diffusive de & dm - miami

31
Diffusive DE & DM David Benisty Eduardo Guendelman arXiv: 1710.10588 Int. J. Mod. Phys . D 26 ( 2017 ) no. 12 , 1743021 DOI: 10.1142 / S 0218271817430210 Eur. Phys. J . C 77 ( 2017 ) no. 6 , 396 DOI: 10.1140 / epjc / s 10052 - 017 - 4939 - x arXiv: 1701.08667

Upload: others

Post on 29-Jul-2022

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Diffusive DE & DM - Miami

Diffusive DE & DMDavid Benisty

Eduardo Guendelman

arXiv:1710.10588

Int.J.Mod.Phys. D26 (2017) no.12,

1743021

DOI: 10.1142/S0218271817430210

Eur.Phys.J. C77 (2017) no.6, 396 DOI:

10.1140/epjc/s10052-017-4939-xarXiv:1701.08667

Page 2: Diffusive DE & DM - Miami

Main problems in cosmology

The vacuum energy behaves as the ฮ› term in Einsteinโ€™s field equation

๐‘…๐œ‡๐œˆ โˆ’1

2๐‘”๐œ‡๐œˆ๐‘… = ฮ›๐‘”๐œ‡๐œˆ + ๐‘‡๐œ‡๐œˆ

called the cosmological constant.

โ€ข Why is the observed value so many orders of

magnitude smaller than that expected in QFT?

โ€ข Why is it of the same order of

magnitude as the matter density of

the universe at the present time?

Page 3: Diffusive DE & DM - Miami

Two Measure Theory

In addition to the regular measure โˆ’๐‘”, Guendelman and Kaganovich

put another measure which is also a density and a total derivative. For

example constructing this measure 4 scalar fields ๐œ™(๐‘Ž), where a = 1, 2, 3, 4:

ฮฆ =1

4!ํœ€๐œ‡๐œˆ๐œŒ๐œŽํœ€๐‘Ž๐‘๐‘๐‘‘๐œ•๐œ‡๐œ™

(๐‘Ž)๐œ•๐œˆ๐œ™(๐‘)๐œ•๐œŒ๐œ™

(๐‘)๐œ•๐œŽ๐œ™(๐‘‘) = det ๐œ™,๐‘—

๐‘–

with the total action:

๐‘† = เถฑ โˆ’๐‘”โ„’1 +ฮฆโ„’2

The variation from the scalar fields ๐œ™(๐‘Ž) we get โ„’2 = M = const.

Page 4: Diffusive DE & DM - Miami

Unified scalar DE-DM

For a scalar field theory with a new measure:

๐‘† = เถฑ โˆ’๐‘”๐‘… + โˆ’๐‘” +ฮฆ ฮ› d4x

where ฮ› = ๐‘”๐›ผ๐›ฝ๐œ‘,๐›ผ๐œ‘,๐›ฝ. The Equations of Motion:

ฮ› = ๐‘€ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก

๐‘—๐œ‡ = 1 +ฮฆ

โˆ’๐‘”๐œ•๐œ‡๐œ‘

๐‘‡๐œ‡๐œˆ = ๐‘”๐œ‡๐œˆฮ› + 1 +ฮฆ

โˆ’๐‘”๐œ•๐œ‡๐œ‘๐œ•๐œˆ๐œ‘ = ๐‘”๐œ‡๐œˆฮ› + ๐‘—๐œ‡๐œ•๐œˆ๐œ‘

โ€ข Dark Energy and Dark Matter From Hidden Symmetry of Gravity Model with a Non-Riemannian Volume Form

European Physical Journal C75 (2015) 472-479 arXiv:1508.02008

โ€ข A two measure model of dark energy and dark matter Eduardo Guendelman, Douglas Singleton, Nattapong

Yongram, arXiv:1205.1056 [gr-qc]

Page 5: Diffusive DE & DM - Miami

Which gives constant scalar filed แˆถ๐œ‘ = ๐ถ1 and.

