direct evidence of solvent polarity governing the dynamics ... · r e s c e n c e, n o r m d m f c...

37
1 Supporting information Direct Evidence of Solvent Polarity Governing the Intramolecular Charge and Energy Transfer: Ultrafast Relaxation Dynamics of Push-Pull Fluorene Derivative Afeefah U. Neelambra a , Chinju Govind a,b , Tessy T. Devassia. a,b , Guruprasad M. Somashekharappa, a,b , Venugopal Karunakaran a,b,* a Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India, b Academy of Scientific and Innovative Research (AcSIR), New Delhi 110 001, India. *E-mail: [email protected]. Phone: 091-471-2515240 Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2019

Upload: others

Post on 09-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Direct Evidence of Solvent Polarity Governing the Dynamics ... · r e s c e n c e, n o r m D M F C H X 3 3 1 ( a ) ( b ) P H O 3 1 0 3 7 4 4 6 6 3 0 0 4 0 0 5 0 0 6 0 0 ( c ) 4 3

1

Supporting information

Direct Evidence of Solvent Polarity Governing the

Intramolecular Charge and Energy Transfer: Ultrafast Relaxation

Dynamics of Push-Pull Fluorene Derivative

Afeefah U. Neelambraa, Chinju Govinda,b, Tessy T. Devassia. a,b,

Guruprasad M. Somashekharappa, a,b, Venugopal Karunakarana,b,*

aPhotosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-

National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019,

Kerala, India, bAcademy of Scientific and Innovative Research (AcSIR), New Delhi 110 001,

India.

*E-mail: [email protected]. Phone: 091-471-2515240

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.This journal is © the Owner Societies 2019

Page 2: Direct Evidence of Solvent Polarity Governing the Dynamics ... · r e s c e n c e, n o r m D M F C H X 3 3 1 ( a ) ( b ) P H O 3 1 0 3 7 4 4 6 6 3 0 0 4 0 0 5 0 0 6 0 0 ( c ) 4 3

2

Table of Contents Page No.

Scheme S1 Synthetic scheme for PXFCN. 4

Synthetic procedure for FCN. 4

Synthetic procedure for BrCNF and DMF. 5

Synthetic procedure for PXFCN. 6

Figure S1 Absorption and emission spectra of DMF, PHO and 7

PXFCN in CHX at room temperature and their low temperature

emission spectra.

Figure S2 Absorption and emission spectra of DMF, PHO and 8

PXFCN in ACN at room temperature and their low temperature

emission spectra.

Figure S3 Lippert-Mataga plot of PXFCN in different solvents. 9

Figure S4 Solid state absorption and emission spectra of PXFCN . 10

Figure S5 Molecular orbital diagram of PXFCN. 11

Figure S6 Absorption and emission spectra of DMF, PHO and PXFCN showing

the spectral overlap. 12

Figure S7 Absorption spectra of PXFCN in THF and water mixture. 13

Figure S8 Fluorescence decay profiles of PXFCN in THF and water mixtures. 14

Figure S9 DLS data of PXFCN in THF and water mixture at 90% (fw ). 15

Figure S10 Time resolved emission spectra of PXFCN in ACN obtained

by exciting at 331 nm. 16

Figure S11 Fluorescence dynamics of PXFCN in CHX and ACN 17

obtained by exciting at 274, 331 and 378 nm.

Figure S12 Fluorescence anisotropy decay of PXFCN in CHX 18

by exciting at 274, 331 and 378 nm.

Figure S13 Fluorescence anisotropy decay of PXFCN in ACN probed at 620 nm 19

by exciting at 274, 331 and 378 nm.

Figure S14 Spectroelectrochemical spectra of PXFCN in ACN. 20

Figure S15 Transient kinetic decays of PXFCN in CHX and ACN obtained 21

Page 3: Direct Evidence of Solvent Polarity Governing the Dynamics ... · r e s c e n c e, n o r m D M F C H X 3 3 1 ( a ) ( b ) P H O 3 1 0 3 7 4 4 6 6 3 0 0 4 0 0 5 0 0 6 0 0 ( c ) 4 3

3

by exciting at 355 nm using nanosecond laser flash photolysis.

Figure S16 Femtosecond time-resolved transient absorption spectra of PXFCN 22

in CHX upon excitation at 330 nm.

Figure S17 Femtosecond time-resolved transient absorption spectra of PXFCN 23

in CHX upon excitation at 385 nm.

Figure S18 Femtosecond time-resolved transient absorption spectra of PXFCN 24

in ACN upon excitation at 330 nm.

Figure S19 Femtosecond time-resolved transient absorption spectra of PXFCN 25

in ACN upon excitation at 385 nm.

Figure S20 Femtosecond time resolved decay profiles of PXFCN probing at 26

420 nm in CHX and ACN obtained by excitation at 311, 330

and 385 nm.

Figure S21 Femtosecond time resolved decay profiles of PXFCN probing at 27

520 nm in CHX and ACN obtained by excitation at 311, 330

and 385 nm.

Figure S22 Decay associated spectra of PXFCN in CHX for different 28

excitation wavelengths.

Figure S23 Decay associated spectra of PXFCN in ACN for different 29

excitation wavelengths.

Figure S24 1H NMR spectra of PXFCN in CDCl3. 30

Table S1 Results of CAM B3LYP/6-31G (d) calculations for PXFCN 31

Table S2 Electrochemical data 31

Table S3 Fluorescence lifetime of PXFCN in different THF and water 32

Mixtures obtained by excitation at 378 nm.

