diff equation 4 2011 fall high order theory

56
S.l.dr.ing.mat. Alina  Bogoi Differential  Equations POLITEHNICA University of Bucharest Faculty of Aerospace Engineering CHAPTER 2 First-Order Differential Equations (cont’d)

Upload: anna-cristache

Post on 06-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 1/56

S.l.dr.ing.mat. Alina  BogoiDifferential

 Equations

POLITEHNICA University of BucharestFaculty of Aerospace Engineering

CHAPTER 2

First-Order Differential

Equations (cont’d)

Page 2: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 2/56

Diff_Eq_4_2011 2

Outline• Exact equations

• Integrating Factors

• Homogenous equations

• First Order Ordinary Differential equation

• First Order Non-linear Differential equation

 –  Bernoulli equation

 –  Riccati equation

 –  Clairaut equation

Page 3: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 3/56

Diff_Eq_4_2011 3

A first-order DE of the form  a1

 ( x)(dy/dx) +

 a0

 ( x) y = g ( x) (1)

is said to be a linear equation in   y.When g ( x) = 0,  (1) is said to be homogeneous;

otherwise it is nonhomogeneous.

DEFINITIONLinear Equations

First Order Ordinary Differential

equation

Page 4: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 4/56

Diff_Eq_4_2011 4

• we have the general solution:

dx x f eece y y ydx x P dx x P dx x P 

 pc ∫  ∫ ∫ +∫ =+=−−

)()()()(

• We call is an integrating factor and we should only memorize

this to solve problems.

∫  dx x P 

e)(

Integrating Factor

Page 5: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 5/56

Diff_Eq_4_2011 5

BERNOULLI’S EQUATION

The differential equation

where n  is any real number, is called Bernoulli’sequation. For n  = 0 and n  = 1, the equation is

linear and can be solved by methods of the lastsection.

,)()( n y x f  y x P dx

dy=+

Page 6: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 6/56

Diff_Eq_4_2011 6

SOLVING A BERNOULLI

EQUATION

1.  Rewrite the equation as

2.  Use the substitution w  = y1 −  n, n  ≠  0, n  ≠  1. NOTE: dw/dx  = (1  −  n) y−n

 dy/dx.

3.  This substitution turns the equation in Step 1into a linear equation which can be solved by

the method of the last section.

).()(

1

 x f  y x P dx

dy

 y

nn

=+

−−

Page 7: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 7/56

Diff_Eq_4_2011 7

How to transform the Riccati equation to a linear one ?

Somehow we get one solution, , of a Riccati

equation, then the change of variables

transforms the Riccati equation to a linear one.

)()()(2'

 x R y xQ y x P  y ++=

)( x

 z  xS  y

1)( +=

RICATTI’S EQUATION

Page 8: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 8/56

Diff_Eq_4_2011 8

 z  xQ

 z  xS  x P 

 z  x P  z' 

 z 

1)(

1)()(2

1)(

122

++=−

)())()()(2( x P  z  xQ xS  x P  z'  −=++

[2 ( ) ( ) ( )]

i ntegrating factor 

( )P x S x Q x dx

  f x e+∫ =

)(dx)()(

)(

1)(

 x f 

C  x f  x P 

 x f  x z  +−= ∫ 

Riccati Equation

Page 9: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 9/56

Diff_Eq_4_2011 9

CLAIRAUT’S EQUATION

The nonlinear differential equation y  = xy′  + F( y′)

is called Clairaut’s equation. Its solution is thefamily of straight lines  y  = cx  + F   (c), where c  is

an arbitrary constant.

dx

dy p = ( ) y x p F p= +

Page 10: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 10/56

Diff_Eq_4_2011 10

PARAMETRIC SOLUTION TO

CLAIRAUT’S EQUATION

2

1 22

1 1 2 1 1

2 1 1 1

( ) 0

0

put into the origional eq. ( )

