discrete time evolution and baxter's q-operator · functor z: zcob → vec # if-vector spaces...

15
[email protected] 1) Cylindric Macdonald functions and a deformed Verlinde algebra, CMP 318 (2013) 173-246 2) From quantum Bäcklund transformations to TQFT, JPA 49 (2016) 104001 Discrete Time Evolution and Baxter's Q-operator RAQIS 16 a ( nu ( nu : :( un

Upload: others

Post on 18-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Discrete Time Evolution and Baxter's Q-operator · Functor Z: Zcob → Vec # IF-vector spaces with dimV< co Z C On)=V ZCO)=V* s ' multiplication m: ZCSYOZCSZ(&÷j§)E 's → ZCS

[email protected]

1) Cylindric Macdonald functions and a deformed Verlinde algebra, CMP 318 (2013) 173-246

2) From quantum Bäcklund transformations to TQFT, JPA 49 (2016) 104001

Discrete Time Evolution and Baxter's Q-operator

RAQIS 16

a ( nu ( nu ::( un

Page 2: Discrete Time Evolution and Baxter's Q-operator · Functor Z: Zcob → Vec # IF-vector spaces with dimV< co Z C On)=V ZCO)=V* s ' multiplication m: ZCSYOZCSZ(&÷j§)E 's → ZCS

Road map: quantisation of the Ablowitt - Ladik chain

Classical integrate system [Abeowik . Ladik ' 76 ] Quantum integrate system

zxj = { H ,4j }, 2t4j*= { Hits

't }#= .jz(Bkjt÷BB*- znj )

µ -

tgttsttjnttitjtt'

- 2lnHY*4D )[ kueishiqgi

Poisson algebra of- boson algebra

[ .

,. ] = - it { .

,. }t0th2 )

{ Yi ,Xj* } = Sij C l - 4g*4j ) [ pi ,Pj*I= Sijll -

of ) a- Rpi )

quantisation

{ 4..,4j}={Yi*,Xg*3=o £ → it,

o < q=etc < 1

4*→±5integrals of motion ' Bethe algebra

'

=

ZDTQFTLjcu ) = his.

"u%* ) Ljlui = ( B,

"u&* )

→ monodromy matrix,

no monodromy matrix,

YB - algebraspectral invariants Baxter 's commuting transfer matrices

Page 3: Discrete Time Evolution and Baxter's Q-operator · Functor Z: Zcob → Vec # IF-vector spaces with dimV< co Z C On)=V ZCO)=V* s ' multiplication m: ZCSYOZCSZ(&÷j§)E 's → ZCS

Ablowitt . Ladik chain : separation of time flow

Equations of motion

2- Xj = Yj+ , -24J + Yj . ,

- Xj*4j ( 4g ; ,+ Yj . ,

)

{2.4¥- YE, tarts

's- YE't4j*4jHjEtYit '

)

Decomposition of Hamiltonian into left - and right movers

H = Hr + Hit Ho,

Hr =

,? 4j*Xj+ , , Hi ,?4j4j*t, ,{ He ,Hr}=o

'

Auxiliary time flow'

at ,4j=- { HL ,4j} = 4g ,( l - 4g*4j )

Since all 3 flows commute,

we can consider them separately .

Page 4: Discrete Time Evolution and Baxter's Q-operator · Functor Z: Zcob → Vec # IF-vector spaces with dimV< co Z C On)=V ZCO)=V* s ' multiplication m: ZCSYOZCSZ(&÷j§)E 's → ZCS

Datboux matrices : Dj+ ,( u ,v ) Lj ( u ) = [ j

( u ) Djcu ,v ,,

discrete zero . curvature

equation

det Dj C v.v )=o and Djlu ,0 ) = ( ff )

v )Bcicklund transform : ( Xj ,4j* ) /( Tlj ,Ij* )

,not

, Ij=YjCot)

�1� Canonical map which preserves the Poisson structure { .