A conserved current: ๐›ป๐œ‡๐‘—๐œ‡ =

1

โˆ’๐‘”๐œ•๐œ‡ โˆ’๐‘”๐‘—๐œ‡ =

1

๐‘Ž3๐œ•

๐œ•๐‘ก๐‘Ž3๐‘—0 = 0

or ๐‘—0 =๐ถ3

๐‘Ž3. The complete set of the densities:

๐œŒฮ› = แˆถ๐œ‘2 = ๐ถ1 ๐‘ฮ› = โˆ’๐œŒฮ›

๐œŒd =๐ถ3

๐‘Ž3แˆถ๐œ‘ =

๐ถ1๐ถ3

๐‘Ž3๐‘d = 0

The precise solution for Friedman equation ๐œŒ โˆผแˆถ๐‘Ž

๐‘Ž

2in this

case is:

๐‘Žฮ›โˆ’๐‘‘ =๐ถ3

๐ถ1

ฮค1 3

sinh ฮค2 33

2๐ถ1๐‘ก

Which helps us to reconstruct the original physical values:

ฮฉฮ› =๐ถ1๐ป0

ฮฉฮ› =๐ถ3 ๐ถ1๐ป0

Page 6: Diffusive DE & DM - Miami

Velocity diffusion notion In General Relativity

Diffusion may also play a fundamental role in the large scale dynamics of the matter in the universe.

J. Franchi, Y. Le Jan. Relativistic Diffusions and Schwarzschild Geometry.

Comm. Pure Appl. Math., 60 : 187251, 2007;

Z. Haba. Relativistic diffusion with friction on a pseudoriemannian manifold. Class. Quant. Grav., 27 : 095021, 2010;

J. Hermann. Diffusion in the general theory of relativity. Phys. Rev. D, 82:

024026, 2010;

S. Calogero. A kinetic theory of diffusion in general relativity with cosmological scalar field. J. Cosmo. Astro. Particle Phys. 11 2011 ,016.

Page 7: Diffusive DE & DM - Miami

Kinetic diffusion on curved s.t Kinetic diffusion equation(Fokker Planck):

๐œ•๐‘ก๐‘“ + ๐‘ฃ ๐œ•๐‘ฅ๐‘“ = ๐œŽ ๐œ•๐‘ค2๐‘“ โŸน ๐‘๐œ‡๐œ•๐œ‡๐‘“ โˆ’ ฮ“๐œ‡๐œˆ

๐‘– ๐‘๐œ‡๐‘๐œˆ๐œ•๐‘๐‘–๐‘“ = ๐ท๐‘๐‘“

๐‘“ โˆ’ distribution function, v โ€“ velocity, ๐œŽ โ€“ diffusion coefficient.

The current density and the energy momentum tensor ๐‘‡๐œ‡๐œˆ are definedas:

๐‘—๐œ‡ = โˆ’ โˆ’๐‘”เถฑ๐‘“๐‘๐œ‡

๐‘0๐‘‘๐‘1 โˆง ๐‘‘๐‘2 โˆง ๐‘‘๐‘3

๐‘‡๐œ‡๐œˆ = โˆ’ โˆ’๐‘”เถฑ๐‘“๐‘๐œ‡๐‘๐œˆ

๐‘0๐‘‘๐‘1 โˆง ๐‘‘๐‘2 โˆง ๐‘‘๐‘3

๐‘—๐œ‡ is a time-like vector field and ๐‘‡๐œ‡๐œˆ verifies the dominant and strongenergy conditions.

๐›ป๐œ‡๐‘‡๐œ‡๐œˆ = 3๐œŽ๐‘—๐œˆ ๐›ป๐œ‡๐‘—

๐œˆ = 0

The number of particles is conserved, but not the energy momentumtensor.

Page 8: Diffusive DE & DM - Miami

Connection to Cosmology Calogeroโ€™s idea: ๐œ™CDM. The cosmological constant is replaced by a

scalar filed, which would the source of the Cold Dark Matter stress

energy tensor:

๐‘…๐œ‡๐œˆ โˆ’1

2๐‘”๐œ‡๐œˆ๐‘… = ๐‘‡๐œ‡๐œˆ + ๐œ‘๐‘”๐œ‡๐œˆ

๐›ป๐œ‡๐‘‡๐œ‡๐œˆ = 3๐œŽ๐‘—๐œˆ

๐›ป๐œˆ๐œ‘ = โˆ’3๐œŽ๐‘—๐œˆ

The value 3๐œŽ measures the energy transferred from the scalar field to the

matter

per unit of time due to diffusion.

This modification applied โ€œby handโ€, and not from action principle.

Another purpose - Diffusive Energy Action.

