diffraction analysis of 2-d pupil remapping j i for high ... · -0.2 0 0.2 0.4 2nd pupil phase map...

21
Home Page Title Page Contents Page 1 of 21 Go Back Full Screen Close Quit Diffraction Analysis of 2-D Pupil Remapping for High-Contrast Imaging Robert J. Vanderbei SPIE San Diego Aug 4, 2005 Princeton University http://www.princeton.edu/rvdb

Upload: others

Post on 22-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Diffraction Analysis of 2-D Pupil Remapping J I for High ... · -0.2 0 0.2 0.4 2nd Pupil Phase Map Radius (m) Phase in radians 0.5 1 1.5 10-8 10-6 10-4 10-2 100 Ideal and Fresnel

Home Page

Title Page

Contents

JJ II

J I

Page 1 of 21

Go Back

Full Screen

Close

Quit

Diffraction Analysis of 2-D Pupil Remapping

for High-Contrast Imaging

Robert J. Vanderbei

SPIE San DiegoAug 4, 2005

Princeton Universityhttp://www.princeton.edu/∼rvdb

Page 2: Diffraction Analysis of 2-D Pupil Remapping J I for High ... · -0.2 0 0.2 0.4 2nd Pupil Phase Map Radius (m) Phase in radians 0.5 1 1.5 10-8 10-6 10-4 10-2 100 Ideal and Fresnel

Home Page

Title Page

Contents

JJ II

J I

Page 2 of 21

Go Back

Full Screen

Close

Quit

Contents1 Apodization 3

2 Pupil Mapping 5

3 Notations 6

4 Huygens Wavelets 7

5 Fresnel Approximation 8

6 Fresnel Examples 9

7 Better Than Fresnel (BTF) 12

Page 3: Diffraction Analysis of 2-D Pupil Remapping J I for High ... · -0.2 0 0.2 0.4 2nd Pupil Phase Map Radius (m) Phase in radians 0.5 1 1.5 10-8 10-6 10-4 10-2 100 Ideal and Fresnel

Home Page

Title Page

Contents

JJ II

J I

Page 3 of 21

Go Back

Full Screen

Close

Quit

1. Apodization

-0.5 0 0.5

-1

-0.5

0

0.5

1

Page 4: Diffraction Analysis of 2-D Pupil Remapping J I for High ... · -0.2 0 0.2 0.4 2nd Pupil Phase Map Radius (m) Phase in radians 0.5 1 1.5 10-8 10-6 10-4 10-2 100 Ideal and Fresnel

Home Page

Title Page

Contents

JJ II

J I

Page 4 of 21

Go Back

Full Screen

Close

Quit

-0.5 0 0.50

0.5

1

1.5

2

2.5

3

3.5

4

-60 -40 -20 0 20 40 60-180

-160

-140

-120

-100

-80

-60

-40

-20

0

E(ξ, η) =1

λf

∫∫e2πi xξ+yη

λf A(√

x2 + y2)dydx

E(ρ) =2π

λf

∫J0

(2π

λf

)A(r)rdr.

Psf(ρ) = |E(ρ)|2

Page 5: Diffraction Analysis of 2-D Pupil Remapping J I for High ... · -0.2 0 0.2 0.4 2nd Pupil Phase Map Radius (m) Phase in radians 0.5 1 1.5 10-8 10-6 10-4 10-2 100 Ideal and Fresnel

Home Page

Title Page

Contents

JJ II

J I

Page 5 of 21

Go Back

Full Screen

Close

Quit

2. Pupil Mapping

Advantages:

• 100% throughput

• Implicit magnification...effectively iwa ≈ 1λ/D.

Disadvantages:

• Diffraction effects limitachievable contrast to 10−5

for a pure pupil-mappingsystem.

−0.5 0 0.5−0.5

0

0.5

1

1.5

2

Page 6: Diffraction Analysis of 2-D Pupil Remapping J I for High ... · -0.2 0 0.2 0.4 2nd Pupil Phase Map Radius (m) Phase in radians 0.5 1 1.5 10-8 10-6 10-4 10-2 100 Ideal and Fresnel

Home Page

Title Page

Contents

JJ II

J I

Page 6 of 21

Go Back

Full Screen

Close

Quit

3. Notations

R(r) = ±

√∫ r

02A2(s)sds.