Table S4 Fluorescence lifetime of DMF and PHO in ACN and CHX. 33

Table S5 Absolute and relative fluorescence quantum yield for PXFCN. 33

Table S6 Bond parameters of PXFCN optimized geometry in S0 state obtained 34

from DFT calculation.

Table S7 Bond parameters of PXFCN optimized geometry in S1 state obtained 36

from DFT calculation.

Page 4: Direct Evidence of Solvent Polarity Governing the Dynamics ... · r e s c e n c e, n o r m D M F C H X 3 3 1 ( a ) ( b ) P H O 3 1 0 3 7 4 4 6 6 3 0 0 4 0 0 5 0 0 6 0 0 ( c ) 4 3

4

Br CNCNCHO

Br CNCNN

O

NH2OH.HClNMP

115 C, 6 hr

CH2Cl2 , Br2

MeI,KI

t-BuOK, DMSOAr atm, 5 hr

Phenoxazinet-BuONa

t-Bu3P, Pd2(dba)3

6 hr

xylene, 80 CAr atm, 12 hr

NMP : N-Methyl-2-pyrrolidonet- Bu3P : Tri (tert- butyl) phosphinePd2(dba)3 :Tris(dibenzylideneacetone)dipalladium(0)

(82%)

(94%)(70%)

(78%)

CNF BrCNF

DMFPXFCN

Scheme S1 Synthesis of 2-cyano-9-phenoxazine -9,9-dimethylfluorene (PXFCN)

Synthetic procedure of PXFCN

Synthesis of 9H-Fluorene-2-carbonitrile (FCN):

In a 100 mL RB 9H-fluorene-2-carbaldehyde (1 equiv), N-methylpyrrolidone (8 mL) and

H2NOH.HCl (1 equiv.) was taken and heated to 115 C for 5-6 hr. On completion of the reaction,

the reaction mixture was poured into cold water and stirred for some time. A light yellowish

precipitate was formed which was collected by filtration, dried and was recrystallized from

ethanol/water mixture. Yield: 94%. 1H NMR (500 MHz, CDCl3): δ 7.86-7.83 (m, 2H), 7.82 (s,

1H), 7.68 (d, J = 8 Hz, 1H), 7.60 (d, J = 7 Hz, 1H), 7.45-7.40 (m, 2H), 3.96 (s, 2H). 13C NMR

(125 MHz): 146.24, 143.91, 143.64, 139.91, 131.20, 128.64, 128.59, 127.31, 125.33, 120.98,

120.39, 109.67, 36.78. HRMS (EI) (m/z): [M]+ calcd. for: C14H9N 191.07 found 192.08159.

Page 5: Direct Evidence of Solvent Polarity Governing the Dynamics ... · r e s c e n c e, n o r m D M F C H X 3 3 1 ( a ) ( b ) P H O 3 1 0 3 7 4 4 6 6 3 0 0 4 0 0 5 0 0 6 0 0 ( c ) 4 3

5

Synthesis of 7-Bromo-9H-fluorene-2-carbonitrile (BrCNF):

In a 100 mL RB FCN (1 equiv.) and dry CH2Cl2 (6 mL) was stirred for some time. Br2 (4 equiv.)

was added drop wise and was stirred for 6 hr. The condenser was connected to a trap filled with

NaOH solution through which the HBr evolving from the mixture was passed. The mixture was

poured into a solution of 5% NaHSO3 in water and stirred for some time. A light brown

precipitate was obtained which was dried and recrystallized from DMF/water mixture. Yield

70%. 1H (500 MHz, CDCl3): 7.83-7.81 (m, 2H), 7.74 (s, 1H), 7.70-7.68 (m, 2H,), 7.57 (d, J = 8

Hz, 1H), 3.95 (s, 2H). 13C NMR (125 MHz): 144.68, 144.07, 142.18, 137.79, 130.31, 129.51,

127.53, 121.61, 121.12, 119.42, 118.40, 109.06, 35.53. HRMS (EI) (m/z): [M]+ calcd. for:

C14H8BrN 268.98 found 269.99132.

Synthesis of 2-Bromo-7-cyano-9,9-dimethyl-9H-fluorene (DMF) : A mixture of BrCNF (1

equiv.), KI (0.2 equiv.), and t-BuOK (4 equiv.), were taken in a 100 mL two neck RB and

vacuum was applied for 10 minutes. In the presence of argon, DMSO was added to the mixture

and was kept for stirring. MeI (2 equiv.) was added drop wise to the solution. The reaction

mixture was kept for stirring for 5 hr, after which it was poured to water. The product was

separated by filtration and dried. Yield 78%. 1H (500 MHz, CDCl3): δ 7.76 (d, J =7.5 Hz, 1H),

7.68 (s, 1H), 7.65-7.63 (m, 2H), 7.61 (d, J = 6 Hz, 1H), 7.52, (d, J =7 Hz, 1H), 1.50 (s, 6H). 13C

NMR (125 MHz): 156.12, 153.78, 142.76, 136.28, 131.64, 130.75, 126.52, 126.50, 123.23,

122.44, 120.65, 119.48, 110.59, 47.44, 26.69. HRMS (EI) (m/z): [M]+ calcd. for: C16H12BrN

297.02 found 298.02359.

