digital image communication - ip.hhi.deip.hhi.de/imagecom_g1/assets/pdfs/introduction_03.pdf ·...

11
Digital Image Communication Digital Image Communication Contact: Dr.-Ing. Thomas Wiegand E-mail: [email protected] Image Processing Department URL: http://bs.hhi.de/~wiegand Fraunhofer Institute for Telecommunications Heinrich-Hertz-Institut Tel: 030 - 31002 617 Einsteinufer 37, 10587 Berlin Fax: 030 - 392 72 00 Thomas Wiegand Thomas Wiegand Course at Technical University of Berlin Course at Technical University of Berlin WS 200 WS 2003/200 /2004 Thomas Wiegand: Digital Image Communication Introduction -2 Picture: “Hotel“, 720x576, 414,720 Byte Picture: “Hotel“, 720x576, 414,720 Byte from: Blättermann

Upload: doanminh

Post on 28-Mar-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Digital Image Communication - ip.hhi.deip.hhi.de/imagecom_G1/assets/pdfs/introduction_03.pdf · ISDN 64 kb/s 0.21 0.05 0.010 0.002 T1 (24xISDN) 1.544 Mb/s 5.1 1.3 0.2 0.04 ... allows

Digital Image CommunicationDigital Image Communication

Contact:Dr.-Ing. Thomas Wiegand E-mail: [email protected] Processing Department URL: http://bs.hhi.de/~wiegandFraunhofer Institute for TelecommunicationsHeinrich-Hertz-Institut Tel: 030 - 31002 617Einsteinufer 37, 10587 Berlin Fax: 030 - 392 72 00

Thomas WiegandThomas Wiegand

Course at Technical University of BerlinCourse at Technical University of BerlinWS 200WS 20033/200/20044

Thomas Wiegand: Digital Image Communication Introduction - 2

Picture: “Hotel“, 720x576, 414,720 BytePicture: “Hotel“, 720x576, 414,720 Byte

from: Blättermann

Page 2: Digital Image Communication - ip.hhi.deip.hhi.de/imagecom_G1/assets/pdfs/introduction_03.pdf · ISDN 64 kb/s 0.21 0.05 0.010 0.002 T1 (24xISDN) 1.544 Mb/s 5.1 1.3 0.2 0.04 ... allows

Thomas Wiegand: Digital Image Communication Introduction - 3

JPEGJPEG--2000 Compressed to 12,960 Byte2000 Compressed to 12,960 Byte

Thomas Wiegand: Digital Image Communication Introduction - 4

JPEGJPEG--2000 Compressed to 3,240 Byte2000 Compressed to 3,240 Byte

Page 3: Digital Image Communication - ip.hhi.deip.hhi.de/imagecom_G1/assets/pdfs/introduction_03.pdf · ISDN 64 kb/s 0.21 0.05 0.010 0.002 T1 (24xISDN) 1.544 Mb/s 5.1 1.3 0.2 0.04 ... allows

Thomas Wiegand: Digital Image Communication Introduction - 5

414,720 Byte

Geometric InterpretationGeometric Interpretation

12,960Byte

32:1

3,240 Byte

128:1

250:1 Typical compressionrate forvideo

from: Girod

Thomas Wiegand: Digital Image Communication Introduction - 6

(from J.-J. PETERS, “History of Television”)

i(t)

Capture

Display

Nipkow DiskNipkow Disk

Paul Nipkow: “Elektrisches Teleskop”, German Patent 1884.

Page 4: Digital Image Communication - ip.hhi.deip.hhi.de/imagecom_G1/assets/pdfs/introduction_03.pdf · ISDN 64 kb/s 0.21 0.05 0.010 0.002 T1 (24xISDN) 1.544 Mb/s 5.1 1.3 0.2 0.04 ... allows

Thomas Wiegand: Digital Image Communication Introduction - 7

Image Transmission by Line ScanningImage Transmission by Line Scanning

time t

from: Theile

Thomas Wiegand: Digital Image Communication Introduction - 8

0 1 2 W-1W-2W-3

0

1

H-2

H-1

2

...

...