∂h

∂r(r) =

r − R(r)√Q2

0 + (n2 − 1)(r − R(r))2

∂h

∂r(r) =

R(r)− r√Q2

0 + (n2 − 1)(R(r)− r)2

n is the refractive index and

Q0 = −(n− 1)z

= S(R(r), r) + n(h(r)− h(R(r)))h(r)

r

h(r)

r R(r)

R(r)

z

Z

0

Notes:

• the second expression for Q0 is in fact independent of r.

• for mirrors, put n = −1.

Page 7: Diffraction Analysis of 2-D Pupil Remapping J I for High ... · -0.2 0 0.2 0.4 2nd Pupil Phase Map Radius (m) Phase in radians 0.5 1 1.5 10-8 10-6 10-4 10-2 100 Ideal and Fresnel

Home Page

Title Page

Contents

JJ II

J I

Page 7 of 21

Go Back

Full Screen

Close

Quit

4. Huygens Wavelets

Cartesian Coordinates

Eout(x, y) =

∫∫1

λQ(x, y, x, y)e2πiQ(x,y,x,y)/λdydx,

where Q denotes the optical path length:

Q(x, y, x, y) =

√(x− x)2 + (y − y)2 + (h(r)− h(r))2 + n(Z − h(r) + h(r))

Polar Coordinates

Eout(r) =

∫∫1

λQ(r, r, θ)e2πiQ(r,r,θ)/λrdθdr,

where

Q(r, r, θ) =

√r2 − 2rr cos θ + r2 + (h(r)− h(r))2 + n(Z − h(r) + h(r)).

Double integrals are hard!

Page 8: Diffraction Analysis of 2-D Pupil Remapping J I for High ... · -0.2 0 0.2 0.4 2nd Pupil Phase Map Radius (m) Phase in radians 0.5 1 1.5 10-8 10-6 10-4 10-2 100 Ideal and Fresnel

Home Page

Title Page

Contents

JJ II

J I

Page 8 of 21

Go Back

Full Screen

Close

Quit

5. Fresnel Approximation

Assuming a large separation between the lenses and that the lensesare themselves thin, we get

√r2 − 2rr cos θ + r2 + (h(r)− h(r))2

≈ (h(r)− h(r)) +r2 − 2rr cos θ + r2

2z.

Fresnel uses this approximation in the exponential (and the “parax-ial” approximation in the leading factor) to get the standard Fresnelapproximation:

Eout(r) =2π

λZeπi r2

zλ+2πi (n−1)h(r)λ

∫eπi r2

zλ−2πi (n−1)h(r)λ J0(2πrr/zλ)rdr.

Page 9: Diffraction Analysis of 2-D Pupil Remapping J I for High ... · -0.2 0 0.2 0.4 2nd Pupil Phase Map Radius (m) Phase in radians 0.5 1 1.5 10-8 10-6 10-4 10-2 100 Ideal and Fresnel

Home Page

Title Page

Contents

JJ II

J I

Page 9 of 21

Go Back

Full Screen

Close

Quit

6. Fresnel Examples

Flat Glass A ≡ 1

0 0.005 0.01 0.0150.4

0.6

0.8

1

1.2

1.42nd Pupil Amplitude Map

Radius (m)

Out

put A

mpl

itude

Rel

ativ

e to

Inpu

t

6.1 6.2 6.3 6.4

x 10-3

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04Amplitude Map Zoomed

Radius (m)

Out

put A

mpl

itude

Rel

ativ

e to

Inpu

t

0 0.005 0.01 0.015-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.42nd Pupil Phase Map

Radius (m)

Pha

se in

radi

ans

0 0.5 1 1.510-8

10-6

10-4

10-2

100Ideal and Fresnel PSFs

Image-Plane Radius (mm)

Inte

nsity

Rel

ativ

e to

Pea

k

n = 1.5. D = 25mm. z = 15D. λ = 632.8nm.

Page 10: Diffraction Analysis of 2-D Pupil Remapping J I for High ... · -0.2 0 0.2 0.4 2nd Pupil Phase Map Radius (m) Phase in radians 0.5 1 1.5 10-8 10-6 10-4 10-2 100 Ideal and Fresnel

Home Page

Title Page

Contents

JJ II

J I

Page 10 of 21

Go Back

Full Screen

Close

Quit

Galilean Telescope: A ≡ a

R(r) = ar R(r) = r/a

h(r) = z +

√Q2

0 + (n2 − 1)(1− 1/a)2r2 − |Q0|(n2 − 1)(1− 1/a)

h(r) =

√Q2

0 + (n2 − 1)(a− 1)2r2 − |Q0|(n2 − 1)(a− 1)

If n > 1, then both lenses are hyperbolic.