( ) ( ) general solution

dy dp dF dp dp dF    p p x xdx dx dp dx dx dp

dp d y y c x c

dx dxdy

 p c c x c c x F cdx

c F c y c x F c

= = + + ⇒ + =

= = ⇒ = +

⇒ = = ⇒ + = +

⇒ = ⇒ = +

0 ( , ) 0 eliminate in the origional ODEdF 

  x G x p pdp

+ = ⇒ =

Page 11: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 11/56

Diff_Eq_4_2011 11

Clairaut’s equation

)( p F px y+

2

2 2

2 2

22

Ex:

2 ( 2 ) 0

(1) ( ) ( ( )) general solution

(2) 2 0

2 2 4

4 0 singular solution4

  y px p

dy dp dp dp  p x p p x p

dx dx dx dx

 F p p y x F c cx c

  x x x  x p p y

 x

  y x y

= +

⇒ = + + = ⇒ + =

= ⇒ = + = +

+ = ⇒ = − ⇒ = − +

= − ⇒ + =

'( ) 0  x F p+ =( ) y c x F c= +

Page 12: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 12/56

Diff_Eq_4_2011 12

Non-linear 2nd O.D.E.

• p substitution.

 the second derivative of  y is replaced by the first derivative

of  p thus eliminating y

• completely and producing a first O.D.E. in p and x.

dx

dy p =

2

2

dx

 yd 

dx

dp

=

A. Equations where the dependent variables does

not occur explicitly

Page 13: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 13/56

Diff_Eq_4_2011 13

Solve axdx

dy xdx

 yd  =+2

2

Let dx

dy p =

ax xpdx

dp=+

⎟ ⎠

 ⎞⎜⎝ 

⎛  2

2

1exp xintegral factor

Example

Page 14: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 14/56

Diff_Eq_4_2011 14

Solve axdx

dy xdx

 yd  =+2

2

Let dx

dy p = 2

2

dx

 yd 

dx

dp

=and therefore

ax xpdx

dp=+

⎟ ⎠

 ⎞⎜⎝ 

⎛  2

2

1exp xintegral factor

222

2

1

2

1

2

1 x x x

axe xpeedx

dp=+

22

2

1

2

1

)(

 x x

axe pedx

d =

21exp2

ax C x dx⎛ ⎞= + −⎜ ⎟⎝ ⎠∫ 

Example

dx

dy xC a p =−+= )

2

1exp( 2

Page 15: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 15/56

Diff_Eq_4_2011 15

They are solved by differentiation followed by the p

substitution.

When the p substitution is made in this case, the second

derivative of  y is replaced as

Let

dx

dy p =

dy

dp p

dx

dy

dy

dp

dx

dp

dx

 yd ===∴

2

2

Non-linear 2nd O.D.E.

B. Equations where the independent variables doesnot occur explicitly

Page 16: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 16/56

Diff_Eq_4_2011 16

Solve 2

2

2

)(1dx

dy

dx

 yd  y =+

Let dx

dy p = and therefore

21 p

dy

dp yp =+

Separating the variables

dy

dp

 pdx

 yd 

=2

2

dy y

dp p

 p 1

12=

)1ln(2

1lnln 2 −=+ pa y

)1( 22 +== yadx

dy p

( )

)sinh(1

)(sinh1

)1(

1

22

caxa

 y

baya

 x

 ya

dy x

+=

+=

+=

∫ 

Example

Page 17: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 17/56

S.l.dr.ing.mat. Alina

 Bogoi

Differential

 Equations

POLITEHNICA University of BucharestFaculty of Aerospace Engineering

CHAPTER 3

Higher Order Linear

Equations

Page 18: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 18/56

Diff_Eq_4_2011 18

Outline• Nth-order Linear Homogeneous

Equations with ConstantCoefficients

• Nth-order Linear Nonhomogeneous

Equations:

• Method of Undetermined

Coefficients• The method of variation of 

parameters

• Cauchy-Euler Equation

Higher Order Linear Equations

Page 19: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 19/56

Diff_Eq_4_2011 19

A set of  f 1

 ( x), f 2

 ( x), …,   f n

 ( x) is linearly dependent on

an interval I , if there exists constants c1  , c2  , …,  cn  , not all zero, such that  c1

  f 1

 ( x) +

 c2

  f 2

 ( x) + …

 +

 cn

  f n

 ( x) = 0

 If not linearly dependent, it is linearly independent.

