direct link communication ii: wireless media · 2004. 2. 24. · cs 422 park basics of wireless...

21
CS 422 Park Direct Link Communication II: Wireless Media Motivation WLAN explosion cellular telephony: 3G/4G cellular providers/telcos in the mix self-organization by citizens for local access large-scale hot spots: Starbucks, airport lounges, trains, university/enterprise campuses, etc. integral part of global IP Internet where it’s happening -→ good news: good old radio technology! -→ bad news: radio technology #$%&!

Upload: others

Post on 24-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Direct Link Communication II: Wireless Media · 2004. 2. 24. · CS 422 Park Basics of Wireless Communication Use electromagnetic waves in wireless media (air/space) to transmit information

CS 422 Park

Direct Link Communication II:

Wireless Media

Motivation

• WLAN explosion

• cellular telephony: 3G/4G

→ cellular providers/telcos in the mix

• self-organization by citizens for local access

• large-scale hot spots: Starbucks, airport lounges, trains,

university/enterprise campuses, etc.

• integral part of global IP Internet

→ where it’s happening

−→ good news: good old radio technology!

−→ bad news: radio technology #$%&!

Page 2: Direct Link Communication II: Wireless Media · 2004. 2. 24. · CS 422 Park Basics of Wireless Communication Use electromagnetic waves in wireless media (air/space) to transmit information

CS 422 Park

Basics of Wireless Communication

Use electromagnetic waves in wireless media (air/space)

to transmit information.

• directed signal propagation: e.g., directed antenna or

IR (infrared)

• undirected signal propagation: e.g., omni-directional

antenna

−→ mainly: microwaves

−→ e.g., 2.4 GHz for IEEE 802.11b WLAN

−→ also, microwave oven, cordless phones, etc.

Page 3: Direct Link Communication II: Wireless Media · 2004. 2. 24. · CS 422 Park Basics of Wireless Communication Use electromagnetic waves in wireless media (air/space) to transmit information

CS 422 Park

Key differences with wired communication:

• Increased exposure to interference and noise

• Same frequency spectrum must be shared among all

users

−→ lack of physical shielding

• Inter-user interference cannot be localized at switch

−→ cannot use buffering

−→ problem for QoS (e.g., VoIP)

Page 4: Direct Link Communication II: Wireless Media · 2004. 2. 24. · CS 422 Park Basics of Wireless Communication Use electromagnetic waves in wireless media (air/space) to transmit information

CS 422 Park

• Signal propagation and variation is more complex

−→ attenuation

−→ refraction, absorption, reflection, diffraction

−→ multi-path fading

−→ mobility

Good sides: mobility, low deployment cost, and frequency

reuse

−→ once tasted, difficult to turn back

−→ key technology for LAN connectivity

Page 5: Direct Link Communication II: Wireless Media · 2004. 2. 24. · CS 422 Park Basics of Wireless Communication Use electromagnetic waves in wireless media (air/space) to transmit information

CS 422 Park

Electromagnetic spectrum (logarithmic scale):

1 kHz 1 GHz1 MHz1 Hz 1 THz 1 PHz 10^21 Hz10^18 Hz

Radio Wave IR

X Rays

Gamma

Microwave

UVVisible

Optical Fiber

Cellular, GPS, Satellite, PCS, WLAN, Microwave Oven

−→ RF: 9 kHz–300 GHz

−→ Microwave: 1 GHz–1 THz

−→ Wireless: concentration ∼0.8 GHz–6 GHz

−→ Optical fiber: ∼200 THz; 25 THz bandwidth

Page 6: Direct Link Communication II: Wireless Media · 2004. 2. 24. · CS 422 Park Basics of Wireless Communication Use electromagnetic waves in wireless media (air/space) to transmit information

CS 422 Park

Miscellaneous spectrum allocations (U.S.) & uses:

−→ FCC (Federal Communications Commission)

• Voice: 300 Hz–3300 Hz

• AM Radio: 0.535 MHz–1.7 MHz

• FM Radio: 88 MHz–108 MHz

• TV: 174 MHz–216 MHz, 470 MHz–825 MHz

−→ audio (FM), video (AM)

• GPS (Global Positioning System): 1.2276 GHz–1.57542

GHz

−→ DS-CDMA

−→ 24 satellites (DoD), 10900 miles

−→ navigation service: trilateration

Page 7: Direct Link Communication II: Wireless Media · 2004. 2. 24. · CS 422 Park Basics of Wireless Communication Use electromagnetic waves in wireless media (air/space) to transmit information

CS 422 Park

• Cellular telephone: 824 MHz–849 MHz (upstream),

869 MHz–894 MHz (downstream)

−→ AMPS: FDM, analog

−→ GSM: TDMA, digital

−→ IS-95: CDMA, digital

• PCS: 1.85 GHz–1.99 GHz

−→ CDMA, TDMA

Page 8: Direct Link Communication II: Wireless Media · 2004. 2. 24. · CS 422 Park Basics of Wireless Communication Use electromagnetic waves in wireless media (air/space) to transmit information

CS 422 Park

• WLAN: IEEE 802.11b 2.4 GHz–2.4835 GHz

−→ DSSS or FHSS with CSMA/CA

• WLAN: Bluetooth 2.4 GHz–2.4835 GHz

−→ FH with TDD

• WLAN: IEEE 802.11a 5.725 GHz–5.850 GHz

−→ OFDM with CSMA/CA

Page 9: Direct Link Communication II: Wireless Media · 2004. 2. 24. · CS 422 Park Basics of Wireless Communication Use electromagnetic waves in wireless media (air/space) to transmit information