Page 9: Diffusive DE & DM - Miami

From T.M.T to Dynamical time

The basic result of T.M.T can be expressed as a covariant conservation

of a stress energy tensor:

๐œ’๐œ† - dynamical space-time vector field , ๐œ’๐œ‡;๐œˆ = ๐œ•๐‘ฃ๐œ’๐œ‡ โˆ’ ฮ“๐œ‡๐œˆ๐œ† ๐œ’๐œ† in second

order formalism ฮ“๐œ‡๐œˆ๐œ† is Christoffel Symbol.

๐‘‡(๐œ’)๐œ‡๐œˆ

- stress energy tensor. The variation according to ๐œ’ gives a conserved

diffusive energy: ๐›ป๐œ‡๐‘‡(๐œ’)๐œ‡๐œˆ

= 0, in addition to ๐‘‡(๐บ)๐œ‡๐œˆ

=๐›ฟ๐‘†(๐œ’)

๐›ฟ๐‘”๐œ‡๐œˆ.

Dynamical time is as T.M.T for ๐‘‡(๐œ’)๐œ‡๐œˆ

= ๐‘”๐œ‡๐œˆฮ›.

ฮฆ =1

4!ํœ€๐œ‡๐œˆ๐œŒ๐œŽํœ€๐‘Ž๐‘๐‘๐‘‘๐œ•๐œ‡๐œ™

(๐‘Ž)๐œ•๐œˆ๐œ™(๐‘)๐œ•๐œŒ๐œ™

(๐‘)๐œ•๐œŽ๐œ™(๐‘‘)

๐‘† = เถฑฮฆโ„’1 ๐‘† ๐œ’ = เถฑ โˆ’๐‘”๐œ’๐œ‡;๐œˆ๐‘‡(๐œ’)๐œ‡๐œˆ๐‘‘4๐‘ฅ

Page 10: Diffusive DE & DM - Miami

Diffusive energy We replace the dynamical space time vector ๐œ’๐œ‡ by a gradient of a

scalar filed ๐œ’,๐œ‡:

๐‘† ๐œ’ = เถฑ โˆ’๐‘”๐œ’,๐œ‡;๐œˆ๐‘‡(๐œ’)๐œ‡๐œˆ๐‘‘4๐‘ฅ

๐œ’ - scalar filed , ๐œ’,๐œ‡;๐œˆ = ๐œ•๐‘ฃ๐œ•๐œ‡๐œ’ โˆ’ ฮ“๐œ‡๐œˆ๐œ† ๐œ•๐œ†๐œ’, ๐‘‡(๐œ’)

๐œ‡๐œˆ- stress energy tensor.

The variation according to ๐œ’ gives a non-conserved diffusive energy momentum tensor:

๐›ป๐œ‡๐‘‡(๐œ’)๐œ‡๐œˆ

= ๐‘“๐‘ฃ ; ๐›ป๐‘ฃ๐‘“๐‘ฃ = 0

The variation according to the metric gives a conserved stress energytensor, (which is familiar from Einstein eq. ๐‘‡ ๐บ

๐œ‡๐‘ฃ= ๐‘…๐œ‡๐œˆ โˆ’

1

2๐‘”๐œ‡๐œˆ ๐‘…) :

๐‘‡(๐บ)๐œ‡๐œˆ

=โˆ’2

โˆ’๐‘”

๐›ฟ โˆ’๐‘”โ„’๐‘š๐›ฟ๐‘”๐œ‡๐œˆ

Page 11: Diffusive DE & DM - Miami

Dynamical time with source

An action with no high derivatives, is to add a source coupled to ฯ‡ฮผ:

๐‘† ๐œ’ = เถฑ โˆ’๐‘”๐œ’๐œ‡;๐œˆ๐‘‡(๐œ’)๐œ‡๐œˆ๐‘‘4๐‘ฅ +

๐œŽ

2เถฑ โˆ’๐‘” ๐œ’๐œ‡ + ๐œ•๐œ‡๐ด

2๐‘‘4๐‘ฅ

๐›…๐›˜๐›Œ: ๐›ปฮผT(ฯ‡)ฮผฮฝ

= ฯƒ ฯ‡ฮฝ + ๐œ•ฮฝA

๐›…๐€: ฯƒ ๐›ปฮฝ ฯ‡ฮฝ + ๐œ•ฮฝA = 0

One difference between those theories:

Here - ๐œŽ appears as a parameter

- in the higher derivative theory ๐œŽ appears as an integration of

constant.