If n < 1, then both lenses are elliptical.

Page 11: Diffraction Analysis of 2-D Pupil Remapping J I for High ... · -0.2 0 0.2 0.4 2nd Pupil Phase Map Radius (m) Phase in radians 0.5 1 1.5 10-8 10-6 10-4 10-2 100 Ideal and Fresnel

Home Page

Title Page

Contents

JJ II

J I

Page 11 of 21

Go Back

Full Screen

Close

Quit

Galilean Telescope A ≡ 3

0 2 4 6 8

x 10-3

1

2

3

4

5

62nd Pupil Amplitude Map

Radius (m)

Out

put A

mpl

itude

Rel

ativ

e to

Inpu

t

0 0.01 0.02 0.030

0.5

1

1.5x 10-3 Lens profiles

Radius (m)

Lens

hei

ght (

m)

0 2 4 6 8

x 10-3

-10

-5

0

5

10

15

202nd Pupil Phase Map

Radius (m)

Pha

se in

radi

ans

0 0.5 1 1.510-10

10-5

100

105Ideal and Fresnel PSFs

Image-Plane Radius (mm)

Inte

nsity

Rel

ativ

e to

Pea

k

Fresnel approximation is very bad.

Page 12: Diffraction Analysis of 2-D Pupil Remapping J I for High ... · -0.2 0 0.2 0.4 2nd Pupil Phase Map Radius (m) Phase in radians 0.5 1 1.5 10-8 10-6 10-4 10-2 100 Ideal and Fresnel

Home Page

Title Page

Contents

JJ II

J I

Page 12 of 21

Go Back

Full Screen

Close

Quit

7. Better Than Fresnel (BTF)

We retain the paraxial approximation for the leading factor.

We can subtract an arbitrary constant from the Q in the exponent.

Let’s choose to subtract Q(r, R(r), 0). We compute:

Q(r, r, θ)−Q(r, R(r), 0) = S(r, r, θ)− S(r, R(r), 0) + n(h(R(r))− h(r))

=S2(r, r, θ)− S2(r, R(r), 0)

S(r, r, θ) + S(r, R(r), 0)+ n(h(R(r))− h(r))

Then, we simplify the numerator:

S2(r, r, θ)− S2(r, R(r), 0) = (r −R(r))(r + R(r))− 2r(r cos θ −R(r)

)+

(h(r)− h(R(r))

) (h(r) + h(R(r))− 2h(r)

).

Page 13: Diffraction Analysis of 2-D Pupil Remapping J I for High ... · -0.2 0 0.2 0.4 2nd Pupil Phase Map Radius (m) Phase in radians 0.5 1 1.5 10-8 10-6 10-4 10-2 100 Ideal and Fresnel

Home Page

Title Page

Contents

JJ II

J I

Page 13 of 21

Go Back

Full Screen

Close

Quit

Mo’ Better

So far, everything is exact (except for the paraxial approximation).The only other approximation is to replace S(r, r, θ) in the de-nominator with S(r, R(r), 0) so that the denominator becomes just2S(r, R(r), 0). Replacing the integral on θ with the appropriateBessel function, we get a new approximation:

Eout(r) ≈ 2π

λZ

∫e2πi

�r2−R(r)2+2rR(r)+(h(r)−h(R(r)))(h(r)+h(R(r))−2h(r))

2S(r,R(r),0)λ+n

λ(h(R(r))−h(r))

·J0

(2πrr

λS(r, R(r), 0)

)rdr.

Page 14: Diffraction Analysis of 2-D Pupil Remapping J I for High ... · -0.2 0 0.2 0.4 2nd Pupil Phase Map Radius (m) Phase in radians 0.5 1 1.5 10-8 10-6 10-4 10-2 100 Ideal and Fresnel

Home Page

Title Page

Contents

JJ II

J I

Page 14 of 21

Go Back

Full Screen

Close

Quit

Example: A ≡ 3

0 2 4 6 8

x 10-3

0

1

2

3

4

52nd Pupil Amplitude Map

Radius (m)

Out

put A

mpl

itude

Rel

ativ

e to

Inpu

t

0 0.01 0.02 0.030

0.5

1

1.5x 10-3 Lens profiles

Radius (m)

Lens

hei

ght (

m)

0 2 4 6 8

x 10-3

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.42nd Pupil Phase Map

Radius (m)

Pha

se in

radi

ans

0 0.5 1 1.510-8

10-6

10-4

10-2

100Ideal and Fresnel PSFs

Image-Plane Radius (mm)

Inte

nsity

Rel

ativ

e to

Pea

k

This approximation is much better than Fresnel.