Page 6: Direct Evidence of Solvent Polarity Governing the Dynamics ... · r e s c e n c e, n o r m D M F C H X 3 3 1 ( a ) ( b ) P H O 3 1 0 3 7 4 4 6 6 3 0 0 4 0 0 5 0 0 6 0 0 ( c ) 4 3

6

Synthesis of 2-cyano-7-phenoxazine -9,9-dimethyl-9H-fluorene (PXFCN):

Phenoxazine (1.2 equiv.), DMF, (1 equiv.) sodium tert-butoxide (4.5 equiv.),

Pd2(dba)3[(tris(dibenzylidineacetone) dipalladium(0))] (0.15 equiv.), and tri(tert-butyl)phosphine

(0.13 equiv.) were dissolved in 200 mL of xylene, and refluxed at 80°C for 12 hr under Ar

atmosphere. On completion of the reaction, the reaction mixture was cooled to room temperature

and was extracted by adding 200 mL of distilled water in a volume ratio of xylene to water of

1:1. The organic phase was collected, dried using MgSO4 and then concentrated under vacuum.

The concentrated product was refined using silica gel column chromatography using

hexane:ethyl acetate in a volume ratio of 1:3 as an eluent. The product was then concentrated

under vacuum and dried to obtain 100 mg of compound with a yield of 82 %. 1H NMR (500

MHz,CDCl3):δ 7.97 ( d, J = 8 Hz, 1H), 7.84 ( d, J = 8 Hz, 1H), 7.74 (s, 1H), 7.69 (d, J = 7.5 Hz,

1H), 7.47 (s, 1H), 7.37 (d, J = 8Hz, 1H), 6.72 (d, J =7 Hz, 2H), 6.66 (t, J = 7.5 Hz, 2H), 6.60 (t, J

= 8Hz, 2H), 5.96 (d, J = 7.5 Hz, 2H), 1.53 (s, 6H). 13C NMR (125 MHz): 157.32, 154.50, 143.99,

142.79, 139.64, 137.46, 134.32, 131.70, 130.14, 126.66, 125.41, 123.51, 123.31, 121.52, 120.90,

119.50, 115.58, 113.15, 110.71, 47.54, 26.78. HRMS (EI) (m/z): [M]+ calcd. for: C28H20N2O

400.16 found 400.15743

Page 7: Direct Evidence of Solvent Polarity Governing the Dynamics ... · r e s c e n c e, n o r m D M F C H X 3 3 1 ( a ) ( b ) P H O 3 1 0 3 7 4 4 6 6 3 0 0 4 0 0 5 0 0 6 0 0 ( c ) 4 3

7

Wavelength, nm

Fluo

resc

ence

, nor

m

DMFCHX331(a)

(b)

PHO310 374 466

300 400 500 600

(c) 433

Abso

rban

ce, n

orm

PXFCN500

Figure S1 Steady state absorption (black) and emission (red) spectra of DMF (a), PHO (b) and PXFCN (c) in CHX at room temperature. The emission spectra measured at 77 K are provided in blue colour.

Page 8: Direct Evidence of Solvent Polarity Governing the Dynamics ... · r e s c e n c e, n o r m D M F C H X 3 3 1 ( a ) ( b ) P H O 3 1 0 3 7 4 4 6 6 3 0 0 4 0 0 5 0 0 6 0 0 ( c ) 4 3

8

(a)

ACN333 500

(b)

465

390313

Abso

rban

ce, n

orm

Fluo

resc

ence

, nor

m

PXFCN

DMF

PHO

300 400 500 600 700

(c)

Wavelength, nm

620

Figure S2 Steady state absorption (black) and emission (red) spectra of DMF (a), PHO (b) and PXFCN (c) in ACN at room temperature. The emission spectra measured at 77 K are provided in blue color.

Page 9: Direct Evidence of Solvent Polarity Governing the Dynamics ... · r e s c e n c e, n o r m D M F C H X 3 3 1 ( a ) ( b ) P H O 3 1 0 3 7 4 4 6 6 3 0 0 4 0 0 5 0 0 6 0 0 ( c ) 4 3

9

0.00 0.05 0.10 0.15 0.20 0.25 0.300

2000

4000

6000

8000

10000

St

okes

shift

, cm

-1

f

CHX

TOL

CHCl3

EtOAc

THF

DMSOACN

Figure S3 Plot of Stokes shift versus the orientational polarizability (f) of PXFCN in various solvents.

Page 10: Direct Evidence of Solvent Polarity Governing the Dynamics ... · r e s c e n c e, n o r m D M F C H X 3 3 1 ( a ) ( b ) P H O 3 1 0 3 7 4 4 6 6 3 0 0 4 0 0 5 0 0 6 0 0 ( c ) 4 3

10

300 400 500 600 7000.0

0.5

1.0 PXFCN348

270

Ems

Wavelength, nm

Fluo

resc

ence

Inten

sity,

norm

Abso

rban

ce(K

ubelk

a-M

unk)

, nor

m

Abs

455exctn = 348 nm

Figure S4 Steady state absorption (black) and emission (red) spectra of PXFCN in the solid

state.