). }

�2� Commutativity : BCV ,) ° Blvd = B ( vz )°B( v

,) [ Veselov

'

91 ]

'

time'

discretisalion : Yj ¥1210 '= ( 1 - 4j*4j Cot ) ) Yj . ,

Cot )

[ Sun 's 1997 ] ot

What is the quantum analogue of this evolution eqn ?

Page 5: Discrete Time Evolution and Baxter's Q-operator · Functor Z: Zcob → Vec # IF-vector spaces with dimV< co Z C On)=V ZCO)=V* s ' multiplication m: ZCSYOZCSZ(&÷j§)E 's → ZCS

of - boson took space periodic boundary conditions

• •

• ••

Vacuum : plo>=o •

mot . boson stale : im >=H*zM,o,:^

.!^

..

: :

9- mz mz m,

Mn

n

multi . particle stale : li >=01miH ) > partition d=( d, ,

...

,,\n)=(Im'2m?. .nmn )

i= ,

P*jlX>=( 1-qmjtl)lm, ,

... ,mj+ ,,

... .mn >,

Example shown above : n=io

X= ( 10,10 , 817,7, 5,5 ,5

, 4,4 , 3,313,3 , -2,111,1 )

fj It >= Im, ,

... ,mj -1,... ,mn ) K = 2+1+2+3 +2+4+1+3 = 18

→ Canonical quantisation of the Poisson algebra : An •

[ pi ,pj*]=Sija-9.111 . pitpi ) ;is

Page 6: Discrete Time Evolution and Baxter's Q-operator · Functor Z: Zcob → Vec # IF-vector spaces with dimV< co Z C On)=V ZCO)=V* s ' multiplication m: ZCSYOZCSZ(&÷j§)E 's → ZCS

Quantum Backlund transform → Baxter 's Q . operator [ Pasquier - Gaudin 1992 ]( Todachain )

( Bj ,pg*li→ ( fj ,fg* )fj = Qcnpj Qcvi

'

fj*= Qcvspjtaa ,.it#n : find Q

Define Qcv ) as the transfer matrix of an exactly solvable vertex model :

of- insertion : insert a particles into a pile of b- c particles inside a gravitational

potential with of= 5 PE

,E energy to lift one particle .

••I c

• →

• ob

4 •• 'o o at:::←s¥tI÷=i Iq

' ' ' '. [ da ]

, a##µ1 insertion

q4+3+3+1

= ql'll D= at b - c

a ,b ,C

,d E 2120

particle picture Boltzmann weight vertex configuration

Page 7: Discrete Time Evolution and Baxter's Q-operator · Functor Z: Zcob → Vec # IF-vector spaces with dimV< co Z C On)=V ZCO)=V* s ' multiplication m: ZCSYOZCSZ(&÷j§)E 's → ZCS

Lattice configurations & of- Whittaker polynomials

Let

MeMatch. , ,×n( No ) and set air pipit,

INPUT

µ=(In'zm . .cn .

nmn " ) t¥

µ=⇐po*Mioa,Mn. ..in?mpnTi0

Mom,

i. .

Mn. , ( )MioM

, ,Mhm, ,. . . m,o Define A

-then

✓,

it th . ' ( of )Mio(9- )Mi,

" . l F )Min. ,

yMzoMz,MzzMz}Mzovmmmomn. "Manmm.

the Matrix elements ofmimi... min

Zlv )= EmTam'

,

vM=IT vomij

. 1 xiijs

d=( 1mi. :( mjmh ' ' ) are the partition function .

OUTPUT

( cylindrical ) skew of - Whittaker functions

HIM[ CK'

13 ] Open boundaries

Mio=o: C

KIZCVIIM> =P

.,µ,(v ;q ,

0 )

periodic boundariesMio >0

:<KIZCVIIM> = Ed ZDP

.io/ailv;q..o)

Page 8: Discrete Time Evolution and Baxter's Q-operator · Functor Z: Zcob → Vec # IF-vector spaces with dimV< co Z C On)=V ZCO)=V* s ' multiplication m: ZCSYOZCSZ(&÷j§)E 's → ZCS

~

Quantum Backlund transform pjcv ) = Qlv ) PjQ(v5'

where

Qcv ) is the row - to - row transfer matrix of the of. insertion model .