Page 12: Diffusive DE & DM - Miami

Symmetries

If the matter is coupled through its energy momentum tensor

as:

๐‘‡ ๐œ’๐œ‡๐œˆ

โ†’ ๐‘‡ ๐œ’๐œ‡๐œˆ

+ ๐œ†๐‘”๐œ‡๐œˆ

the process will not affect the equations of motion. In Quantum

Field Theory this is โ€œnormal orderingโ€.

๐œ’ โ†’ ๐œ’ + ๐œ†

Page 13: Diffusive DE & DM - Miami

A toy model

We start with a simple action of one dimensional particle in a

potential ๐‘‰(๐‘ฅ).

๐‘† = เถฑ แˆท๐ต1

2๐‘š แˆถ๐‘ฅ2 + ๐‘‰ ๐‘ฅ ๐‘‘๐‘ก

๐›ฟ๐ต gives the total energy of a particle with constant power P:

1

2๐‘š แˆถ๐‘ฅ2 + ๐‘‰ ๐‘ฅ = ๐ธ ๐‘ก = ๐ธ0 + ๐‘ƒ๐‘ก

๐›ฟ๐‘ฅ gives the condition for B:

๐‘š แˆท๐‘ฅ แˆท๐ต + ๐‘š แˆถ๐‘ฅแˆธ๐ต = ๐‘‰โ€ฒ ๐‘ฅ แˆท๐ต or แˆธ๐ต

แˆท๐ต=

2๐‘‰โ€ฒ ๐‘ฅ

2๐‘š ๐ธ ๐‘ก โˆ’๐‘‰ ๐‘ฅ

โˆ’๐‘ƒ

2 ๐ธ ๐‘ก โˆ’๐‘‰ ๐‘ฅ

Page 14: Diffusive DE & DM - Miami

A conserved Hamiltonian

Momentums for this toy model:

๐œ‹๐‘ฅ =๐œ•โ„’

๐œ• แˆถ๐‘ฅ= ๐‘š แˆถ๐‘ฅ แˆท๐ต

๐œ‹๐ต =๐œ•โ„’

๐œ• แˆถ๐ตโˆ’๐‘‘

๐‘‘๐‘ก

๐œ•โ„’

๐œ• แˆท๐ต= โˆ’

๐‘‘

๐‘‘๐‘ก๐ธ ๐‘ก

ฮ ๐ต =๐œ•โ„’

๐œ• แˆท๐ต= ๐ธ ๐‘ก

The Hamiltonian (with second order derivative):

โ„‹ = แˆถ๐‘ฅ๐œ‹๐‘ฅ + แˆถ๐ต๐œ‹๐ต + แˆท๐ตฮ ๐ต โˆ’ โ„’ = ๐‘š แˆถ๐‘ฅ แˆท๐ต โˆ’ แˆถ๐ต แˆถ๐ธ = ๐œ‹๐‘ฅ2

๐‘šฮ ๐ต โˆ’ ๐‘‰ ๐‘ฅ + แˆถ๐ต๐œ‹๐ต

The action isnโ€™t dependent on time explicitly, so the Hamiltonian is

conserved.

Page 15: Diffusive DE & DM - Miami

Interacting Diffusive DE โ€“ DM

The diffusive stress energy tensor in this theory:

๐‘‡(๐œ’)๐œ‡๐œˆ

= ฮ›๐‘”๐œ‡๐œˆ

with the kinetic โ€œk-essenceโ€ term ฮ› = ๐‘”๐›ผ๐›ฝ๐œ‘,๐›ผ๐œ‘,๐›ฝ,

where ๐œ‘ โ€“ a scalar filed.

The full theory:

๐‘† = เถฑ1

2โˆ’๐‘”๐‘… + โˆ’๐‘” โŠ” ๐œ’ + 1 ฮ› ๐‘‘4๐‘ฅ

when 8๐œ‹๐บ = ๐‘ = 1.