Page 11: Direct Evidence of Solvent Polarity Governing the Dynamics ... · r e s c e n c e, n o r m D M F C H X 3 3 1 ( a ) ( b ) P H O 3 1 0 3 7 4 4 6 6 3 0 0 4 0 0 5 0 0 6 0 0 ( c ) 4 3

11

Figure S5 Frontier molecular orbitals of PXFCN with the corresponding energy level.

Page 12: Direct Evidence of Solvent Polarity Governing the Dynamics ... · r e s c e n c e, n o r m D M F C H X 3 3 1 ( a ) ( b ) P H O 3 1 0 3 7 4 4 6 6 3 0 0 4 0 0 5 0 0 6 0 0 ( c ) 4 3

12

0

1

2

3

4

Fluo

resc

ence

Inten

sity,

a.u

CHX

Abso

rban

ce

Wavelength,nm

PHO AbsDMF emsPHO emsPXFCN Abs

PXFCN(a)

250 300 350 400 4500

1

2

3

4(b) ACN

Figure S6 Absorption spectra of PHO (blue) and PXFCN (grey) and emission spectra of DMF (green) and PHO (red) in CHX (a) and ACN (b) are compared to show the overlap region. The spectra are normalized arbitrarily for clarity.

Page 13: Direct Evidence of Solvent Polarity Governing the Dynamics ... · r e s c e n c e, n o r m D M F C H X 3 3 1 ( a ) ( b ) P H O 3 1 0 3 7 4 4 6 6 3 0 0 4 0 0 5 0 0 6 0 0 ( c ) 4 3

13

250 300 350 400 450 5000.0

0.5

1.0

00 03 05 10 20 30 40 50 60 70 73 75 80 83 85 90

311 PXFCN

fw (vol%)

Ab

sorb

ance

, nor

m

Wavelength, nm

290 THF and Water

Figure S7 Absorption spectra of PXFCN in THF and water mixtures with increase of water fractions (fw).

Page 14: Direct Evidence of Solvent Polarity Governing the Dynamics ... · r e s c e n c e, n o r m D M F C H X 3 3 1 ( a ) ( b ) P H O 3 1 0 3 7 4 4 6 6 3 0 0 4 0 0 5 0 0 6 0 0 ( c ) 4 3

14

0 20 40 60 801

10

100

1000

10000 THF and WaterPXFCN fw (vol%)

Fluo

resc

ence

coun

ts

Time, ns

IRF 0 10 20 30 40 50 60 70 80 90

exctn = 378 nm

Figure S8 Fluorescence decay profiles of PXFCN in THF and water mixtures with different water fractions, fw (vol%) obtained by exciting at 378 nm.

Page 15: Direct Evidence of Solvent Polarity Governing the Dynamics ... · r e s c e n c e, n o r m D M F C H X 3 3 1 ( a ) ( b ) P H O 3 1 0 3 7 4 4 6 6 3 0 0 4 0 0 5 0 0 6 0 0 ( c ) 4 3

15

1 10 100 1000 100000

10

20

THF and Water

Num

ber %

PXFCN

Size, nm

fw (vol%) = 90

Figure S9 Dynamic light scattering of PXFCN in THF and water mixture at fw 90%.

Page 16: Direct Evidence of Solvent Polarity Governing the Dynamics ... · r e s c e n c e, n o r m D M F C H X 3 3 1 ( a ) ( b ) P H O 3 1 0 3 7 4 4 6 6 3 0 0 4 0 0 5 0 0 6 0 0 ( c ) 4 3

16

0.0

5.0x103

1.0x104

ACNexctn = 331 nm

PXFCN

10 ns

Fluo

resc

ence

Cou

nts

Wavelength, nm

600

410(a)

300 400 500 600 7000

1x102

2x102

3x102 (b)

40 ns

11 ns

1.0 ns

430

Figure S10 Time-resolved emission spectra of PXFCN in ACN obtained by exciting at 331 nm shown for spectral delay time from 1 to 10 (a) and 11 to 40 ns (b). Spline function is used along with the experimental data.

Page 17: Direct Evidence of Solvent Polarity Governing the Dynamics ... · r e s c e n c e, n o r m D M F C H X 3 3 1 ( a ) ( b ) P H O 3 1 0 3 7 4 4 6 6 3 0 0 4 0 0 5 0 0 6 0 0 ( c ) 4 3

17

1

10

100

1000

10000

probe= 620 nm

378 nm331,

Time, ns

Time, ns

exctn= 274,

probe= 432 nm

CHX PXFCN

(a)

0 5 10 15 20 251

10

100

1000 (b)

ACN

Fluo

resc

ence

Cou

nts

Time, ns

-1 0 1 2

-1 0 1 2

Figure S11 Fluorescence dynamics of PXFCN in CHX (a) probed at 432 nm and ACN (b) probed at 330, 405, 450 and 620 nm obtained by exciting at 274, 331 and 378 nm. The insets show the kinetics starting from 1.0 ns to 2.5 ns to explicitly represent the growth of the signal obtained by 274 and 331 nm the excitation wavelengths.

Page 18: Direct Evidence of Solvent Polarity Governing the Dynamics ... · r e s c e n c e, n o r m D M F C H X 3 3 1 ( a ) ( b ) P H O 3 1 0 3 7 4 4 6 6 3 0 0 4 0 0 5 0 0 6 0 0 ( c ) 4 3

18

0.00

0.05

0.10

0.15

probe = 430 nm

Aniso

tropy

, r(t)

-0.04

0.00

0.04

(c)

(b)

1 2 3 4 5

0.0

0.2

(a)PXFCN

exctn= 378 nm

exctn= 331 nm

exctn= 274 nm

CHX

Time, ns

Figure S12 Fluorescence anisotropy decay of PXFCN in CHX probed at 430 nm by exciting at 274 (a), 330 (b) and 378 (c) nm.