DEFINITION 1

Linear Dependence and Linear Independence

Higher Order Linear Equations

Homogeneous Equations with Constant Coefficients

Higher Order Linear Equations

Page 20: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 20/56

Diff_Eq_4_2011 20

Suppose each of the functions f 1  ( x), f 

2  ( x), …,   f 

n  ( x)

 possesses at least n –   1 derivatives. The determinant  

is called the Wronskian of the functions.

DEFINITION 2Wronskian

)1()1()1(

21

21

1

21

'''),...,(

−−−

=

nn

nn

n

n

n

 f  f  f 

 f  f  f 

 f  f  f 

 f  f W 

L

MMM

L

L

Higher Order Linear EquationsHomogeneous Equations with Constant Coefficients

Higher Order Linear Equations

Page 21: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 21/56

Diff_Eq_4_2011 21

Let y1

 ( x),   y2

 ( x), …,   yn

 ( x) on an interval I . This set of 

functions is linearly independent if and only if 

W ( y1

 , y2

 , …,   yn

 ) ≠  0 for every x  in the interval.

THEOREM 3Criterion for Linear Independence

Any set y1

 ( x), y2

 ( x), …,   yn

 ( x) of n  linearly independent

solutions is said to be a fundamental set of functions.

DEFINITION 3

Fundamental Set

Higher Order Linear EquationsHomogeneous Equations with Constant Coefficients

Higher Order Linear Equations

Page 22: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 22/56

Diff_Eq_4_2011 22

• Ini t ial-value Problem An nth-order initial problem is

Solve:

• Subject to n initial conditions :

1

1 1 01[ ] ( ) ( ) ( ) ( ) ( )

n n

n nn n

d y d dy L y a x a x a x a x y g x

dx dx dx

− −= + + + + =L

0 0

'

0 0

( 1) 1

0 0

( )( ) , ,

( )

n n

  y x y  y x y

  y x y

− −

=′ =

=

L

Higher Order Linear Equations

Higher Order Linear Equations

Page 23: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 23/56

Diff_Eq_4_2011 23

• The following DE

is said to be homogeneous; 

• with g(x) not identically zero, isnonhomogeneous .

( )1

1 1 01( ) ( ) ( ) ( ) 0

n n

n nn n

d y d y dy L y a x a x a x a x y

dx dx dx

− −= + + + + =L

( )1

1 1 01( ) ( ) ( ) ( ) ( )

n n

n nn nd y d y dy L y a x a x a x a x y g xdx dx dx

− −= + + + + =L

Higher Order Linear Equations

L( y ) = g( x )

L( y ) = 0 

Higher Order Linear Equations

Page 24: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 24/56

Diff_Eq_4_2011 24

1

1 1 01[ ] ( ) ( ) ( ) ( ) ( )

n n

n nn nd y d dy L y a x a x a x a x y g xdx dx dx

− −= + + + + =L

10)1(

1000 )(,,)(,)( −− ==′= n

n  y x y y x y y x y L

Higher Order Linear Equations

Let an

 ( x),  an-1

 ( x), …,  a0

 ( x),  and g ( x)   be continuous on   I,

an

 ( x) ≠

 0

 for all x on I . If  x = x0

 is any point in this

interval, then a solution y( x) exists on the intervaland is unique.

THEOREM 1Existence and Uniqueness

Higher Order Linear Equations

Page 25: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 25/56

Diff_Eq_4_2011 25

There exists a fundamental set of solutions for DE on an

interval I.

THEOREMExistence of a Fundamental Set

Higher Order Linear EquationsHomogeneous Equations with Constant Coefficients

(A)  y = cy1

 is also a solution if  y1

 is a solution.