(with high derivatives)

Page 16: Diffusive DE & DM - Miami

Equation of motions

๐›ฟ๐œ’ - non trivial evolving dark energy:

โŠ” ฮ› = 0

๐›ฟ๐œ‘ - a conserved current:

jฮฒ = 2 โŠ” ฯ‡ + 1 ฯ†,ฮฒ

๐›ฟ๐‘”๐œ‡๐œˆ - a conserved stress energy tensor:

๐‘‡(๐บ)๐œ‡๐œˆ

= ๐‘”๐œ‡๐œˆ โˆ’ฮ› + ๐œ’ ,๐œŽฮ›,๐œŽ + ๐‘—๐œ‡๐œ‘,๐œˆ โˆ’ ๐œ’ ,๐œ‡ฮ›,๐œˆ โˆ’ ๐œ’ ,๐œˆฮ›,๐œ‡

Dark Energy Dark Matter

Page 17: Diffusive DE & DM - Miami

F.L.R.W solution

โŠ” ฮ› = 0:

2 แˆถ๐œ‘ แˆท๐œ‘ =๐ถ2๐‘Ž3

โŸบ แˆถ๐œ‘2 = ๐ถ1 + ๐ถ2เถฑ๐‘‘๐‘ก

๐‘Ž3

๐‘—๐›ฝ = 2 โŠ” ๐œ’ + 1 ๐œ‘,๐›ฝ:

แˆถ๐œ’ =๐ถ4๐‘Ž3

+1

๐‘Ž3เถฑ๐‘Ž3 ๐‘‘๐‘ก โˆ’

๐ถ32๐‘Ž3

เถฑ๐‘‘๐‘ก

แˆถ๐œ‘

T(๐บ)๐œ‡๐œˆ

- a conserved stress energy tensor:

๐œŒฮ› = แˆถ๐œ‘2 +๐ถ2

๐‘Ž3แˆถ๐œ’ ๐‘ฮ› = โˆ’๐œŒฮ›

๐œŒd =๐ถ3

๐‘Ž3แˆถ๐œ‘ โˆ’ 2

๐ถ2

๐‘Ž3แˆถ๐œ’ ๐‘d = 0

Page 18: Diffusive DE & DM - Miami

Asymptotic solution The field แˆถ๐œ’ asymptotically goes to the value as De Sitter space ๐‘Ž ~ ๐‘’๐ป0๐‘ก:

lim๐‘กโ†’โˆž

แˆถ๐œ’ =1

๐‘Ž3เถฑ๐‘Ž3 ๐‘‘๐‘ก =

1

3๐ป0

The asymptotic values of the densities are:

๐œŒฮ› = ๐ถ1 + ๐ถ2เถฑ๐‘‘๐‘ก

๐‘Ž3+๐ถ2๐‘Ž3

แˆถ๐œ’ = ๐ถ1 + ๐‘‚1

๐‘Ž6

๐œŒCDM = ๐ถ3 ๐ถ1 โˆ’2๐ถ23๐ป0

1

๐‘Ž3+ ๐‘‚

1

๐‘Ž6

The observable values:๐ถ1๐ป0

= ฮฉฮ› ๐ถ3 ๐ถ1 โˆ’2๐ถ23๐ป0

= ๐ป0ฮฉd

Page 19: Diffusive DE & DM - Miami

Stability of the solutions More close asymptotically with ฮ›๐ถ๐ท๐‘€ : the dark energy become

constant, and the amount of dark matter slightly change ๐œŒCDM~1

๐‘Ž3.

๐ถ3 ๐ถ1 >2๐ถ2

3๐ป0for positive dust density. For ๐ถ2 < 0 cause higher dust

density asymptotically, and there will be a positive flow of energy in

the inertial frame to the dust component, but the result of this flow of

energy in the local inertial frame will be just that the dust energy

density will decrease a bit slower that the conventional dust (but still

decreases).

Explaining the particle production, โ€œTaking vacuum energy and

converting it into particles" as expected from the inflation reheating

epoch. May be this combined with a mechanism that creates

standard model particles.

Page 20: Diffusive DE & DM - Miami

Late universe solution The familiar solution of non-interacting DE-DM solution is for ๐ถ2 = 0.

Which gives constant scalar filed แˆถ๐œ‘ = ๐ถ1 and แˆท๐œ‘ = 0.