CS 422 Park

• Satellite: C-band 3.7 GHz–4.2 GHz (downlink), 5.925

GHz–6.425 GHz (uplink)

→ FDMA/TDMA

• Satellite: Ku-band 11.7 Ghz–12.2 Ghz (downlink), 14

GHz–14.5 GHz (uplink)

• Many other frequency bands

→ cf. FCC chart

Page 10: Direct Link Communication II: Wireless Media · 2004. 2. 24. · CS 422 Park Basics of Wireless Communication Use electromagnetic waves in wireless media (air/space) to transmit information

CS 422 Park

Signal propagation and power

Free space loss:

• transmitting antenna: signal power Pin

• receiving antenna: signal power Pout

• distance: d

• frequency: f

Pout ∝ Pin

1

d2f 2

−→ quadratic decrease in distance & frequency

80.5 71.3 62.1 52.9 43.8 34.6 25.4 16.2

x−coordinate

y−coordinate

signal power

Page 11: Direct Link Communication II: Wireless Media · 2004. 2. 24. · CS 422 Park Basics of Wireless Communication Use electromagnetic waves in wireless media (air/space) to transmit information

CS 422 Park

Design implications:

• effective coverage limited by distance

−→ SNR: signal-to-noise ratio

−→ SIR: signal-to-interference ratio

spatial coverage by one high−power antenna spatial coverage by two low−power antennas

overlap region

−→ pros & cons?

Page 12: Direct Link Communication II: Wireless Media · 2004. 2. 24. · CS 422 Park Basics of Wireless Communication Use electromagnetic waves in wireless media (air/space) to transmit information

CS 422 Park

• low power output decreases cell size

−→ increased battery life

−→ enables frequency reuse

−→ more antennas required

−→ handoff coordination overhead

−→ e.g., I65 from Lafayette to Indy

handoff coordination

handoff coordination

Page 13: Direct Link Communication II: Wireless Media · 2004. 2. 24. · CS 422 Park Basics of Wireless Communication Use electromagnetic waves in wireless media (air/space) to transmit information

CS 422 Park

Cellular networks

Hexagonal cells:

−→ both affect tiling of the plane

−→ why hexagonal?

Frequency reuse: adjacent cells do not use common car-

rier frequency.

−→ avoid interference

−→ how many frequencies are required?

Page 14: Direct Link Communication II: Wireless Media · 2004. 2. 24. · CS 422 Park Basics of Wireless Communication Use electromagnetic waves in wireless media (air/space) to transmit information

CS 422 Park

For example, using seven frequencies:

1

2

3

4

5

6

7 1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7 1

2

3

4

5

6

7

. . .. . .

. . .. . .

−→ why does it work?

−→ in general, coloring problem

Page 15: Direct Link Communication II: Wireless Media · 2004. 2. 24. · CS 422 Park Basics of Wireless Communication Use electromagnetic waves in wireless media (air/space) to transmit information

CS 422 Park

4-coloring of U.S. map:

−→ Y. Kanada, Y. Sato; Univ. of Tokyo

Page 16: Direct Link Communication II: Wireless Media · 2004. 2. 24. · CS 422 Park Basics of Wireless Communication Use electromagnetic waves in wireless media (air/space) to transmit information

CS 422 Park

CS Building:

First floor frequency reuse:

Page 17: Direct Link Communication II: Wireless Media · 2004. 2. 24. · CS 422 Park Basics of Wireless Communication Use electromagnetic waves in wireless media (air/space) to transmit information

CS 422 Park

Second floor frequency reuse:

Ground floor frequency reuse:

Page 18: Direct Link Communication II: Wireless Media · 2004. 2. 24. · CS 422 Park Basics of Wireless Communication Use electromagnetic waves in wireless media (air/space) to transmit information

CS 422 Park

Non-uniform covering:

−→ directional antenna

−→ non-uniform density

Page 19: Direct Link Communication II: Wireless Media · 2004. 2. 24. · CS 422 Park Basics of Wireless Communication Use electromagnetic waves in wireless media (air/space) to transmit information

CS 422 Park

Non-uniform frequency allocation:

−→ total carrier frequency budget: 35

−→ frequency borrowing

1 (5)

2 (5)

3 (5)

4 (5)

5 (5)

6 (5)

7 (5)

2 (3)

3 (3)

4 (3)

5 (3)

6 (3)

7 (3)

1 (17)

uniform frequency allocation non−uniform frequency allocation

Page 20: Direct Link Communication II: Wireless Media · 2004. 2. 24. · CS 422 Park Basics of Wireless Communication Use electromagnetic waves in wireless media (air/space) to transmit information

CS 422 Park

Cell sizes:

• Macrocell: < 35 km; < 10 W

• Microcell: < 1 km; < 3 W

• Picocell: < 100 m; < 100 mW

• Satellite footprint: e.g., 30–40 % (GEO); 4000 km

(LEO)

−→ e.g., GEO satellites at 35786 km

−→ e.g., LEO satellites at ∼1000 km

Page 21: Direct Link Communication II: Wireless Media · 2004. 2. 24. · CS 422 Park Basics of Wireless Communication Use electromagnetic waves in wireless media (air/space) to transmit information

CS 422 Park

Note: 2-way propagation delay (RTT)

2 × 35786/300000 ≈ 0.24 sec

−→ optimistic based on closest distance

−→ RTT can be: ∼500 msec