htm [ CK ' 16 ] discrete quantum"

time flow"

±YI =(1-

pjfgcvhfjncvik*MjPI*=Pitt, (Bitfjm-1)

Discrete time evolution [ Qlu),Q*lv ) ]=O

§; =Q*cvi§jQ*cv ) §j- pj= - v( 1-FYP ; )Pj+ , functional equation

p ;( ot ) =

Q*fioH"Qciot) pj Qliotl"Q*fioH,

ucotii Ucots't

*- 5

'

Ulot ) time evolution operator

&l9toEfI= (l - Fyttiotlp; )pj+, ta-

fjtciotspjcot, )p, . ,( ot ,

for time step 't

Page 9: Discrete Time Evolution and Baxter's Q-operator · Functor Z: Zcob → Vec # IF-vector spaces with dimV< co Z C On)=V ZCO)=V* s ' multiplication m: ZCSYOZCSZ(&÷j§)E 's → ZCS

Multivariate Biicklund transforms & TQFT fusion matrices

BTCV,) o ... o

Btcvn. ,

) m> ZCV ) = QCV ,) " .

QCK!= ? Qx Pxcv ; of ,

0 )

J 4Fusion matrix

of- Whittaker function

TIM [ CK'

13 ] Fusion matrices of ZD TQFT for fixed particle number k.

v.Naujukcqt< vl Qxlm > = ¢n§ '

pair of pants'

2- cobordism

R in

Recurrence relations for fusion coefficients

a- qmim"

) NYjs*kw'

= a- qm. " ") NEW '±a.qmit'

' '''sNrfdtjuhtka.qmic " )a .qmt '

'"sNrPBjtjYL"

of →o : nisei'=New'±NrB"think .FI'"

such)h - WZW fusion ring'phase model

'

[ CK. ,

C. Stoppel Adv

.

Math. 2009 ]

Page 10: Discrete Time Evolution and Baxter's Q-operator · Functor Z: Zcob → Vec # IF-vector spaces with dimV< co Z C On)=V ZCO)=V* s ' multiplication m: ZCSYOZCSZ(&÷j§)E 's → ZCS

ZD TQFT ± Symmetric Frobenius algebras [ Aliyah

19881Functor Z : Zcob → Vec

#

IF - vector

spaceswith dimV< co Z C On )=V ZCO )=V*

s'

multiplication m : ZCSYOZCS 's → ZCS 'sZ(&÷j§)E Horn (

ZCSYOZCS's

,ZCS

'

) )( commutative )

aoxbt ab

invariant

[email protected]. ) )

bilinear form IF

cab ,c > = < a ,bc >

unit element e :

F→z(s

') ZCO ) E Horn ( IF

,ZCS

'

) )1 H I

TQFT partition function Z(€YFfE¥c::# )

genus g Surface

Page 11: Discrete Time Evolution and Baxter's Q-operator · Functor Z: Zcob → Vec # IF-vector spaces with dimV< co Z C On)=V ZCO)=V* s ' multiplication m: ZCSYOZCSZ(&÷j§)E 's → ZCS

ZD TQFT operator version of- bosons

ZCQ) E Vec

. ,

F=Z[ 9- it' '

] Bethe algebra Bmkc End ( Fr ,)

si p÷j§)eHom(Zcssozcs

's ,Zcs 's )

Q×Qµ=FNdi%9*÷ of ]

IF 1-Z ( @ )eHom( ZCSYOZCS 's ,ZC . ) ) < Qx,Qµ>=£xµ*Fh[mica ) ]q !

invariant bilinear form ×= imizmz ... nmn

Z ( O ) E Horn ( IF,

ZCS'

) ) Qcn,

... ,n ) Qx = Qxunit element

ZCEXETER: :#) TQFT partition function Tr (,§Qx§*)9"

genus g surface

Page 12: Discrete Time Evolution and Baxter's Q-operator · Functor Z: Zcob → Vec # IF-vector spaces with dimV< co Z C On)=V ZCO)=V* s ' multiplication m: ZCSYOZCSZ(&÷j§)E 's → ZCS