๐œŒฮ› = แˆถ๐œ‘2 = ๐ถ1 ๐‘ฮ› = โˆ’๐œŒฮ›

๐œŒd =๐ถ3

๐‘Ž3แˆถ๐œ‘ =

๐ถ1๐ถ3

๐‘Ž3๐‘d = 0

The precise solution for Friedman equation ๐œŒ โˆผแˆถ๐‘Ž

๐‘Ž

2in this case is:

๐‘Žฮ›โˆ’๐‘‘ =๐ถ3

๐ถ1

ฮค1 3

sinh ฮค2 33

2๐ถ1๐‘ก

Which helps us to reconstruct the original physical values:

ฮฉฮ› =๐ถ1๐ป0

ฮฉd =๐ถ3 ๐ถ1๐ป0

Page 21: Diffusive DE & DM - Miami

Perturbative solution

The scalar field has perturbative properties ๐œ†1,2 โ‰ช 1:

๐œ†1 ๐‘ก, ๐‘ก0 =๐ถ2๐ถ1เถฑ๐‘‘๐‘ก

๐‘Ž3

๐œ†2 ๐‘ก, ๐‘ก0 =๐ถ2

๐ถ1๐ถ3แˆถ๐œ’

For a first order solution in perturbation theory:

๐œŒฮ› = ๐ถ1 1 + ๐œ†1 +๐ถ3

๐ถ1๐œ†2 + ๐‘‚2 ๐œ†1, ๐œ†2

๐œŒ๐ถ๐ท๐‘€ =๐ถ1๐ถ3๐‘Ž3

1 +1

2๐œ†1 + ๐œ†2 + ๐‘‚2 ๐œ†1, ๐œ†2

For rising dark energy, dark matter amount goes lower ( ๐ถ2< 0, ๐ถ1,3,4 > 0). For decreasing dark energy, the amount of dark

matter goes up(all components are positive).

Page 22: Diffusive DE & DM - Miami

Diffusive energy without higher derivatives

The full theory:

โ„’ =1

2โˆ’๐‘”๐‘… + โˆ’๐‘”๐œ’๐œ‡;๐œˆ๐‘‡(๐œ’)

๐œ‡๐œˆ+๐œŽ

2โˆ’๐‘” ๐œ’๐œ‡ + ๐œ•๐œ‡๐ด

2+ โˆ’๐‘”ฮ›

Where ฮ› = ๐‘”๐›ผ๐›ฝ๐œ‘,๐›ผ๐œ‘,๐›ฝ, and ๐‘‡(๐œ’)๐œ‡๐œˆ

= ฮ›๐‘”๐œ‡๐œˆ .

All the E.o.M are the same, except:

๐‘‡(๐บ)๐œ‡๐œˆ

= ๐‘”๐œ‡๐œˆ โˆ’ฮ› + ๐œ’,๐œ†ฮ›,๐œ† +๐Ÿ

๐Ÿ๐ˆ๐šฒ,๐›Œ๐šฒ,๐›Œ + ๐‘—๐œ‡๐œ‘,๐œˆ โˆ’ ๐œ’,๐œ‡ฮ›,๐œˆ โˆ’ ๐œ’ ,๐œˆฮ›,๐œ‡ +

๐Ÿ

๐ˆ๐šฒ,๐›๐šฒ,๐‚

For the late universe both theories are equivalent, ฮ›,๐œ‡ฮ›,๐œˆ โˆผ1

๐‘Ž6.

For ๐œŽ โ†’ โˆž, the term ๐œŽ

2โˆ’๐‘” ๐œ’๐œ‡ + ๐œ•๐œ‡๐ด

2forces ๐œ’๐œ‡ = โˆ’๐œ•๐œ‡๐ด, and D.T

becomes Diffusive energy with high energy.

Page 23: Diffusive DE & DM - Miami

Calogeroโ€™s model ฯ†CMD Calogero put two stress energy tensor of DE-DM. Each stress energy

tensor in non-conserved:

๐›ป๐œ‡๐‘‡ ฮ›๐œ‡๐œˆ

= โˆ’๐›ป๐œ‡๐‘‡ Dust๐œ‡๐œˆ

= 3๐œŽ๐‘—๐œˆ, ๐‘—;๐œˆ๐œˆ = 0

For FRWM, this calculation leads to the solution:

๐œŒฮ› = ๐ถ1 + ๐ถ2เถฑ๐‘‘๐‘ก

๐‘Ž3

๐œŒDust =๐ถ3๐‘Ž3

โˆ’๐ถ2๐‘ก

๐‘Ž3

The two model became approximate for C2 แˆถ๐œ’ โ‰ช 1. Our asymptotic solution

becomes with constant densities, because C2 แˆถ๐œ’ โ†’๐ถ2

3๐ป0, which makes the DE

decay lower from ๐œ‘๐ถ๐‘€๐ท, and DM evolution as ฮ›๐ถ๐‘€๐ท.