(B) A homogeneous linear DE always possesses thetrivial solution y = 0.

COROLLARY Corollary

Higher Order Linear Equations

Page 26: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 26/56

Diff_Eq_4_2011 26

Let y1

 , y2

 , …,   yk 

  be a solutions of the homogeneous

nth-order differential equation on an interval I .

Then the linear combination   y = c1

  y1

 ( x) + c2

  y2

 ( x) + …+ ck 

  yk 

 ( x)  

where the ci  , i  = 1, 2, …, k   are arbitrary constants, isalso a solution on the interval.

THEOREM

Superposition Principles – Homogeneous Equations

Higher Order Linear EquationsHomogeneous Equations with Constant Coefficients

Higher Order Linear Equations

Page 27: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 27/56

Diff_Eq_4_2011 27

Let y1

 ( x),

  y2

 ( x), …,

  yn

 ( x) be a fundamental set of 

solutions of homogeneous DE on an interval I . Thenthe general solution is   y

 = c1

  y1

 ( x) +

 c2

  y2

 ( x) + …

 +

 cn

  yn

 ( x)

where ci

 are arbitrary constants.

THEOREM

General Solution – Homogeneous Equations

Higher Order Linear EquationsHomogeneous Equations with Constant Coefficients

E l

Page 28: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 28/56

Diff_Eq_4_2011 28

• The functions y1 = e3x, y2 = e-3x aresolutions of 

y″  – 9y = 0 on (-∞

,∞

)Now

for every x.So y = c1e3x + c2e

-3x is the general

solution.

Example

0633),( 33

3333

≠−=−= −

−−

 x x

 x x x x

ee

ee

eeW 

E l

Page 29: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 29/56

Diff_Eq_4_2011 29

• The functions y1 = ex, y2 = e2x , y3 = e3x

are solutions of y″′  – 6y″ + 11y′   – 6y = 0

on (-∞

,∞

).Since

for every real value of x.

So y = c1ex + c2 e2x + c3e

3x is the general

solution on (-∞, ∞).

Example

02

94

32),,( 6

32

32

32

32 ≠== x

 x x x

 x x x

 x x x

 x x x e

eee

eee

eee

eeeW 

Higher Order Linear Equations

Page 30: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 30/56

Diff_Eq_4_2011 30

• If y1,…, yn are solutions to ODE, then so

is linear combination

• Every solution can be expressed in thisform, with coefficients determined by

initial conditions, iff we can solve:

1 1 2 2( ) ( ) ( ) ( )n n y x c y x c y x c y x= + + +L

1 1 0 0 0

1 1 0 0 0

( 1) ( 1) ( 1)

1 1 0 0 0

( ) ( )( ) ( )

( ) ( )

n n

n n

n n n

n n

c y x c y x yc y x c y x y

c y x c y x y− − −

+ + =′ ′ ′+ + =

+ + =

LL

M

L

Homogeneous Equations with Constant Coefficients

Higher Order Linear Equations

Higher Order Linear Equations

Page 31: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 31/56

Diff_Eq_4_2011 31

( )( )

1 0 2 0 0

1 0 2 0 0

1 2 0

( 1) ( 1) ( 1)

1 0 2 0 0

( ) ( ) ( )

( ) ( ) ( )

, , ,

( ) ( ) ( )

n

n

n

n n n

n

  y x y x y x

  y x y x y x

W y y y x

  x y x y x− − −

′ ′ ′

=

L

L

K M M O M

L

Higher Order Linear Equations

Homogeneous Equations with Constant Coefficients

•  The system of equations on the previous slide has aunique solution iff   its determinant, or Wronskian, is

nonzero at x0:

COROLLARYCorollar

Higher Order Linear Equations

Page 32: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 32/56

Diff_Eq_4_2011 32

 Solution is:

•  The Wronskian of y1 and y2 is

•  Since W ≠  0 for all t, linear combinationsof y1 and y2 can be used to construct

solutions of the IVP for any initial value

t .