ZD TQFT operator version of- bosons

ZCQ) E Vec

. ,

E=Z[ 9- it' '

] Bethe algebra Bmkc End ( Fr ,)

:(&÷j§)eHom(Zcssozcs

's ,Zcs 's ) Q×Qµ= ? Nd'µY9*÷ of ]

IF 1-Z ( @ )eHom( ZCSYOZCS 's

,ZC . ) ) < Qx,Qµ>=£xµ*Fh[mica ) ]q !

invariant bilinear form ×= |m , zmz ... nmn

Z ( O ) E Horn ( IF,

ZCS'

) ) Qcn,

... ,n ) Qx = Qxunit element

ZCEXETER: :#) TQFT partition function Tr (,§Qx§*)9"

genus g surface

AIM : describe the discrete time dynamics in terms of the TQFT

Page 13: Discrete Time Evolution and Baxter's Q-operator · Functor Z: Zcob → Vec # IF-vector spaces with dimV< co Z C On)=V ZCO)=V* s ' multiplication m: ZCSYOZCSZ(&÷j§)E 's → ZCS

Two Q . operators Q±cv)=§,ovrQ±r

Qtr . Epn.PE#EHR*Fi*an, as.cnzz.pitanHRI.ch#Mlpnanggaea*

Qtr ( Fla. . " ( of Ian ( of la,

. . ( of Ian

T±M0 Functional identities 0(u1= GZNU "

N=#ofq - bosons

CK'

13,16

Tcu )Q+Cul= Qtcuqijtocu )QHuq'

),

TQ+ equation

Qtutlu )= QTuq3+o(uq2)QTuq2) QT equation)

Qtcu ) Qtuqtj - unq2N Qtcuq 's QTU ) = I'

quantum Wronskian '

The functional relations also imply the quantum analogue of BH . )°Blk)=BWoBw,)

Cor [ Qtr ,TsI=[ Qtr ,Q's

]=[Q±r,Q±s]=O.

' Bethe algebra'

C of- boson

algebracommutative

non .commutative

Page 14: Discrete Time Evolution and Baxter's Q-operator · Functor Z: Zcob → Vec # IF-vector spaces with dimV< co Z C On)=V ZCO)=V* s ' multiplication m: ZCSYOZCSZ(&÷j§)E 's → ZCS

Because we are dealing with non . commutative variables in the quantum case,

the

equation defining the Darboux transformation is now replaced with the Yang - Baxter eqn :

Dfduiv) Lytu)Esjlvl=Ltsjlv) Ly. lu )Dfzluiv )

This allows one to define Q± in a similar way as Tcu ) = Tr Lncul . :L,

lu )

Q± . operators for the of boson model [ CK 2013,

2016 ]

M 1* M

Eons = ( trim MIMI"

)mm

,

, . ija' = ( vmqm'z± ' ' fight)mm

.

, .

Current operators ( formal power series in v with coefficients in of- boson algebra)

Qttv) = Trench. .E Cr ) = Four QE "

explicitly known

Page 15: Discrete Time Evolution and Baxter's Q-operator · Functor Z: Zcob → Vec # IF-vector spaces with dimV< co Z C On)=V ZCO)=V* s ' multiplication m: ZCSYOZCSZ(&÷j§)E 's → ZCS

Omitted from the discussion

D Combinatorial approach to compute Ny,u ( q ) e z [ of 1 f.Hall polynomial

Recall skew Macdonald functions : Px ,µ( x ; of it ) = ? ftp.vlq.tl Pvlx ;qH

→ cylindnc of- Whittaker functions Px ,d,µ( x ;q ,

0 ) = ? Nstuvlq ) Pv ( x ; q ,o )

D N ,Iu (OIEZ,o are the such )r - WZW - fusion coefficients k=# off - bosons

TQFTg=o

I Ko ( E ),

E lens or category of Uesuch ) tilting modules

with e = el "k+h ( QFT : Chern . Simons )

→ Geometric interpretation at of to ?