Page 15: Diffraction Analysis of 2-D Pupil Remapping J I for High ... · -0.2 0 0.2 0.4 2nd Pupil Phase Map Radius (m) Phase in radians 0.5 1 1.5 10-8 10-6 10-4 10-2 100 Ideal and Fresnel

Home Page

Title Page

Contents

JJ II

J I

Page 15 of 21

Go Back

Full Screen

Close

Quit

Pupil Mapping for High Contrast (PIAA)

0 0.005 0.01 0.0150

1

2

3

4

52nd Pupil Amplitude Map

Radius (m)

Out

put A

mpl

itude

Rel

ativ

e to

Inpu

t

0 0.005 0.01 0.0150

1

2

3x 10-4 Lens profiles

Radius (m)

Lens

hei

ght (

m)

0 0.005 0.01 0.015-0.2

0

0.2

0.4

0.6

0.82nd Pupil Phase Map

Radius (m)

Pha

se in

radi

ans

0 0.5 1 1.510-20

10-15

10-10

10-5

100Ideal and Fresnel PSFs

Image-Plane Radius (mm)

Inte

nsity

Rel

ativ

e to

Pea

k

Designed for 10−10. Delivers 10−5.

Page 16: Diffraction Analysis of 2-D Pupil Remapping J I for High ... · -0.2 0 0.2 0.4 2nd Pupil Phase Map Radius (m) Phase in radians 0.5 1 1.5 10-8 10-6 10-4 10-2 100 Ideal and Fresnel

Home Page

Title Page

Contents

JJ II

J I

Page 16 of 21

Go Back

Full Screen

Close

Quit

Brute Force Huygens Wavelet Integral

0 0.005 0.01 0.0150

1

2

3

4

52nd Pupil Amplitude Map

Radius (m)

Out

put A

mpl

itude

Rel

ativ

e to

Inpu

t

0 0.005 0.01 0.0150

1

2

3x 10-4 Lens profiles

Radius (m)

Lens

hei

ght (

m)

0 0.005 0.01 0.015-0.4

-0.2

0

0.2

0.4

0.6

0.8

12nd Pupil Phase Map

Radius (m)

Pha

se in

radi

ans

0 0.5 1 1.510-20

10-15

10-10

10-5

100Ideal and Fresnel PSFs

Image-Plane Radius (mm)

Inte

nsity

Rel

ativ

e to

Pea

k

Full 2D integration: 500 r-values and 500 θ-values.Increased the wavelength by a factor 10.The degradation is fundamental physics, not numerical error.

Page 17: Diffraction Analysis of 2-D Pupil Remapping J I for High ... · -0.2 0 0.2 0.4 2nd Pupil Phase Map Radius (m) Phase in radians 0.5 1 1.5 10-8 10-6 10-4 10-2 100 Ideal and Fresnel

Home Page

Title Page

Contents

JJ II

J I

Page 17 of 21

Go Back

Full Screen

Close

Quit

How about larger lenses?

0 0.5 1 1.50

1

2

3

42nd Pupil Amplitude Map

Radius (m)

Out

put A

mpl

itude

Rel

ativ

e to

Inpu

t

0 0.5 1 1.50

0.005

0.01

0.015

0.02

0.025

0.03Lens profiles

Radius (m)

Lens

hei

ght (

m)

0 0.5 1 1.5-0.4

-0.2

0

0.2

0.4

0.62nd Pupil Phase Map

Radius (m)

Pha

se in

radi

ans

0 0.5 1 1.510-20

10-15

10-10

10-5

100Ideal and Fresnel PSFs

Image-Plane Radius (mm)

Inte

nsity

Rel

ativ

e to

Pea

k

D = 2.5m (100 times bigger). Discretization: 500000 points.First sidelobe: 1.3× 10−7.