1 2

1 2

,

( )

t t 

t t 

  y e y e

 y t c e c e

−= =

= +

22 0

2121

21

21 −=−=−−=′−′=

′′

= −− eeeee y y y y

 y y

 y yW  t t t t 

( ) ( )

0,

0 3, 0 1

 y y

 y y

′′ − =

′= =EXAMPLE

SOLUTION

g e O de ea quat o s

SOLUTIONS TO HOMOGENEOUS

Page 33: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 33/56

Diff_Eq_4_2011 33

SOLUTIONS TO HOMOGENEOUS

LINEAR EQUATIONS WITHCONSTANT COEFFICIENTS

All solutions of the differential equation

are, or are constructed from, exponentialfunctions of the form

 y  = ert .

 NOTE: an

 , an−1

 , . . . , a1

 , a0

 are constants.

1

1 1 010

n n

n nn n

d y d y dya a a a y

dt dt dt  

− −+ + + + =L

Higher Order Linear Equations

Page 34: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 34/56

Diff_Eq_4_2011 34

• Consider the nth order linear homogeneous differentialequation with constant, real coefficients:

• By the fundamental theorem of algebra, a polynomial of degree n has n roots r1, r2, …, rn, and hence

[ ] 01

)1(

1

)(

0 =+′+++= −−  ya ya ya ya y L nn

nn L

0)( polynomialsticcharacteri

1

1

10 =++++= −

4 4 4 4 4 34 4 4 4 4 21 Lr  Z 

nn

nnrt rt 

ar ar ar aee L

)())(()( 210 nr r r r r r ar  Z  −−−= L

g q

Homogeneous Equations with Constant Coefficients

Higher Order Linear Equations

Page 35: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 35/56

Diff_Eq_4_2011 35

• If roots of Z(r) are real and unequal, then

there are n distinct solutions:

• Then general solution of differential

equation is

• The Wronskian can be used to determine

linear independence of solutions.

t r t r t r  neee ,,, 21 K

t r 

n

t r t r  nececect  y +++= K21

21

)(

g q

ADistinct Roots

Higher Order Linear Equations

Page 36: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 36/56

Diff_Eq_4_2011 36

• Assuming exponential solution leads to

characteristic equation:

• Thus the general solution is

( )( )( )( ) 04321

02414132)( 234

=+−+−⇔

=+−−+⇒=

r r r r 

r r r r et  y rt 

2 3 4

1 2 3 4( ) t t t t   y t c e c e c e c e− −= + + +

1)0(,0)0(,1)0(,1)0(

02414132)4(

−=′′′=′′−=′=

=+′−′′−′′′+

 y y y y

 y y y y y

g q

EXAMPLE

SOLUTION

•Consider the initial value problem 

Higher Order Linear Equations

Page 37: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 37/56

Diff_Eq_4_2011 37

• The initial conditions

yield

• Solving,

• Hence

164278

01694

1432

1

4321

4321

4321

4321

−=−+−

=+++

−=−+−

=+++

cccc

cccc

cccc

cccc

1)0(,0)0(,1)0(,1)0( −=′′′=′′−=′= y y y y

t t t t 

ecececect  y4

3

3

3

2

21)(−−

+++=

7

1,70

11,5

4,2

14321 −=−=== cccc

t t t t  eeeet  y 432

71

7011

54

21)( −− −−+=

g q

SOLUTION

(Cont’d)

Higher Order Linear Equations

Page 38: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 38/56

Diff_Eq_4_2011 38

Complex Roots• If Z(r) has complex roots, then they must

occur in conjugate pairs, λ  ±

 iμ .