W Columns

HR

ows

Pixel at position x, y

s [ x , y ]

x =

y =

The Image MatrixThe Image Matrix

from: Ohm

Page 5: Digital Image Communication - ip.hhi.deip.hhi.de/imagecom_G1/assets/pdfs/introduction_03.pdf · ISDN 64 kb/s 0.21 0.05 0.010 0.002 T1 (24xISDN) 1.544 Mb/s 5.1 1.3 0.2 0.04 ... allows

Thomas Wiegand: Digital Image Communication Introduction - 9

Digital Image Formats IDigital Image Formats I

ITU-R 709

QCIF

CIF

ITU-R 601

Additionally inserted due to 16:9 ratio of horizontal to vertical size in HDTV

from: Ohm

Thomas Wiegand: Digital Image Communication Introduction - 10

QCIF CIF ITU-R 601 ITU-R 709

Pixel / row (Y) 176 352 720 1920

Number of rows (Y) 144 288 576 (480) 1080

Pixel / row (U,V) 88 176 360 960

Number of rows (U,V) 72 144 576 (480) 1080

Aspect ratio 4:3 4:3 4:3 16:9

Pictures per second [Hz]

5-15 10-30 25 (30) 25 (30)

Bits per picture[kbyte] bei 8Bit-PCM

38,02 152,1 829,4 (691,2) 4.424 (3.686)

Bit-rate for image sequence [Mb/s]

0,84 -3,8

10,1 -30,4

165,9 884,7

Digital Image Formats IIDigital Image Formats II

Page 6: Digital Image Communication - ip.hhi.deip.hhi.de/imagecom_G1/assets/pdfs/introduction_03.pdf · ISDN 64 kb/s 0.21 0.05 0.010 0.002 T1 (24xISDN) 1.544 Mb/s 5.1 1.3 0.2 0.04 ... allows

Thomas Wiegand: Digital Image Communication Introduction - 11

Digital Image Formats and ApplicationsDigital Image Formats and Applications

MHHD(QCIF)

Laptop(CIF)

TV(ITU-R 601)

Computer(SVGA)

HDTV(ITU-R 709)

7“

14“

21“

28“

35“

Display diagonal [inch]

from: Kaup

Thomas Wiegand: Digital Image Communication Introduction - 12

Examples for Storage MediaExamples for Storage Media

Number of pictures that can be stored in uncompressed format

Media Capacity QCIF CIF CCIR-601 CCIR-709

Floppy Disk 1.44 Mbyte 37.8 9.5 1.7 0.3Zip Disk 100 Mbyte 2623 659 118 21Jaz Disk 1 Gbyte 26230 6590 1180 210CD-ROM 650 Mbyte 17050 4283 767 136DVD 4.7 Gbyte 123281 30973 5546 987Flash 1-100 Mbyte 26-2623 7-659 1-118 0.2-21

Page 7: Digital Image Communication - ip.hhi.deip.hhi.de/imagecom_G1/assets/pdfs/introduction_03.pdf · ISDN 64 kb/s 0.21 0.05 0.010 0.002 T1 (24xISDN) 1.544 Mb/s 5.1 1.3 0.2 0.04 ... allows

Thomas Wiegand: Digital Image Communication Introduction - 13

Examples for Transmission MediaExamples for Transmission Media

Number of pictures that can be transmitted per second in

uncompressed format

Media Bit-Rate QCIF CIF CCIR-601 CCIR-709

Voice Modem 33.4 kb/s 0.11 0.03 0.005 0.001ISDN 64 kb/s 0.21 0.05 0.010 0.002T1 (24xISDN) 1.544 Mb/s 5.1 1.3 0.2 0.04Ethernet 10 Mb/s 32.9 8.2 1.5 0.28FDDI 100 Mb/s 328.7 82.2 15.1 2.83GSM 15 kb/s 0.05 0.01 0.002 0.0004UMTS 384 kb/s 1.3 0.32 0.06 0.01

Thomas Wiegand: Digital Image Communication Introduction - 14

Display

Transmission SystemTransmission System

SourceEncoderCapture

SourceDecoder

Demodu-lator

Modu-lator

ChannelEncoder

ChannelDecoder

Channel

Page 8: Digital Image Communication - ip.hhi.deip.hhi.de/imagecom_G1/assets/pdfs/introduction_03.pdf · ISDN 64 kb/s 0.21 0.05 0.010 0.002 T1 (24xISDN) 1.544 Mb/s 5.1 1.3 0.2 0.04 ... allows

Thomas Wiegand: Digital Image Communication Introduction - 15

Optimum ScenarioOptimum Scenario

Minimize costs of the complete transmission system, so that the visual information is

perceived by the human observer with the desired quality.

Problems:Desired accuracy differs for the various applications Different applications permit different costsTransmission system is interferred by othersHorizontal integration: design system components seperately (How about storage applications ?)How can we measure perceived quality ?

Thomas Wiegand: Digital Image Communication Introduction - 16

Why Why DigitalDigital Image Communication ?Image Communication ?