Page 19: Direct Evidence of Solvent Polarity Governing the Dynamics ... · r e s c e n c e, n o r m D M F C H X 3 3 1 ( a ) ( b ) P H O 3 1 0 3 7 4 4 6 6 3 0 0 4 0 0 5 0 0 6 0 0 ( c ) 4 3

19

0.0

0.2

0.4

exctn= 274 nm

PXFCN(a)

-0.1

0.0

0.1

(c)

(b)

1 2 3 4 5

0.0

0.2

exctn=378 nm

exctn=331 nm

probe = 620 nm

ACN

Aniso

tropy

, r(t)

Time, ns

Figure S13 Fluorescence anisotropy decay of PXFCN in ACN probed at 620 nm by exciting at 274 (a), 330 (b) and 378 (c) nm.

Page 20: Direct Evidence of Solvent Polarity Governing the Dynamics ... · r e s c e n c e, n o r m D M F C H X 3 3 1 ( a ) ( b ) P H O 3 1 0 3 7 4 4 6 6 3 0 0 4 0 0 5 0 0 6 0 0 ( c ) 4 3

20

450 500 550 600 6500.00

0.05

0.10

0.15 1.0 V 2.0 V 2.2 V 2.4 V 2.6 V 3.0 V 4.0 V 5.0 V

ACN

Abso

rban

ce a.

u

Wavelength, nm

535 PXFCN

Figure S14 Spectroelectrochemical spectra of PXFCN in ACN upon stepwise increase of the potential from 1.0 to 5.0 volts.

Page 21: Direct Evidence of Solvent Polarity Governing the Dynamics ... · r e s c e n c e, n o r m D M F C H X 3 3 1 ( a ) ( b ) P H O 3 1 0 3 7 4 4 6 6 3 0 0 4 0 0 5 0 0 6 0 0 ( c ) 4 3

21

0.0

0.5

1.0

1= 0.463 s 1= 2.55 s 2= 0.402 s

CHXACN

exctn = 355 nm

probe = 400 nm

PXFCN

(a)

1= 0.473 s 1= 0.207 s

0 1 2 3 4 5 6 7

0.0

0.5

1.0 (b) probe = 540 nm

Ab

sorb

ance

, nor

mal

ized

Time, s

Figure S15. Transient kinetic decays of PXFCN at 400 (a) and 540 (b) nm obtained by exciting at 355 nm using laser flash photolysis in argon saturated CHX (grey) and ACN (black).

Page 22: Direct Evidence of Solvent Polarity Governing the Dynamics ... · r e s c e n c e, n o r m D M F C H X 3 3 1 ( a ) ( b ) P H O 3 1 0 3 7 4 4 6 6 3 0 0 4 0 0 5 0 0 6 0 0 ( c ) 4 3

22

0

20

40

50 fs 100 fs 200 fs 800 fs

-200 fs -150 fs -100 fs -50 fs 0 fs

PXFCNCHX

(a)

350 400 450 500 5500

20

40 3.8 ps 51 ps 453 ps 853 ps 1.1 ns 1.5 ns

(b)

exctn= 330 nm

Abs

orba

nce,

mOD

Wavelength, nm

360

395

427

520

Figure S16 Femtosecond time-resolved transient absorption spectra of PXFCN in CHX upon excitation at 330 nm shown at different time delays. The arrows show the direction of the spectral evolution.

Page 23: Direct Evidence of Solvent Polarity Governing the Dynamics ... · r e s c e n c e, n o r m D M F C H X 3 3 1 ( a ) ( b ) P H O 3 1 0 3 7 4 4 6 6 3 0 0 4 0 0 5 0 0 6 0 0 ( c ) 4 3

23

0

20

50 fs 100 fs 150 fs 550 fs

-200 fs -150 fs -100 fs -50 fs 0 fs

520

CHXexctn= 385 nm

PXFCN

428

(a)

350 400 450 500 5500

20

40 53 ps 453 ps 853 ps 1.2 ns 1.5 ns

(b)

Ab

sorb

ance

, mOD

Wavelength, nmFigure S17 Femtosecond time-resolved transient absorption spectra of PXFCN in CHX upon excitation at 385 nm shown at different time delays. The arrows show the direction of the spectral evolution.

Page 24: Direct Evidence of Solvent Polarity Governing the Dynamics ... · r e s c e n c e, n o r m D M F C H X 3 3 1 ( a ) ( b ) P H O 3 1 0 3 7 4 4 6 6 3 0 0 4 0 0 5 0 0 6 0 0 ( c ) 4 3

24

0

20

40 -200 fs -50 fs 0 fs 50 fs 100 fs 150 fs 200 fs 300 fs 700 fs

Ab

sorb

ance

, mOD

515

ACNPXFCN exctn= 330 nm

422

(a)

350 400 450 500 5500

20

40

1.8 ps 173 ps 353 ps 533 ps 733 ps 973 ps 1.5 ns

(b)

Wavelength, nm

Figure S18 Femtosecond time-resolved transient absorption spectra of PXFCN in ACN upon excitation at 330 nm shown at different time delays. The arrows show the direction of the spectral evolution.