• Solutions corresponding to complex roots have

the form

• We use the real-valued solutions

( )

( ) t iet ee

t iet eet t t i

t t t i

μ μ 

μ μ λ λ μ λ 

λ λ μ λ 

sincos

sincos

−=+=

+

t et e

t t 

μ μ 

λ λ 

sin,cos

B

Higher Order Linear Equations

Page 39: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 39/56

Diff_Eq_4_2011 39

• Consider the equation

• Then

• Now

• Thus the general solution is

( )( ) 01101)(3

=++−⇔=−⇒= r r r r et  yrt 

0=−′′′ y y

2

1,2

1 1 4 1 3 1 31 0

2 2 2 2

ir r r i

− ± − − ±+ + = ⇔ = = = − ±

2/3sin2/3cos)( 2/3

2/21 t ect ecect  y t t t  −− ++=

EXAMPLE

SOLUTION

Higher Order Linear Equations

Page 40: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 40/56

Diff_Eq_4_2011 40

• Consider the initial value problem

• The roots are 1, -1, i, -i. Thus the generalsolution is

• Using the initial conditions, we obtain

• The graph of solution is given on right.

( )( ) 01101)( 224 =+−⇔=−⇒= r r r et  y rt 

2)0(,2/5)0(,4)0(,2/7)0(,0)4( −=′′′=′′−=′==− y y y y y y

( ) ( )t ct cecect  y t t  sincos)(4321

+++= −

( ) ( )t t eet  y t t  sincos2

130)( −++= −

EXAMPLE

SOLUTION

Higher Order Linear Equations

Page 41: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 41/56

Diff_Eq_4_2011 41

Repeated Roots• Suppose a real root rk of characteristic polynomial Z(r) is

a repeated root with multiplicty s.

• Then linearly independent solutions corresponding to this

repeated root have the form

t r  st r t r t r  k k k k 

et et tee

12

,,,,

K

C

Higher Order Linear EquationsHomogeneous Equations with Constant Coefficients

Page 42: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 42/56

Diff_Eq_4_2011 42

Repeated Roots• If a complex root λ + iμ  is repeated s times, then so is its

conjugate λ  - iμ .

• There are 2s corresponding linearly independent solns,

derived from real and imaginary parts of 

or

1 1

cos , sin ,cos , sin , ,

cos , sin ,k k 

t t 

t t 

r t r t    s s t  

e t e t  te t te t  

t e t t e e t  

λ λ 

λ λ 

λ 

μ μ μ μ 

μ μ 

− −

K

( ) ( ) ( ) ( )t iu st iut iut iu

et et tee+−+++ λ λ λ λ  12

,,,, K

C

Homogeneous Equations with Constant Coefficients

Page 43: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 43/56

Diff_Eq_4_2011 43

Example 4: Repeated Roots

• Consider the equation

• Then

• The roots are 2i, 2i, -2i, -2i.

• Thus the general solution is

( )( ) 0440168)( 224 =++⇔=++⇒= r r r r et  y rt 

0168)4( =+′′+ y y y

( ) ( )t t ct t ct ct ct  y 2sin2cos2sin2cos)( 4321 +++=

EXAMPLE

SOLUTION

Second Order Differential Equations

Page 44: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 44/56

Diff_Eq_4_2011 44

In general, it is not easy to discover particular

solutions to a second-order linear equation.

But it is always possible to do so if the

coefficient functions P , Q and R are constant

functions, that is, if the differential equation hasthe form:

0)()()(2

2

=++ y x R

dx

dy xQ

dx

 yd  x P 

0ay by cy′′ ′+ + =

SOLUTIONS TO THE

Page 45: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 45/56

Diff_Eq_4_2011 45

SOLUTIONS TO THE

HOMOGENEOUS LINEAR 2ND

-ORDER DE

The solutions to the homogeneous linear second-

 order differential equation depend on the solutionsto the characteristic equation. The solutions to the

characteristic equation fall into three cases:•  Distinct (unequal) real roots

•  Repeated (equal) real roots

 Conjugate complex roots

THE CHARACTERISTIC

Page 46: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 46/56

Diff_Eq_4_2011 46

THE CHARACTERISTIC

EQUATION

Substituting  y  = emx

 results in the auxiliary

equation or 

  characteristic equation:

am2

 + bm  + c  = 0.