Separation of source coding and channel coding allows independent adaptation to the• Properties of information source and sink• Properties of the transmission channel

Digital circuitry allows very large scale integration and low manufacturing costs

Today, signals are stored and transmitted over digital media

Page 9: Digital Image Communication - ip.hhi.deip.hhi.de/imagecom_G1/assets/pdfs/introduction_03.pdf · ISDN 64 kb/s 0.21 0.05 0.010 0.002 T1 (24xISDN) 1.544 Mb/s 5.1 1.3 0.2 0.04 ... allows

Thomas Wiegand: Digital Image Communication Introduction - 17

The Human Visual System (HVS)The Human Visual System (HVS)Resolution limits:

• Textures with frequencies higher than the limit of the HVS are not recognizable

• Resolution limits for color are much lower than for luminance• Resolution limits are higher for horizontal and vertical structures

than for diagonal structures• Still objects are recognized much sharper than moving objects• Temporal resolution limit of the eye: flicker

Contrast recognition at edges:• Contrast changes at edges are enhanced• The HVS is especially sensitive to edges

Seeing:• Combining color, motion, and depth into a collection of

interferences about the world• Regions of interest in images and videos (various dependencies)

Thomas Wiegand: Digital Image Communication Introduction - 18

Display

Scope of this LectureScope of this Lecture

SourceEncoderCapture

SourceDecoder

Demodu-lator

Modu-lator

ChannelEncoder

ChannelDecoder

ChannelWe will bediscussing

this part

DigitalError

ControlChannel

Page 10: Digital Image Communication - ip.hhi.deip.hhi.de/imagecom_G1/assets/pdfs/introduction_03.pdf · ISDN 64 kb/s 0.21 0.05 0.010 0.002 T1 (24xISDN) 1.544 Mb/s 5.1 1.3 0.2 0.04 ... allows

Thomas Wiegand: Digital Image Communication Introduction - 19

Digital Image CommunicationDigital Image Communication

Information and EntropyRate Distortion Theory and Quantization Predictive CodingTransform CodingResolution Pyramids and Subband CodingImage Coding Standards JPEG, JPEG-2000Hybrid Video CodingVideo TransmissionVideo Coding Standards H.261, MPEG-1, MPEG-2/H.262, H.263/MPEG-4, and H.264/AVCLaboratory Excursion (HHI)

Thomas Wiegand: Digital Image Communication Introduction - 20

OrganisationOrganisation

Lecture: Monday 14:00-16:00, Einsteinufer 17, Room EN 189

Lecturer: Dr.-Ing. Thomas WiegandHead, Image Communication GroupImage Processing DepartmentFraunhofer Institute for [email protected]://bs.hhi.de/~wiegand

Copies of transparencies can be downloaded at URL:http://bs.hhi.de/~wiegand/DIC.html

Page 11: Digital Image Communication - ip.hhi.deip.hhi.de/imagecom_G1/assets/pdfs/introduction_03.pdf · ISDN 64 kb/s 0.21 0.05 0.010 0.002 T1 (24xISDN) 1.544 Mb/s 5.1 1.3 0.2 0.04 ... allows

Thomas Wiegand: Digital Image Communication Introduction - 21

Image Processing BasicsA.K. Jain: "Fundamentals of Digital Image Processing", Prentice-Hall, 1989.W. K. Pratt: "Digital Image Processing," New York: Wiley 1978.

Human Visual SystemB. A. Wandell: “Foundations of Vision”, Sinauer Associates, Sunderland, 1995.G. Hauske: “Systemtheorie der visuellen Wahrnehmung”, B. G. TeubnerStuttgart, 1994 (in German).

Information TheoryC. E. Shannon: “A Mathematical Theory of Communication”, Bell System Technical Journal, Vol. 27, pp. 379-423 (Part I), pp. 623-656 (Part II), 1948.T. M. Cover and J. A. Thomas: “Elements of Information Theory”, John Wiley & Sons, New York, 1991.

Literature ILiterature I

Thomas Wiegand: Digital Image Communication Introduction - 22

Rate-Distortion Theory & QuantizationT. Berger: “Rate Distortion Theory,“ Prentice-Hall, 1970N. S. Jayant and P. Noll: “Digital Coding of Waveforms,“ Prentice-Hall, 1984 A. Gersho and R. M. Gray: "Vector Quantization and Signal Compression,“Kluwer, 1992

Image CodingM. Vetterli and J. Kovacevic: “Wavelets and Subband Coding,“ Prentice-Hall, 1995W. Pennebaker and J. Mitchell: "JPEG Still Image Data Compression Standard", Van Nostrand Reinhold, New York, 1993.J.-R. Ohm: “Digitale Bildcodierung”, Springer, 1995 (in German).

JournalsIEEE Transactions on Image ProcessingIEEE Transactions on Circuits and Systems for Video TechnologyIEEE Signal Processing MagazineIEEE Communications Magazine

Literature IILiterature II