Page 24: Diffusive DE & DM - Miami

Preliminary ideas on Quantization

Taking Dynamical space time theory (with source), and by integration by parts:

๐‘† = เถฑ โˆ’๐‘”๐‘… + เถฑ โˆ’๐‘”ฮ› โˆ’ เถฑ โˆ’๐‘”๐œ’๐œ‡๐‘‡(๐œ’);๐œˆ๐œ‡๐œˆ

๐‘‘4๐‘ฅ +๐œŽ

2เถฑ โˆ’๐‘” ๐œ’๐œ‡ + ๐œ•๐œ‡๐ด

2๐‘‘4๐‘ฅ

๐œน๐Œ๐: ๐›ป๐œˆ๐‘‡ ๐œ’๐œ‡๐œˆ

= ๐‘“๐œˆ = ๐œŽ ๐œ’๐œˆ + ๐œ•๐œˆ๐ด into the action:

๐‘† = เถฑ โˆ’๐‘”๐‘… + เถฑ โˆ’๐‘” g๐›ผ๐›ฝ๐œ™๐›ผ๐œ™๐›ฝ โˆ’1

2๐œŽเถฑ โˆ’๐‘” ๐‘“๐œˆ๐‘“

๐œˆ๐‘‘4๐‘ฅ + เถฑ โˆ’๐‘”๐œ•๐œ‡๐ด๐‘“๐œˆ๐‘‘4๐‘ฅ

The partition function considering Euclidean metrics (exclude the

gravity terms):

ฮ– = เถฑ๐ท๐œ™๐›ฟ ๐‘“;๐œ‡๐œ‡exp

1

2๐œŽเถฑ ๐‘” ๐‘“๐œˆ๐‘“

๐œˆ๐‘‘4๐‘ฅ โˆ’ เถฑ ๐‘” g๐›ผ๐›ฝ๐œ™๐›ผ๐œ™๐›ฝ

We see that for ๐œŽ < 0, there will a convergent functional integration, so

this is a good sign for the quantum behavior of the theory.

Page 25: Diffusive DE & DM - Miami

Numerical solution By redefine the red โ€“ shift as the changing variable:

๐‘Ž ๐‘ง =๐‘Ž 0

๐‘ง + 1

๐‘‘

๐‘‘๐‘ก= โˆ’ ๐‘ง + 1 ๐ป ๐‘ง

๐‘‘

๐‘‘๐‘ง

The physical behavior can be obtained by the deceleration parameter:

๐‘ž = โˆ’1 โˆ’แˆถ๐ป

๐ป2 =1

21 + 3๐œ” 1 +

๐พ

๐‘Ž๐ป2

qwtype

-1-1Dark energy

< -1Hyper - inflation

1/20dust

21Stiff

Page 26: Diffusive DE & DM - Miami

๐ถ2 > 0 Solutions

Page 27: Diffusive DE & DM - Miami

๐ถ2 < 0 Solutions

Page 28: Diffusive DE & DM - Miami

Bouncing solutions

Page 29: Diffusive DE & DM - Miami

Final Remarks

T.M.T - Unified Dark Matter Dark Energy. The cosmological constant

appears as an integration constant.

The Dynamical space time Theories โ€“ both energy momentum tensor

are conserved.

Diffusive Unified DE and DM โ€“ the vector field is taken to be the gradient

of a scalar, the energy momentum tensor ๐‘‡(๐‘ฅ)๐œ‡๐œˆ

has a source current,

unlike the ๐‘‡(๐บ)๐œ‡๐œˆ

which is conserved. The non conservation of ๐‘‡(๐‘ฅ)๐œ‡๐œˆ

is of the

diffusive form.

Asymptotically stable solution ฮ›CDM is a fixed point.

A bounce hyper inflation solution for the early universe.

For rising dark energy, dark matter amount goes lower. For decreasing

dark energy, the amount of dark matter goes up.

The partition function is convergent for ๐œŽ < 0, and therefor the theory isa good property before quantizing the theory.

Page 30: Diffusive DE & DM - Miami

Future research

A Stellar model

Inflationary model ?

Quantum solutions โ€“ Wheeler de Witt equation

A solution for coincidence problem ?

Page 31: Diffusive DE & DM - Miami

And this is only the beginningโ€ฆ