Page 25: Direct Evidence of Solvent Polarity Governing the Dynamics ... · r e s c e n c e, n o r m D M F C H X 3 3 1 ( a ) ( b ) P H O 3 1 0 3 7 4 4 6 6 3 0 0 4 0 0 5 0 0 6 0 0 ( c ) 4 3

25

0

40

80

-200 fs -100 fs 100 fs 150 fs 200 fs 250 fs 300 fs 400 fs 1.5 ps

ACNPXFCN exctn= 385 nm

422

515

(a)

350 400 450 500 5500

40

80 113 ps 248 ps 548 ps 908 ps 1.4 ns

(b)

Ab

sorb

ance

, mOD

Wavelength, nm

Figure S19 Femtosecond time-resolved transient absorption spectra of PXFCN in ACN upon excitation at 385 nm shown at different time delays. The arrows show the direction of the spectral evolution.

Page 26: Direct Evidence of Solvent Polarity Governing the Dynamics ... · r e s c e n c e, n o r m D M F C H X 3 3 1 ( a ) ( b ) P H O 3 1 0 3 7 4 4 6 6 3 0 0 4 0 0 5 0 0 6 0 0 ( c ) 4 3

26

0.0

0.5

1.0(a)

(b)

Abs

orba

nce,

norm

aliz

ed

Time, ps

exctn = 385 nm

exctn = 330 nm

exctn = 311 nmprobe = 420 nm

ACN

CHX

0.0

0.5

1.0

1 10 500 1000 1500

0.0

0.5

1.0(c)

PXFCN

Figure S20 Femtosecond time resolved decay profiles of PXFCN probing at 420 nm in CHX

(black) and ACN (red) obtained by various excitation 311(a), 330 (b) and 385 (c) nm

Page 27: Direct Evidence of Solvent Polarity Governing the Dynamics ... · r e s c e n c e, n o r m D M F C H X 3 3 1 ( a ) ( b ) P H O 3 1 0 3 7 4 4 6 6 3 0 0 4 0 0 5 0 0 6 0 0 ( c ) 4 3

27

1 10 500 1000 15000.0

0.5

1.0

0.0

0.5

1.0

(c)

(b)

(a)

Time, ps

Abs

orba

nce,

norm

aliz

ed

exctn = 385 nm

exctn = 330 nm

exctn = 311 nm

probe = 520 nm

ACN

CHX

PXFCN

0.0

0.5

1.0

Figure S21 Femtosecond time resolved decay profiles of PXFCN probing at 520 nm in CHX

(black) and ACN (red) obtained by various excitation 311(a), 330 (b) and 385 (c) nm

Page 28: Direct Evidence of Solvent Polarity Governing the Dynamics ... · r e s c e n c e, n o r m D M F C H X 3 3 1 ( a ) ( b ) P H O 3 1 0 3 7 4 4 6 6 3 0 0 4 0 0 5 0 0 6 0 0 ( c ) 4 3

28

0

20

0.729 ps 15.5 ps 2.05 ns 6.08 ns

0

20

(c)

(b)

(a)

0.763 ps14.8 ps1.93 ns10 ns

350 400 450 500 550

0

20

CHX

exctn = 385 nm

exctn = 330 nm

exctn = 311 nmPXFCN

Abs

orba

nce,

mOD

0.757 ps15.0 ps2.05 ns189 ns

Wavelength, nmFigure S22 Decay associated spectra of PXFCN in CHX obtained by using global analysis for different excitation wavelengths.

Page 29: Direct Evidence of Solvent Polarity Governing the Dynamics ... · r e s c e n c e, n o r m D M F C H X 3 3 1 ( a ) ( b ) P H O 3 1 0 3 7 4 4 6 6 3 0 0 4 0 0 5 0 0 6 0 0 ( c ) 4 3

29

0

30

exctn = 385 nm

exctn = 330 nm

exctn = 311 nm(a) ACNPXFCN

0.320 ps 1.36 ps 18.06 ps 1.06 ns

0

20

0.387 ps2.26 ps17.11 ps888.71 ps

Abs

orba

nce,

mOD

(b)

350 400 450 500 550

0

50

0.380 ps1.30 ps17.20 ps1.09 ns

Wavelength, nm

(c)

Figure S23 Decay associated spectra of PXFCN in ACN obtained by using global analysis for different excitation wavelengths.

Page 30: Direct Evidence of Solvent Polarity Governing the Dynamics ... · r e s c e n c e, n o r m D M F C H X 3 3 1 ( a ) ( b ) P H O 3 1 0 3 7 4 4 6 6 3 0 0 4 0 0 5 0 0 6 0 0 ( c ) 4 3

30

Figure S24 1H NMR spectra of 2-cyano-7-phenoxazine -9,9-dimethyl-9H-fluorene (PXFCN)

in CDCl3.

CNNO

Page 31: Direct Evidence of Solvent Polarity Governing the Dynamics ... · r e s c e n c e, n o r m D M F C H X 3 3 1 ( a ) ( b ) P H O 3 1 0 3 7 4 4 6 6 3 0 0 4 0 0 5 0 0 6 0 0 ( c ) 4 3

31

Table S1 Results of CAM B3LYP/6-31G(d) calculations for PXFCN in gaseous medium.

