Discrete Fourier Transform

X [k ] = ∑n= 0

N − 1

x [n] e− j2 /N k n x [n ] = 1N ∑

k = 0

N − 1

X [k ] e j 2/N k n

X [k ] = L⋅drcl (k /N 0 , L)X [k ] =sin (π k L /N 0)sin (π k /N 0)

DFT

X [k ] = LN 0

⋅drcl (k /N 0 , L)X [k ] = 1N 0

sin(π k L /N 0)sin(π k /N 0)

Page 25: Discrete Time Rect Function(4B) - Wikimedia · 8 Young Won Lim DT Rect (4B) 4/29/13 RectN[n] * δN0[n] DTFS (2) 0 1 −N +N L = 2N+1 DL(e jω̂) = sin(ω̂ L/2) Lsin(ω̂ /2) Dirichlet

25 Young Won Lim4/29/13DT Rect (4B)

Page 26: Discrete Time Rect Function(4B) - Wikimedia · 8 Young Won Lim DT Rect (4B) 4/29/13 RectN[n] * δN0[n] DTFS (2) 0 1 −N +N L = 2N+1 DL(e jω̂) = sin(ω̂ L/2) Lsin(ω̂ /2) Dirichlet

26 Young Won Lim4/29/13DT Rect (4B)

DTFT

DTFT (Discrete Time Fourier Transform)X (e j ω̂) = sin(ω̂ L/2)

sin(ω̂/2) = L DL(ej ω̂)

2πL

= L⋅diric(ω̂ , L)

(L−1) zerocrossings

0

1

+N−N

L = 2 N+1

ω̂

2πL

Discrete Time Fourier Transform

X e j = ∑n=−∞

x [n ] e− j n x [n] = 12π ∫−π

+πX (e j ω̂) e+ j ω̂n

DTFT

Page 27: Discrete Time Rect Function(4B) - Wikimedia · 8 Young Won Lim DT Rect (4B) 4/29/13 RectN[n] * δN0[n] DTFS (2) 0 1 −N +N L = 2N+1 DL(e jω̂) = sin(ω̂ L/2) Lsin(ω̂ /2) Dirichlet

27 Young Won Lim4/29/13DT Rect (4B)

RectN[n] DTFT

0

1

+N−N

Discrete Time Fourier Transform DTFT

X e j = ∑n=−∞

x [n ] e− j n x [n] = 12π ∫−π

+πX (e j ω̂) e+ j ω̂n

= {e+ j ω̂ N +⋯+ e− j ω̂ N}

X (e j ω̂) = ∑n=−N

+N

e− j ω̂n x [n]

= e+ j ω̂N {1 +⋯+ e− j ω̂ 2N }

= e+ j ω̂N 1− e− j ω̂ (2N+1)

1 − e− j ω̂

= e+ j ω̂N e− j ω̂(2 N+1)/2

e− j ω̂ /2e+ j ω̂(2N+1)/2 − e− j ω̂(2 N+1)/2

e+ j ω̂ /2 − e− j ω̂ /2

= e+ j ω̂(2N+1)/2 − e− j ω̂(2N+1)/2

e+ j ω̂ /2 − e− j ω̂ /2 = sin(ω̂(2N+1)/2)sin(ω̂/2)

X (e j ω̂) = sin(ω̂ L/2)sin(ω̂/2)

L = 2 N+1

DL(ej ω̂) = sin(ω̂L /2)

Lsin(ω̂/2)

Dirichlet Function

= L DL(ej ω̂)

= L⋅diric(ω̂ , L)

Page 28: Discrete Time Rect Function(4B) - Wikimedia · 8 Young Won Lim DT Rect (4B) 4/29/13 RectN[n] * δN0[n] DTFS (2) 0 1 −N +N L = 2N+1 DL(e jω̂) = sin(ω̂ L/2) Lsin(ω̂ /2) Dirichlet

28 Young Won Lim4/29/13DT Rect (4B)

D9(ej ω̂) = sin(ω̂9/2)

9sin (ω̂/2)

D11(ej ω̂) = sin (ω̂11/2)

11sin(ω̂/2)

D13(ej ω̂) = sin (ω̂13/2)

13sin(ω̂/2)

D9(ej ω̂)

8 zero crossings

8 zero crossings

10 zero crossings

12 zero crossings

Dirichlet Functions

D10(ej ω̂) = sin(ω̂10 /2)

10sin (ω̂ /2)

D12(ej ω̂) = sin (ω̂12/2)

12sin(ω̂/2)

D14(ejω̂) = sin(ω̂14 /2)

14sin (ω̂ /2)

D10(ej ω̂)