From eq am2 + bm + c = 0 the two

Page 47: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 47/56

Diff_Eq_4_2011 47

From eq. am2 + bm + c = 0 the two

roots are

(1)b2 – 4ac > 0: two distinct realnumbers.

(2)b

2

 – 4ac = 0: two equal realnumbers.

(3)b2 – 4ac < 0: two conjugate complex

numbers.

21 ( 4 ) / 2r b b ac a= − + −

2

2 ( 4 ) / 2r b b ac a= − − −

Page 48: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 48/56

Diff_Eq_4_2011 48

If the characteristic equation has two distinct

(unequal) real roots m1

 and m2

 , the two solutionsto the DE are .

This results in the general solution:

DISTINCT REAL ROOTS

 xm xm e ye y 21

21 and ==

 xm xm ecec y 21

21 +=

Page 49: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 49/56

Diff_Eq_4_2011 49

When the roots of the characteristic equation are

equal (that is, m1

 = m2

 ), then the two solutions are

The general solution is:

REPEATED REAL ROOTS

.and 11

21

 xm xm xe ye y ==

.11

21

 xm xm

 xecec y +=

Page 50: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 50/56

Diff_Eq_4_2011 50

CONJUGATE COMPLEX ROOTSIf the roots of the characteristic equation are

conjugate complex roots

m1

 = α

 + i β 

 and m1

 = α

 −

 i β ,

then the two solutions are

 y1  = e

α x

cos   β  x  and y2  = e

α x

sin   β  x,and the general solution is

( ) ( ) ( )α α  β β = +1 2e sin e cosx x

y x C x C x

Second Order Differential Equations

Page 51: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 51/56

Diff_Eq_4_2011 51

Example 0y y′′ − = CE2 1 0r − = 1 or 1.r r⇒ = = −

1 2e ex xy C C −= +Solution

Example 2 0y y y′′ ′− + = CE2 2 1 0r r− + = 1 (double root).r⇒ =

1 2e ex xy C C x= +Solution

Example 2 5 0y y y′′ ′+ + = CE2 2 5 0r r+ + =

1 2 1 1 2r i⇒ = − ± − = − ±

( ) ( )1 2e sin 2 e cos 2x xy C x C x− −= +

Solution

I i i l l d b d l bl

Second Order Differential Equations

Page 52: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 52/56

Diff_Eq_4_2011 52

An initial-value problem for the second-order Equation

consists of finding a solution

  y

 of the differential equation

that also satisfies initial conditions of the form

where and are given constants. If  P, Q, R, and G arecontinuous on an interval and there, then a  theorem found in more advanced books guarantees the

 existence and uniqueness of a solution to this initial-value problem.

1000 )()( y x y y x y =′=

0 y 1 y0)( ≠ x P 

Initial-value and boundary-value problems

Second Order Differential Equations

Page 53: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 53/56

Diff_Eq_4_2011 53

A boundary-value problem for Equation 1 consists of finding a solution of the differential equation that also

satisfies boundary conditions of the form

In contrast with the situation for initial-value problems, a

boundary-value problem does not always have asolution.

1100 )()( y x y y x y ==

Page 54: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 54/56

Diff_Eq_4_2011 54

• Solve the following DEs:

(a)

(b)

(c)

Example 1

03'5"2 =−− y y y x x ecec y 3

2

2

1 += −

025'10" =+− y y y

 x x  xecec y 52

51 +=

07'4" =++ y y y

2 1 2( cos 3 sin 3 ) x  y e c x c x−

= +

Page 55: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 55/56

Diff_Eq_4_2011 55

Example 2Solve

Solut ion: 

2)0(',1)0(,017'4"4 =−==++ y y y y y

)2sin432cos(2/  x xe y x+−= −

Page 56: Diff Equation 4 2011 Fall HIGH Order Theory

8/3/2019 Diff Equation 4 2011 Fall HIGH Order Theory

http://slidepdf.com/reader/full/diff-equation-4-2011-fall-high-order-theory 56/56