Medium Energy (eV) λmaxa (nm) fos Main transitions

(weight)g (Debye)

e (Debye)

208.71 0.88 HOMO-1 LUMO+3 (0.41)HOMO-1 LUMO+2 (0.36)

2.69 22.80

274.13 0.80 HOMO-2 LUMO (0.65)

309.84 0.01 HOMO LUMO+2 (0.43)HOMO LUMO+3 (0.43)

Gaseous 3.2

354.96 0.00 HOMO LUMO (0.65)

amax value obtained from the simulated absorption spectrum.

Table S2 Electrochemical data of DMF, PHO and PXFCN from Cyclic Voltammetry in

acetonitrile.

Compound Eoxd (V) Ered (V) EHOMO (eV) ELUMO(eV)

DMF 1.20 -0.75 -5.56 -1.76

PHO 0.68 -0.54 -5.04 -1.65

PXFCN 0.70 -1.16 -5.08 -2.07

Page 32: Direct Evidence of Solvent Polarity Governing the Dynamics ... · r e s c e n c e, n o r m D M F C H X 3 3 1 ( a ) ( b ) P H O 3 1 0 3 7 4 4 6 6 3 0 0 4 0 0 5 0 0 6 0 0 ( c ) 4 3

32

Table S3 Fluorescence lifetime obtained for PXFCN in different THF water mixtures obtained by excitation 378 nm (pulse duration < 100 ps).

Time constants 2Water fraction

fw (vol%)

max, nm1,ns A1, % ,ns A2, %

0 550 9.84 100 - - 1.17

3 565 7.04 100 - - 1.16

5 575 5.22 100 - - 1.09

10 585 3.14 100 - - 0.81

20 587 1.77 100 - - 1.09

30 595 1.25 100 - - 1.01

40 599 0.86 96.44 3.22 3.56 1.03

50 602 0.65 96.76 4.12 3.24 1.09

60 614 0.42 93.67 4.29 6.33 1.08

70 614 2.13 26.94 8.31 73.06 0.99

73 557 4.33 9.92 10.28 90.08 1.08

75 554 4.22 6.41 11.09 93.59 1.11

80 549 3.01 5.62 13.03 94.38 1.06

83 542 3.59 9.65 14.94 90.35 1.06

85 538 3.56 11.07 15.14 88.93 1.09

90 520 4.07 18.61 14.84 81.39 1.11

Page 33: Direct Evidence of Solvent Polarity Governing the Dynamics ... · r e s c e n c e, n o r m D M F C H X 3 3 1 ( a ) ( b ) P H O 3 1 0 3 7 4 4 6 6 3 0 0 4 0 0 5 0 0 6 0 0 ( c ) 4 3

33

Table S4 Fluorescence lifetime of DMF and PHO in ACN and CHX

Sample Solvent exctn /ems, nm 1, ns A1, % 2, ns A2, %

DMF CHX 270/317 0.96 95.4 2.19 4.60

ACN 270/333 0.68 88.6 2.39 11.40

PHO CHX 270/373 0.97 69.49 1.58 30.51

ACN 270/390 6.80 68.64 2.85 31.36

Table S5 Absolute and relative fluorescence quantum yield and standards used for PXFCN

in different solvents.

Solvent Relative QY Fluorescence Standards Absolute QY

CHX 0.100 C153 CHX(0.90) 0.0436

Toluene 0.169 C153 CHX(0.90) 0.0885

CHCl3 0.178 C153 EtOAc( 0.88) 0.1096

THF 0.128 C153 EtOAc (0.88) 0.0800

ACN 0.0073 C153 ACN (0.43) 0.001

Page 34: Direct Evidence of Solvent Polarity Governing the Dynamics ... · r e s c e n c e, n o r m D M F C H X 3 3 1 ( a ) ( b ) P H O 3 1 0 3 7 4 4 6 6 3 0 0 4 0 0 5 0 0 6 0 0 ( c ) 4 3

34

Table S6 Bond parameters of PXFCN optimized geometry in S0 state obtained from DFT

calculation. [ #p b3lyp/6-31g(d) opt freq=noraman scf=(maxcycle=800)]

C -0.940486000 0.000075000 -2.039674000

C -1.816998000 0.000019000 -0.951940000

C -1.324660000 -0.000050000 0.368736000

C 0.044627000 -0.000068000 0.605152000

C 0.926499000 -0.000004000 -0.485594000

C 0.433370000 0.000069000 -1.798132000

H -1.313864000 0.000121000 -3.060180000

H 0.451422000 -0.000131000 1.612692000

H 1.140141000 0.000111000 -2.622263000

C -2.467981000 -0.000092000 1.382636000

C -4.232164000 0.000120000 -1.924847000

C -3.282292000 0.000018000 -0.899991000

C -5.584421000 0.000104000 -1.594675000

C -3.681069000 -0.000068000 0.453288000

C -5.985697000 -0.000003000 -0.245349000

C -5.026063000 -0.000082000 0.786915000

H -6.340520000 0.000157000 -2.373017000

H -5.356090000 -0.000152000 1.821609000

H -3.929183000 0.000175000 -2.968116000

C -2.436582000 1.266290000 2.268391000

H -2.461242000 2.176015000 1.660210000

H -3.296720000 1.284032000 2.947121000

H -1.526977000 1.286368000 2.878951000

Page 35: Direct Evidence of Solvent Polarity Governing the Dynamics ... · r e s c e n c e, n o r m D M F C H X 3 3 1 ( a ) ( b ) P H O 3 1 0 3 7 4 4 6 6 3 0 0 4 0 0 5 0 0 6 0 0 ( c ) 4 3