9 zero crossings

9 zero crossings

11 zero crossings

13 zero crossings

Page 29: Discrete Time Rect Function(4B) - Wikimedia · 8 Young Won Lim DT Rect (4B) 4/29/13 RectN[n] * δN0[n] DTFS (2) 0 1 −N +N L = 2N+1 DL(e jω̂) = sin(ω̂ L/2) Lsin(ω̂ /2) Dirichlet

29 Young Won Lim4/29/13DT Rect (4B)

L DL(ejω) (1)

-2

-1

0

1

2

3

4

5

6

7

-10 -8 -6 -4 -2 0 2 4 6 8 10

X (e j ω̂) = sin(ω̂ L/2)sin(ω̂/2)

= L DL(ej ω̂)

= L⋅diric(ω̂ , L)

6 zero crossings

2π7

⋅1 2π7

⋅3

2π7

⋅22π7

⋅4

2π7

⋅5

2π7

⋅6

L = 7

2πL = 7

2πL = 2π

7

Page 30: Discrete Time Rect Function(4B) - Wikimedia · 8 Young Won Lim DT Rect (4B) 4/29/13 RectN[n] * δN0[n] DTFS (2) 0 1 −N +N L = 2N+1 DL(e jω̂) = sin(ω̂ L/2) Lsin(ω̂ /2) Dirichlet

30 Young Won Lim4/29/13DT Rect (4B)

Magnitude Response of L DL(ejω)

0

1

2

3

4

5

6

7

-10 -8 -6 -4 -2 0 2 4 6 8 10

X (e j ω̂) = sin(ω̂ L/2)sin(ω̂/2)

= L DL(ej ω̂)

= L⋅diric(ω̂ , L)

Page 31: Discrete Time Rect Function(4B) - Wikimedia · 8 Young Won Lim DT Rect (4B) 4/29/13 RectN[n] * δN0[n] DTFS (2) 0 1 −N +N L = 2N+1 DL(e jω̂) = sin(ω̂ L/2) Lsin(ω̂ /2) Dirichlet

31 Young Won Lim4/29/13DT Rect (4B)

Phase Response of L DL(ejω)

0

0.5

1

1.5

2

2.5

3

3.5

-10 -8 -6 -4 -2 0 2 4 6 8 10

X (e j ω̂) = sin(ω̂ L/2)sin(ω̂/2)

= L DL(ej ω̂)

= L⋅diric(ω̂ , L)

Page 32: Discrete Time Rect Function(4B) - Wikimedia · 8 Young Won Lim DT Rect (4B) 4/29/13 RectN[n] * δN0[n] DTFS (2) 0 1 −N +N L = 2N+1 DL(e jω̂) = sin(ω̂ L/2) Lsin(ω̂ /2) Dirichlet

32 Young Won Lim4/29/13DT Rect (4B)

Page 33: Discrete Time Rect Function(4B) - Wikimedia · 8 Young Won Lim DT Rect (4B) 4/29/13 RectN[n] * δN0[n] DTFS (2) 0 1 −N +N L = 2N+1 DL(e jω̂) = sin(ω̂ L/2) Lsin(ω̂ /2) Dirichlet

33 Young Won Lim4/29/13DT Rect (4B)

RectN[n-N] DTFT

0

1

+N−N

Discrete Time Fourier Transform DTFT

X e j = ∑n=−∞

x [n ] e− j n x [n] = 12π ∫−π

+πX (e j ω̂) e+ j ω̂n

L = 2 N+1

DL(ej ω̂) = sin(ω̂L /2)

Lsin(ω̂/2)

Dirichlet Function

Page 34: Discrete Time Rect Function(4B) - Wikimedia · 8 Young Won Lim DT Rect (4B) 4/29/13 RectN[n] * δN0[n] DTFS (2) 0 1 −N +N L = 2N+1 DL(e jω̂) = sin(ω̂ L/2) Lsin(ω̂ /2) Dirichlet

34 Young Won Lim4/29/13DT Rect (4B)

Page 35: Discrete Time Rect Function(4B) - Wikimedia · 8 Young Won Lim DT Rect (4B) 4/29/13 RectN[n] * δN0[n] DTFS (2) 0 1 −N +N L = 2N+1 DL(e jω̂) = sin(ω̂ L/2) Lsin(ω̂ /2) Dirichlet

Young Won Lim4/29/13

References

[1] http://en.wikipedia.org/[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003[3] G. Beale, http://teal.gmu.edu/~gbeale/ece_220/fourier_series_02.html[4] C. Langton, http://www.complextoreal.com/chapters/fft1.pdf[5] M. J. Roberts, Fundamentals of Signals and Systems