Page 18: Diffraction Analysis of 2-D Pupil Remapping J I for High ... · -0.2 0 0.2 0.4 2nd Pupil Phase Map Radius (m) Phase in radians 0.5 1 1.5 10-8 10-6 10-4 10-2 100 Ideal and Fresnel

Home Page

Title Page

Contents

JJ II

J I

Page 18 of 21

Go Back

Full Screen

Close

Quit

Big Primary, Small Secondary

0 0.01 0.02 0.030

5

10

15

202nd Pupil Amplitude Map

Radius (m)

Out

put A

mpl

itude

Rel

ativ

e to

Inpu

t

0 0.05 0.1 0.15 0.20

0.005

0.01

0.015

0.02Lens profiles

Radius (m)

Lens

hei

ght (

m)

0 0.01 0.02 0.03-0.2

0

0.2

0.4

0.6

0.82nd Pupil Phase Map

Radius (m)

Pha

se in

radi

ans

0 0.5 1 1.510-20

10-15

10-10

10-5

100Ideal and Fresnel PSFs

Image-Plane Radius (mm)

Inte

nsity

Rel

ativ

e to

Pea

k

A 10 inch primary and a 2 inch secondary.

A DISASTER!

Page 19: Diffraction Analysis of 2-D Pupil Remapping J I for High ... · -0.2 0 0.2 0.4 2nd Pupil Phase Map Radius (m) Phase in radians 0.5 1 1.5 10-8 10-6 10-4 10-2 100 Ideal and Fresnel

Home Page

Title Page

Contents

JJ II

J I

Page 19 of 21

Go Back

Full Screen

Close

Quit

Design for Medium Contrast

0 0.005 0.01 0.0150

0.5

1

1.5

2

2.5

32nd Pupil Amplitude Map

Radius (m)

Out

put A

mpl

itude

Rel

ativ

e to

Inpu

t

0 0.005 0.01 0.0150

1

2

3x 10-4 Lens profiles

Radius (m)

Lens

hei

ght (

m)

0 0.005 0.01 0.015-0.2

-0.1

0

0.1

0.2

0.32nd Pupil Phase Map

Radius (m)

Pha

se in

radi

ans

0 0.5 1 1.510-15

10-10

10-5

100Ideal and Fresnel PSFs

Image-Plane Radius (mm)

Inte

nsity

Rel

ativ

e to

Pea

k

Designed for 10−5. Delivers 10−5.max(A) is smaller...less off-axis distortion to correct.

Page 20: Diffraction Analysis of 2-D Pupil Remapping J I for High ... · -0.2 0 0.2 0.4 2nd Pupil Phase Map Radius (m) Phase in radians 0.5 1 1.5 10-8 10-6 10-4 10-2 100 Ideal and Fresnel

Home Page

Title Page

Contents

JJ II

J I

Page 20 of 21

Go Back

Full Screen

Close

Quit

Medium Contrast Pupil Mapping with Back-End

Apodizer

0 0.005 0.01 0.0150

0.5

1

1.5

2

2.5

32nd Pupil Amplitude Map

Radius (m)

Out

put A

mpl

itude

Rel

ativ

e to

Inpu

t

0 0.005 0.01 0.0150

1

2

3x 10-4 Lens profiles

Radius (m)

Lens

hei

ght (

m)

0 0.005 0.01 0.015-0.2

-0.1

0

0.1

0.2

0.32nd Pupil Phase Map

Radius (m)

Pha

se in

radi

ans

0 0.5 1 1.510-15

10-10

10-5

100Ideal and Fresnel PSFs

Image-Plane Radius (mm)

Inte

nsity

Rel

ativ

e to

Pea

k

Hybrid system designed for 10−10. Delivers 10−7.5.

Page 21: Diffraction Analysis of 2-D Pupil Remapping J I for High ... · -0.2 0 0.2 0.4 2nd Pupil Phase Map Radius (m) Phase in radians 0.5 1 1.5 10-8 10-6 10-4 10-2 100 Ideal and Fresnel

Home Page

Title Page

Contents

JJ II

J I

Page 21 of 21

Go Back

Full Screen

Close

Quit

Front-End Apodizer

0 0.005 0.01 0.015 0.020

0.5

1

1.5

2

2.5

3

3.52nd Pupil Amplitude Map

Radius (m)

Out

put A

mpl

itude

Rel

ativ

e to

Inpu

t

0 0.005 0.01 0.015 0.020

1

2

3

4x 10-4 Lens profiles

Radius (m)

Lens

hei

ght (

m)

0 0.005 0.01 0.015-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.62nd Pupil Phase Map

Radius (m)

Pha

se in

radi

ans

0 0.5 1 1.510-20

10-15

10-10

10-5

100Ideal and Fresnel PSFs

Image-Plane Radius (mm)

Inte

nsity

Rel

ativ

e to

Pea

k

This hybrid system is about as good as the back-end apodizer.Easier to manufacture.