35

C -2.436517000 -1.266425000 2.268413000

H -1.526871000 -1.286481000 2.878913000

H -3.296597000 -1.284167000 2.947221000

H -2.461212000 -2.176183000 1.660279000

C -7.381127000 -0.000017000 0.081266000

N -8.513690000 -0.000030000 0.349047000

C 2.413152000 -2.465177000 -0.206256000

C 3.040155000 -1.217060000 -0.127479000

N 2.339899000 -0.000002000 -0.258967000

C 4.430605000 -1.186703000 0.090799000

O 5.132416000 0.000024000 0.175523000

C 4.430576000 1.186738000 0.090839000

C 3.040125000 1.217069000 -0.127437000

C 3.149481000 -3.646783000 -0.071897000

C 5.161185000 -2.358131000 0.226174000

C 5.161130000 2.358178000 0.226255000

C 2.413090000 2.465172000 -0.206159000

C 3.149391000 3.646790000 -0.071756000

C 4.522606000 3.599776000 0.144752000

H 6.230655000 2.277136000 0.393578000

H 1.343228000 2.511441000 -0.374978000

H 2.634843000 4.601001000 -0.138825000

H 5.100683000 4.512678000 0.250245000

C 4.522693000 -3.599743000 0.144622000

Page 36: Direct Evidence of Solvent Polarity Governing the Dynamics ... · r e s c e n c e, n o r m D M F C H X 3 3 1 ( a ) ( b ) P H O 3 1 0 3 7 4 4 6 6 3 0 0 4 0 0 5 0 0 6 0 0 ( c ) 4 3

36

H 1.343291000 -2.511461000 -0.375080000

H 2.634957000 -4.601004000 -0.139007000

H 6.230709000 -2.277072000 0.393504000

H 5.100794000 -4.512633000 0.250079000

Table S7 Bond parameters of PXFCN optimized geometry in S1

state obtained from TD-DFT calculation. [#pCAM-b3lyp/6-31g(d) td=(nstates=30, singlets) geom=connectivity Density=Current]

C -0.940486000 0.000075000 -2.039674000

C -1.816998000 0.000019000 -0.951940000

C -1.324660000 -0.000050000 0.368736000

C 0.044627000 -0.000068000 0.605152000

6 0.926499000 -0.000004000 -0.485594000

6 0.433370000 0.000069000 -1.798132000

1 -1.313864000 0.000121000 -3.060180000

1 0.451422000 -0.000131000 1.612692000

1 1.140141000 0.000111000 -2.622263000

6 -2.467981000 -0.000092000 1.382636000

6 -4.232164000 0.000120000 -1.924847000

6 -3.282292000 0.000018000 -0.899991000

6 -5.584421000 0.000104000 -1.594675000

6 -3.681069000 -0.000068000 0.453288000

6 -5.985697000 -0.000003000 -0.245349000

6 -5.026063000 -0.000082000 0.786915000

1 -6.340520000 0.000157000 -2.373017000

1 -5.356090000 -0.000152000 1.821609000

1 -3.929183000 0.000175000 -2.968116000

6 -2.436582000 1.266290000 2.268391000

Page 37: Direct Evidence of Solvent Polarity Governing the Dynamics ... · r e s c e n c e, n o r m D M F C H X 3 3 1 ( a ) ( b ) P H O 3 1 0 3 7 4 4 6 6 3 0 0 4 0 0 5 0 0 6 0 0 ( c ) 4 3

37

1 -2.461242000 2.176015000 1.660210000

1 -3.296720000 1.284032000 2.947121000

1 -1.526977000 1.286368000 2.878951000

6 -2.436517000 -1.266425000 2.268413000

1 -1.526871000 -1.286481000 2.878913000

1 -3.296597000 -1.284167000 2.947221000

1 -2.461212000 -2.176183000 1.660279000

6 -7.381127000 -0.000017000 0.081266000

7 -8.513690000 -0.000030000 0.349047000

6 2.413152000 -2.465177000 -0.206256000

6 3.040155000 -1.217060000 -0.127479000

7 2.339899000 -0.000002000 -0.258967000

6 4.430605000 -1.186703000 0.090799000

8 5.132416000 0.000024000 0.175523000

6 4.430576000 1.186738000 0.090839000

6 3.040125000 1.217069000 -0.127437000

6 3.149481000 -3.646783000 -0.071897000

6 5.161185000 -2.358131000 0.226174000

6 5.161130000 2.358178000 0.226255000

6 2.413090000 2.465172000 -0.206159000

6 3.149391000 3.646790000 -0.071756000

6 4.522606000 3.599776000 0.144752000

1 6.230655000 2.277136000 0.393578000

1 1.343228000 2.511441000 -0.374978000

1 2.634843000 4.601001000 -0.138825000

1 5.100683000 4.512678000 0.250245000

6 4.522693000 -3.599743000 0.144622000

1 1.343291000 -2.511461000 -0.375080000

1 2.634957000 -4.601004000 -0.139007000

1 6.230709000 -2.277072000 0.393504000

1 5.100794000 -4.512633000 0.250079000